Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Nucleic Acids Res ; 51(20): 11178-11196, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37850636

RESUMEN

Von Hippel-Lindau (VHL) is a tumor suppressor that functions as the substrate recognition subunit of the CRL2VHL E3 complex. While substrates of VHL have been identified, its tumor suppressive role remains to be fully understood. For further determination of VHL substrates, we analyzed the physical interactome of VHL and identified the histone H3K9 methyltransferase SETBD1 as a novel target. SETDB1 undergoes oxygen-dependent hydroxylation by prolyl hydroxylase domain proteins and the CRL2VHL complex recognizes hydroxylated SETDB1 for ubiquitin-mediated degradation. Under hypoxic conditions, SETDB1 accumulates by escaping CRL2VHL activity. Loss of SETDB1 in hypoxia compared with that in normoxia escalates the production of transposable element-derived double-stranded RNAs, thereby hyperactivating the immune-inflammatory response. In addition, strong derepression of TEs in hypoxic cells lacking SETDB1 triggers DNA damage-induced death. Our collective results support a molecular mechanism of oxygen-dependent SETDB1 degradation by the CRL2VHL E3 complex and reveal a role of SETDB1 in genome stability under hypoxia.


Asunto(s)
Inestabilidad Genómica , N-Metiltransferasa de Histona-Lisina , Hipoxia , Humanos , Genes Supresores de Tumor , N-Metiltransferasa de Histona-Lisina/metabolismo , Hipoxia/genética , Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Oxígeno/metabolismo , Ubiquitina-Proteína Ligasas/genética , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/genética , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/metabolismo
2.
Microb Pathog ; 188: 106546, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38278457

RESUMEN

Nanomaterials derived from seaweed have developed as an alternative option for fighting infections caused by biofilm-forming microbial pathogens. This research aimed to discover potential seaweed-derived nanomaterials with antimicrobial and antibiofilm action against bacterial and fungal pathogens. Among seven algal species, the extract from Eisenia bicyclis inhibited biofilms of Klebsiella pneumoniae, Staphylococcus aureus, and Listeria monocytogenes most effectively at sub-MIC levels. As a result, in the present study, E. bicyclis was chosen as a prospective seaweed for producing E. bicyclis-gold nanoparticles (EB-AuNPs). Furthermore, the mass spectra of E. bicyclis reveal the presence of a number of potentially beneficial chemicals. The polyhedral shape of the synthesized EB-AuNP with a size value of 154.74 ± 33.46 nm was extensively described. The lowest inhibitory concentration of EB-AuNPs against bacterial pathogens (e.g., L.monocytogenes, S. aureus, Pseudomonas aeruginosa, and K. pneumoniae) and fungal pathogens (Candida albicans) ranges from 512 to >2048 µg/mL. Sub-MIC of EB-AuNPs reduces biofilm formation in P. aeruginosa, K. pneumoniae, L. monocytogenes, and S. aureus by 57.22 %, 58.60 %, 33.80 %, and 91.13 %, respectively. EB-AuNPs eliminate the mature biofilm of K. pneumoniae at > MIC, MIC, and sub-MIC concentrations. Furthermore, EB-AuNPs at the sub-MIC level suppress key virulence factors generated by P. aeruginosa, including motility, protease activity, pyoverdine, and pyocyanin, whereas it also suppresses the production of staphyloxanthin virulence factor from S. aureus. The current research reveals that seaweed extracts and a biocompatible seaweed-AuNP have substantial antibacterial, antibiofilm, and antivirulence actions against bacterial and fungal pathogens.


Asunto(s)
Antiinfecciosos , Algas Comestibles , Kelp , Nanopartículas del Metal , Algas Marinas , Oro/farmacología , Oro/química , Staphylococcus aureus , Estudios Prospectivos , Nanopartículas del Metal/química , Antibacterianos/farmacología , Antibacterianos/química , Antiinfecciosos/farmacología , Biopelículas , Algas Marinas/química , Factores de Virulencia , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa
3.
Environ Res ; 248: 118242, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38242419

RESUMEN

Exposure to ultrafine particles (UFPs) has been associated with multiple adverse health effects. Inhaled UFPs could reach the gastrointestinal tract and influence the composition of the gut microbiome. We have previously shown that oral ingestion of UFPs alters the gut microbiome and promotes intestinal inflammation in hyperlipidemic Ldlr-/- mice. Particulate matter (PM)2.5 inhalation studies have also demonstrated microbiome shifts in normolipidemic C57BL/6 mice. However, it is not known whether changes in microbiome precede or follow inflammatory effects in the intestinal mucosa. We hypothesized that inhaled UFPs modulate the gut microbiome prior to the development of intestinal inflammation. We studied the effects of UFP inhalation on the gut microbiome and intestinal mucosa in two hyperlipidemic mouse models (ApoE-/- mice and Ldlr-/- mice) and normolipidemic C57BL/6 mice. Mice were exposed to PM in the ultrafine-size range by inhalation for 6 h a day, 3 times a week for 10 weeks at a concentration of 300-350 µg/m3.16S rRNA gene sequencing was performed to characterize sequential changes in the fecal microbiome during exposures, and changes in the intestinal microbiome at the end. PM exposure led to progressive differentiation of the microbiota over time, associated with increased fecal microbial richness and evenness, altered microbial composition, and differentially abundant microbes by week 10 depending on the mouse model. Cross-sectional analysis of the small intestinal microbiome at week 10 showed significant changes in α-diversity, ß-diversity, and abundances of individual microbial taxa in the two hyperlipidemic models. These alterations of the intestinal microbiome were not accompanied, and therefore could not be caused, by increased intestinal inflammation as determined by histological analysis of small and large intestine, cytokine gene expression, and levels of fecal lipocalin. In conclusion, 10-week inhalation exposures to UFPs induced taxonomic changes in the microbiome of various animal models in the absence of intestinal inflammation.


Asunto(s)
Contaminantes Atmosféricos , Microbioma Gastrointestinal , Ratones , Animales , Material Particulado/análisis , Contaminantes Atmosféricos/toxicidad , Exposición por Inhalación/análisis , ARN Ribosómico 16S , Estudios Transversales , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Inflamación/inducido químicamente
4.
Mar Drugs ; 22(10)2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39452857

RESUMEN

To reveal potent ACE inhibitors, researchers screen various bioactive peptides from several sources, and more attention has been given to aquatic sources. This review summarizes the recent research achievements on marine peptides with ACE-inhibitory action and application. Marine peptides are considered excellent bioactives due to their large structural diversity and unusual bioactivities. The mechanisms by which these marine peptides inhibit ACE include competitive binding to ACEs' active site, interfering with ACE conformational changes, and avoiding the identification of substrates. The unique 3D attributes of marine peptides confer inhibition advantages toward ACE activity. Because IC50 values of marine peptides' interaction with ACE are low, structure-based research assumes that the interaction between ACE and peptides increased the therapeutic application. Numerous studies on marine peptides focused on the sustainable extraction of ACE-inhibitory peptides produced from several fish, mollusks, algae, and sponges. Meanwhile, their potential applications and medical benefits are worth investigating and considering. Due to these peptides exhibiting antioxidant, antihypertensive, and even antimicrobial properties simultaneously, their therapeutic potential for cardiovascular disease and other illnesses only increases. In addition, as marine peptides show better pharmacological benefits, they have increased absorption rates and low toxicity and could perhaps be modified for better stability and bioefficacy. Biotechnological advances in peptide synthesis and formulation have greatly facilitated the generation of peptide-based ACE inhibitors from marine sources, which subsequently offer new treatment models. This article gives a complete assessment of the present state of knowledge about marine organism peptides as ACE inhibitors. In addition, it emphasizes the relevance of additional investigation into their mechanisms of action, the optimization of manufacturing processes, and assessment in in vivo, preclinical, and clinical settings, underlining the urgency and value of this study. Using marine peptides for ACE inhibition not only broadens the repertory of bioactive compounds but also shows promise for tackling the global health burden caused by cardiovascular diseases.


Asunto(s)
Inhibidores de la Enzima Convertidora de Angiotensina , Organismos Acuáticos , Péptidos , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/química , Animales , Humanos , Péptidos/farmacología , Péptidos/química , Peptidil-Dipeptidasa A/metabolismo
5.
Int J Mol Sci ; 25(18)2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39337392

RESUMEN

Korean landrace red peppers (Capsicum annuum var. Subicho), such as the traditional representative Subicho variety, are integral to Korean foods and are often consumed raw or used as a dried powder for cuisine. However, the known vulnerability of local varieties of landrace to biotic stresses can compromise their quality and yield. We employed nuclear magnetic resonance (NMR) spectroscopy coupled with a multivariate analysis to uncover and compare the metabolomic profiles of healthy and biotic-stressed Subicho peppers. We identified 42 metabolites, with significant differences between the groups. The biotic-stressed Subicho red peppers exhibited lower sucrose levels but heightened concentrations of amino acids, particularly branched-chain amino acids (valine, leucine, and isoleucine), suggesting a robust stress resistance mechanism. The biotic-stressed red peppers had increased levels of TCA cycle intermediates (acetic, citric, and succinic acids), nitrogen metabolism-related compounds (alanine, asparagine, and aspartic acid), aromatic amino acids (tyrosine, phenylalanine, and tryptophan), and γ-aminobutyric acid. These findings reveal the unique metabolic adaptations of the Subicho variety, underscoring its potential resilience to biotic stresses. This novel insight into the stress response of the traditional Subicho pepper can inform strategies for developing targeted breeding programs and enhancing the quality and economic returns in the pepper and food industries.


Asunto(s)
Capsicum , Espectroscopía de Resonancia Magnética , Metabolómica , Estrés Fisiológico , Capsicum/metabolismo , Metabolómica/métodos , Espectroscopía de Resonancia Magnética/métodos , Metaboloma , Aminoácidos/metabolismo , Aminoácidos/análisis
6.
BMC Nurs ; 23(1): 696, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39334039

RESUMEN

BACKGROUND: As ethical conflicts increase in the ever-changing healthcare field, nursing task performance, which is the overall ability of a nurse's professional knowledge, attitude, and skills, is important for patient health and safety, the provision of quality nursing care, and the appropriate resolution of nursing ethical problems. This study aimed to evaluate the mediating effect of critical thinking disposition on the relationship between hospital ethical climate and nursing task performance. METHODS: A cross-sectional study was conducted. A total of a convenience sample of 200 clinical nurses from two Korean cities were recruited between November and December 2021. Direct questionnaires and online surveys were used to collect the data. The study variables were analyzed using descriptive statistics, correlations, and a model tested using the Hayes PROCESS macro (Model 4) mediation model. RESULTS: The mean scores for hospital ethical climate, critical thinking disposition, and nursing task performance were 91.86 ± 11.29, 97.74 ± 10.70, and 138.58 ± 14.95, respectively. Hospital ethical climate and critical thinking disposition were positively correlated with nursing task performance. In the mediation test model, hospital ethical climate was found to be positively and significantly associated with nursing task performance (ß = 0.46, p < .001) with the mediation of critical thinking disposition (ß = 0.70, p < .001). CONCLUSIONS: Hospital ethical climate and critical thinking disposition may be important determinants of task performance among clinical nurses. Hospital administrators should make efforts to create a more positive ethical climate in hospitals and conduct education and campaigns on a positive hospital ethical climate for hospital staff to improve nurses' performance.

7.
Biochem Biophys Res Commun ; 588: 97-103, 2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34953212

RESUMEN

Apoptosis plays an essential role in maintaining cellular homeostasis and preventing cancer progression. Bcl-xL, an anti-apoptotic protein, is an important modulator of the mitochondrial apoptosis pathway and is a promising target for anticancer therapy. In this study, we identified octenidine as a novel Bcl-xL inhibitor through structural feature-based deep learning and molecular docking from a library of approved drugs. The NMR experiments demonstrated that octenidine binds to the Bcl-2 homology 3 (BH3) domain-binding hydrophobic region that consists of the BH1, BH2, and BH3 domains in Bcl-xL. A structural model of the Bcl-xL/octenidine complex revealed that octenidine binds to Bcl-xL in a similar manner to that of the well-known Bcl-2 family protein antagonist ABT-737. Using the NanoBiT protein-protein interaction system, we confirmed that the interaction between Bcl-xL and Bak-BH3 domains within cells was inhibited by octenidine. Furthermore, octenidine inhibited the proliferation of MCF-7 breast and H1299 lung cancer cells by promoting apoptosis. Taken together, our results shed light on a novel mechanism in which octenidine directly targets anti-apoptotic Bcl-xL to trigger mitochondrial apoptosis in cancer cells.


Asunto(s)
Inteligencia Artificial , Iminas/farmacología , Piridinas/farmacología , Proteína bcl-X/antagonistas & inhibidores , Antineoplásicos/química , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Humanos , Iminas/química , Simulación del Acoplamiento Molecular , Neoplasias/patología , Unión Proteica/efectos de los fármacos , Piridinas/química , Proteína Destructora del Antagonista Homólogo bcl-2/química , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Proteína bcl-X/química
8.
Arch Microbiol ; 205(1): 23, 2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36509934

RESUMEN

The Gram-positive, nonmotile, rod-shaped bacterium EF45044T was isolated from a hot spring in Chungju, South Korea. The strain was able to grow at concentrations of 0‒5% (w/v) NaCl, at pH 6.0‒10.0 and in the temperature range of 18‒50 °C. Strain EF45044T showed the highest 16S rRNA gene sequence similarity (98.2%) with Microbacterium ketosireducens DSM 12510T, and the digital DNA‒DNA hybridization (dDDH), average amino acid identity (AAI), and average nucleotide identity (ANI) values were all lower than the accepted species threshold. Strain EF45044T contained MK‒12 and MK‒13 as the predominant respiratory quinones and anteiso‒C17:0, anteiso‒C15:0, and iso‒C16:0 as the major fatty acids. Diphosphatidylglycerol, phosphatidylglycerol, and glycolipid were detected as the major polar lipids. The cell-wall peptidoglycan contained ornithine. The DNA G + C content was 71.4 mol%. Based on the polyphasic data, strain EF45044T (= KCTC 49703T) presents a novel species of the genus Microbacterium, for which the name Microbacterium neungamense sp. nov. is proposed.


Asunto(s)
Ácidos Grasos , Microbacterium , ARN Ribosómico 16S/genética , Microbacterium/genética , Filogenia , Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética , Análisis de Secuencia de ADN , Ácidos Grasos/análisis , Hibridación de Ácido Nucleico , Fosfolípidos/química
9.
Arch Microbiol ; 204(1): 5, 2021 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-34870749

RESUMEN

Vibrio cholerae and Vibrio vulnificus are critical foodborne pathogens that need to be intensively controlled for their infection due to the intake and distribution of seafood, especially raw oysters. For this reason, various methods have already been developed for the detection and enumeration of these bacteria. The most probable number (MPN)-PCR (polymerase chain reaction) method is commonly used with the selective-differential medium for the efficiency and convenience of cell enumeration. One of the most frequently used for detecting Vibrio spp. is thiosulfate-citrate-bile salts-sucrose (TCBS) agar. But this selective-differential medium can fail to distinguish between V. cholerae, V. vulnificus, and Vibrio alginolyticus. For this reason, the conventional MPN-PCR method with TCBS medium for the detection of Vibrio spp. has a problem with processing PCR two times. This study suggests a simple and minimized detection method using one-time PCR and non-NaCl Luria-Bertani (LB-0) medium culture. This detection method is based on the difference in salt requirement between V. cholerae and V. vulnificus. Employing the developed methodology, the simultaneous cell enumeration of V. cholerae and V. vulnificus can be possible at a low cost. Furthermore, this study proposes a new specific primer to detect virulence-related genes from V. cholerae and V. vulnificus. This advanced MPN-PCR method was verified using bioaccumulated pacific oysters (Crassostrea gigas) by V. cholerae and V. vulnificus.


Asunto(s)
Ostreidae , Vibrio cholerae , Vibrio parahaemolyticus , Vibrio vulnificus , Animales , Reacción en Cadena de la Polimerasa , Vibrio cholerae/genética , Vibrio parahaemolyticus/genética , Vibrio vulnificus/genética
10.
Appl Microbiol Biotechnol ; 105(9): 3717-3731, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33900427

RESUMEN

The formation of biofilms by bacterial pathogens and the presence of persister cells in biofilms have become major concerns in the health sector, owing to their antibiotic resistance and tolerance. The transformation of bacterial pathogens into persister cells, either stochastically or due to stressful environmental factors, results in recalcitrant and recurring infections. Here, we sought to prepare gold nanoparticles from naturally occurring caffeine and explore their inhibitory action against biofilm formation and persister cells. Fourier transform infrared spectroscopy, UV-visible absorption spectroscopy, field emission transmission electron microscopy, energy-dispersive X-ray diffraction, and dynamic light scattering were used to characterize the gold nanoparticles obtained from caffeine (Caff-AuNPs). The Caff-AuNPs were found to exhibit a number of properties, including the ability to prevent biofilm formation, disperse mature biofilms, and kill different types of persister of gram-positive (Staphylococcus aureus and Listeria monocytogenes) and gram-negative (Pseudomonas aeruginosa and Escherichia coli) pathogenic bacteria. Microscopic analysis of the aforementioned bacterial cells, treated with Caff-AuNPs, revealed the bactericidal effect of Caff-AuNPs, although the underlying mechanism remains unknown. Collectively, the Caff-AuNPs synthesized in this study may be used as potential drugs to combat chronic infections caused by biofilm-forming pathogenic bacteria. KEY POINTS: • Biofilm and persister cells are clinically relevant, as they either prolong or completely resist antibiotic treatments. • Caffeine is used in the green synthesis of Caff-AuNPs, which have antibacterial and antibiofilm properties. • Caff-AuNPs are effective against various pathogenic bacterial persister cells.


Asunto(s)
Oro , Nanopartículas del Metal , Antibacterianos/farmacología , Biopelículas , Cafeína/farmacología , Pruebas de Sensibilidad Microbiana , Espectroscopía Infrarroja por Transformada de Fourier
11.
Microb Pathog ; 146: 104249, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32418905

RESUMEN

Aminoglycosides are a commonly used class of antibiotics; however, their application has been discontinued due to the emergence of multi-drug resistance bacterial strains. In the present study, the subinhibitory concentrations (sub-MIC) of several aminoglycosides were determined and tested as an antibiofilm and for their anti-virulence properties against Pseudomonas aeruginosa PAO1, which is an opportunistic foodborne pathogen. P. aeruginosa PAO1 exhibits multiple mechanisms of resistance, including the formation of biofilm and production of several virulence factors, against aminoglycoside antibiotics. The sub-MIC of these antibiotics exhibited biofilm inhibition of P. aeruginosa in alkaline TSB (pH 7.9). Moreover, various concentrations of these aminoglycosides also eradicate the mature biofilm of P. aeruginosa. In the presence of sub-MIC of aminoglycosides, the morphological changes of P. aeruginosa were found to change from rod-shaped to the filamentous, elongated, and streptococcal forms. Similar growth conditions and sub-MIC of aminoglycosides were also found to attenuate several virulence properties of P. aeruginosa PAO1. Molecular docking studies demonstrate that these aminoglycosides possess strong binding properties with the LasR protein, which is a well-characterized quorum-sensing receptor of P. aeruginosa. The present study suggests a new approach to revitalize aminoglycosides as antibiofilm and antivirulence drugs to treat infections caused by pathogenic bacteria.


Asunto(s)
Aminoglicósidos/farmacología , Biopelículas/efectos de los fármacos , Pseudomonas aeruginosa , Virulencia/efectos de los fármacos , Antibacterianos/farmacología , Proteínas Bacterianas/metabolismo , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Pseudomonas aeruginosa/citología , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/crecimiento & desarrollo , Percepción de Quorum/efectos de los fármacos , Transactivadores/metabolismo
12.
Am J Physiol Heart Circ Physiol ; 316(1): H106-H112, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30412436

RESUMEN

Continuous laminar shear stress increases the process of autophagy, activates endothelial nitric oxide (NO) synthase phosphorylation at serine 1177 (p-eNOSS1177), and generates NO in bovine and human arterial endothelial cells (ECs) compared with static controls. However, the translational relevance of these findings has not been explored. In the current study, primary ECs were collected from the radial artery of 7 men using sterile J-wires before (Pre) and after (Post) 60 min of rhythmic handgrip exercise (HG) performed with the same arm. After ECs were identified by positive costaining for vascular endothelial cadherin and 4',6'-diamidino-2-phenylindole, immunofluorescent antibodies were used to assess indices of autophagy, NO generation, and superoxide anion (O2·-) production. Commercially available primary human arterial ECs were stained and processed in parallel to serve as controls. All end points were evaluated using 75 ECs from each subject. Relative to Pre-HG, HG elevated arterial shear rate ( P < 0.05) ~3-fold, whereas heart rate, arterial pressure, and cardiac output were not altered. Compared with values obtained from ECs Pre-HG, Post-HG ECs displayed increased ( P < 0.05) expression of p-eNOSS1177, NO generation, O2·- production, BECLIN1, microtubule-associated proteins 1A/1B light chain 3B, autophagy-related gene 3, and lysosomal-associated membrane protein 2A and decreased ( P < 0.05) expression (i.e., enhanced degradation) of the adaptor protein p62/sequestosome-1. These novel findings provide evidence that elevated arterial shear rate associated with functional hyperemia initiates autophagy, activates p-eNOSS1177, and increases NO and O2·- generation in primary human ECs. NEW & NOTEWORTHY Previously, our group reported in bovine arterial and human arterial endothelial cells (ECs) that shear stress initiates trafficking of the autophagosome to the lysosome and increases endothelial nitric oxide (NO) synthase phosphorylation at serine 1177, NO generation, and O2·- production. Here, the translational relevance of these findings is documented. Specifically, functional hyperemia induced by rhythmic handgrip exercise elevates arterial shear rate to an extent that increases indices of autophagy, NO generation, and O2·- production in primary arterial ECs collected from healthy men.


Asunto(s)
Arterias/metabolismo , Autofagia , Células Endoteliales/metabolismo , Ejercicio Físico , Óxido Nítrico Sintasa de Tipo III/metabolismo , Adulto , Arterias/citología , Arterias/fisiología , Células Cultivadas , Endotelio Vascular/citología , Endotelio Vascular/metabolismo , Fuerza de la Mano , Humanos , Masculino , Óxido Nítrico/metabolismo
13.
Microb Pathog ; 136: 103673, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31437576

RESUMEN

Listeria monocytogenes is a food-borne pathogen present in various environmental reservoirs. It exhibits resistance and tolerance to antibiotics and sanitizing agents used in several food processing industries. It has been reported that L. monocytogenes chitinase can catalyze hydrolysis of chitin polymeric carbohydrate present in the environment and act as a virulence factor that support its survival in mammalian host cells. By taking advantage of chitinase, L. monocytogenes has both saprophytic and pathogenic lifestyles in the soil and the living host, respectively. The objective of the present study was to determine the involvement of chitin degradation products such as chitooligosaccharides (COS) in biofilm formation of L. monocytogenes. Results showed that different concentrations of COS with various molecular weight enhanced biofilm formation of L. monocytogenes. Such enhancement in biofilm formation contributed to the development of antibiotics resistance and disinfectants tolerance of cells present in the biofilm. The present article also described diverse roles of chitin, chitinase, and degradation of chitin and chitin-like substrates in saprophytic and pathogenic lifestyles of L. monocytogenes. This study offers a new direction for further exploration of the mechanisms of pathogenesis caused by L. monocytogenes.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/crecimiento & desarrollo , Quitina/análogos & derivados , Desinfectantes/farmacología , Tolerancia a Medicamentos , Listeria monocytogenes/crecimiento & desarrollo , Animales , Biopelículas/efectos de los fármacos , Quitina/metabolismo , Quitosano , Listeria monocytogenes/efectos de los fármacos , Oligosacáridos
14.
Indian J Microbiol ; 59(1): 116-120, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30728641

RESUMEN

Chitosan-phytochemical conjugates exhibited significant antibacterial effect with minimum inhibitory concentration (MIC) ranging from 128 to 2048 µg/ml against antibiotic-resistant fish pathogenic bacteria such as Edwardseilla tarda, Vibrio harveyi and Photobacterium damselaewhich were isolated from Korean cultured fish. Furthermore, the MIC values of old-fashioned antibiotics such as erythromycin and oxytertacycline drastically reduced in combination with chitosan-phytochemical conjugates against the fish pathogenic bacteria. The combination of conjugates with erythromycin and oxytetracycline gave median ∑FIC results ranging from 0.281 to 0.625 and 0.312 to 0.625, respectively. This result indicates the synergistic antibacterial effects and an increased susceptibility against the antibiotics.

15.
Arterioscler Thromb Vasc Biol ; 37(9): 1646-1656, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28684613

RESUMEN

OBJECTIVE: Impaired endothelial cell (EC) autophagy compromises shear stress-induced nitric oxide (NO) generation. We determined the responsible mechanism. APPROACH AND RESULTS: On autophagy compromise in bovine aortic ECs exposed to shear stress, a decrease in glucose uptake and EC glycolysis attenuated ATP production. We hypothesized that decreased glycolysis-dependent purinergic signaling via P2Y1 (P2Y purinoceptor 1) receptors, secondary to impaired autophagy in ECs, prevents shear-induced phosphorylation of eNOS (endothelial nitric oxide synthase) at its positive regulatory site S1117 (p-eNOSS1177) and NO generation. Maneuvers that restore glucose transport and glycolysis (eg, overexpression of GLUT1 [glucose transporter 1]) or purinergic signaling (eg, addition of exogenous ADP) rescue shear-induced p-eNOSS1177 and NO production in ECs with impaired autophagy. Conversely, inhibiting glucose transport via GLUT1 small interfering RNA, blocking purinergic signaling via ectonucleotidase-mediated ATP/ADP degradation (eg, apyrase), or inhibiting P2Y1 receptors using pharmacological (eg, MRS2179 [2'-deoxy-N6-methyladenosine 3',5'-bisphosphate tetrasodium salt]) or genetic (eg, P2Y1-receptor small interfering RNA) procedures inhibit shear-induced p-eNOSS1177 and NO generation in ECs with intact autophagy. Supporting a central role for PKCδT505 (protein kinase C delta T505) in relaying the autophagy-dependent purinergic-mediated signal to eNOS, we find that (1) shear stress-induced activating phosphorylation of PKCδT505 is negated by inhibiting autophagy, (2) shear-induced p-eNOSS1177 and NO generation are restored in autophagy-impaired ECs via pharmacological (eg, bryostatin) or genetic (eg, constitutively active PKCδ) activation of PKCδT505, and (3) pharmacological (eg, rottlerin) and genetic (eg, PKCδ small interfering RNA) PKCδ inhibition prevents shear-induced p-eNOSS1177 and NO generation in ECs with intact autophagy. Key nodes of dysregulation in this pathway on autophagy compromise were revealed in human arterial ECs. CONCLUSIONS: Targeted reactivation of purinergic signaling and PKCδ has strategic potential to restore compromised NO generation in pathologies associated with suppressed EC autophagy.


Asunto(s)
Adenosina Trifosfato/metabolismo , Autofagia , Células Endoteliales/enzimología , Glucólisis , Mecanotransducción Celular , Óxido Nítrico Sintasa de Tipo III/metabolismo , Óxido Nítrico/metabolismo , Receptores Purinérgicos P2Y1/metabolismo , Animales , Autofagia/efectos de los fármacos , Proteínas Relacionadas con la Autofagia/deficiencia , Proteínas Relacionadas con la Autofagia/genética , Bovinos , Células Cultivadas , Células Endoteliales/efectos de los fármacos , Células Endoteliales/patología , Transportador de Glucosa de Tipo 1/genética , Transportador de Glucosa de Tipo 1/metabolismo , Glucólisis/efectos de los fármacos , Humanos , Mecanotransducción Celular/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones Noqueados , Fosforilación , Proteína Quinasa C-delta/antagonistas & inhibidores , Proteína Quinasa C-delta/genética , Proteína Quinasa C-delta/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Antagonistas del Receptor Purinérgico P2Y/farmacología , Interferencia de ARN , Especies Reactivas de Oxígeno/metabolismo , Receptores Purinérgicos P2Y1/efectos de los fármacos , Receptores Purinérgicos P2Y1/genética , Serina , Estrés Mecánico , Transfección , Enzimas Ubiquitina-Conjugadoras/deficiencia , Enzimas Ubiquitina-Conjugadoras/genética
16.
Int J Mol Sci ; 19(8)2018 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-30042337

RESUMEN

The emergence of more virulent forms of human pathogenic bacteria with multi-drug resistance is a serious global issue and requires alternative control strategies. The current study focused on investigating the antibacterial and antibiofilm potential of ferulic acid-grafted chitosan (CFA) against Listeria monocytogenes (LM), Pseudomonas aeruginosa (PA), and Staphylococcus aureus (SA). The result showed that CFA at 64 µg/mL concentration exhibits bactericidal action against LM and SA (>4 log reduction) and bacteriostatic action against PA (<2 log colony forming units/mL reduction) within 24 h of incubation. Further studies based on propidium iodide uptake assay, measurement of material released from the cell, and electron microscopic analysis revealed that the bactericidal action of CFA was due to altered membrane integrity and permeability. CFA dose dependently inhibited biofilm formation (52⁻89% range), metabolic activity (30.8⁻75.1% range) and eradicated mature biofilms, and reduced viability (71⁻82% range) of the test bacteria. Also, the swarming motility of LM was differentially affected at sub-minimum inhibitory concentration (MIC) concentrations of CFA. In the present study, the ability of CFA to kill and alter the virulence production in human pathogenic bacteria will offer insights into a new scope for the application of these biomaterials in healthcare to effectively treat bacterial infections.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Quitosano/análogos & derivados , Quitosano/farmacología , Ácidos Cumáricos/química , Listeria monocytogenes/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Permeabilidad de la Membrana Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Pruebas de Sensibilidad Microbiana
17.
Exp Dermatol ; 26(10): 889-895, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28192606

RESUMEN

Metformin is a popular antidiabetic biguanide, which has been considered as a candidate drug for cancer treatment and ageing prevention. Hutchinson-Gilford progeria syndrome (HGPS) is a devastating disease characterized by premature ageing and severe age-associated complications leading to death. The effects of metformin on HGPS dermal fibroblasts remain largely undefined. In this study, we investigated whether metformin could exert a beneficial effect on nuclear abnormalities and delay senescence in fibroblasts derived from HGPS patients. Metformin treatment partially restored normal nuclear phenotypes, delayed senescence, activated the phosphorylation of AMP-activated protein kinase and decreased reactive oxygen species formation in HGPS dermal fibroblasts. Interestingly, metformin reduced the number of phosphorylated histone variant H2AX-positive DNA damage foci and suppressed progerin protein expression, compared to the control. Furthermore, metformin-supplemented aged mice showed higher splenocyte proliferation and mRNA expression of the antioxidant enzyme, superoxide dismutase 2 than the control mice. Collectively, our results show that metformin treatment alleviates the nuclear defects and premature ageing phenotypes in HGPS fibroblasts. Thus, metformin can be considered a promising therapeutic approach for life extension in HGPS.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Senescencia Celular/efectos de los fármacos , Expresión Génica/efectos de los fármacos , Hipoglucemiantes/farmacología , Metformina/farmacología , Progeria/fisiopatología , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Línea Celular , Núcleo Celular/metabolismo , Niño , Preescolar , Fibroblastos/metabolismo , Histonas/metabolismo , Humanos , Lamina Tipo A/metabolismo , Ratones , Proteínas Nucleares/metabolismo , Fenotipo , Fosforilación/efectos de los fármacos , Progeria/patología , ARN Mensajero/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Piel/patología , Bazo/citología , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo
18.
Biochem Biophys Res Commun ; 468(1-2): 151-6, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26522224

RESUMEN

Silibinin is a major bioactive component of silymarin and has anticancer effects on cancer cell line and has been used as a supportive therapy for chronic inflammatory liver condition. These anticancer effects of silibinin have been demonstrated both in vitro and in vivo cancer models. Although various evidences showed apoptosis signaling pathways by silibinin, there is no report to address the clearly mechanism of silibinin-induced autophagy in prostate cancer PC-3 cells. Our study showed that silibinin triggered autophagy through up-regulation of microtubule-associated protein 1 light chain 3 (LC3)-II, formation of acidic vesicular organelles (AVO) and punctuate of GFP-LC3, which was inhibited by 3-methyladenine (3-MA), an inhibitor of specific autophagy. In addition, silibinin induced autophagy through production of reactive oxygen species (ROS). Inhibition of ROS with diphenyleneiodonium (DPI), a ROS inhibitor, attenuated silibinin-triggered autophagy. Inhibition of autophagy with 3-MA enhanced the silibinin-induced apoptosis through the regulation of caspase-3 and PARP. These results suggested that silibinin induced autophagy by regulating ROS and its mechanism played a protective role against apoptosis in PC-3 cells.


Asunto(s)
Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Próstata/efectos de los fármacos , Neoplasias de la Próstata/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , Silimarina/farmacología , Autofagia/efectos de los fármacos , Línea Celular Tumoral , Humanos , Masculino , Proteínas Asociadas a Microtúbulos/metabolismo , Silybum marianum/química , Próstata/metabolismo , Próstata/patología , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Silibina
19.
Platelets ; 25(6): 427-32, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24102424

RESUMEN

The aim of this study was to determine the associations of the mean platelet volume (MPV) high-sensitivity cardiac troponin T (hs-cTnT) and N-terminal pro-B type natriuretic peptide (NT-proBNP) with the development of adverse outcomes after percutaneous coronary intervention (PCI). MPV hs-cTnT and NT-proBNP were analyzed in 372 patients who underwent PCI. The primary endpoint was cardiac death. The secondary endpoint analyzed was cardiovascular events (CVE): the composite of cardiac death, myocardial infarction (MI), target vessel revascularization (TVR), ischemic stroke and stent thrombosis (ST). The median MPV hs-cTnT and NT-proBNP levels were 8.20 (IQR 7.70-8.70) fL, 0.291 (IQR 0.015-3.785) ng/mL, and 105.25 (IQR 50.84-1128.5) pg/mL, respectively. There were 21 events of cardiac death, 10 MI (including 4 events of ST), 7 ischemic strokes and 29 TVR during a mean of 25.8 months of follow-up. The Kaplan-Meier analysis revealed that the higher MPV group (>8.20 fL, median) had a significantly higher cardiac death rate than the lower MPV group (≤8.20 fL; 9.4% vs. 2.1%, log-rank: p = 0.0026). When the MPV cut-off level was set to 8.20 fL using the receiver operating characteristic curve, the sensitivity was 81% and the specificity was 53.3% for differentiating between the group with cardiac death and the group without cardiac death. This value was more useful in patients with myocardial injury (hs-cTnT ≥ 0.1 ng/mL) or heart failure (NT-proBNP ≥ 450 pg/mL). The results of this study show that MPV is a predictive marker for cardiac death after PCI; its predictive power for cardiac death is more useful in patients with myocardial injury or heart failure.


Asunto(s)
Volúmen Plaquetario Medio , Péptido Natriurético Encefálico/sangre , Fragmentos de Péptidos/sangre , Intervención Coronaria Percutánea/efectos adversos , Complicaciones Posoperatorias/sangre , Complicaciones Posoperatorias/mortalidad , Troponina T/sangre , Anciano , Anciano de 80 o más Años , Pueblo Asiatico , Biomarcadores/sangre , Supervivencia sin Enfermedad , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , República de Corea , Tasa de Supervivencia
20.
J Environ Biol ; 35(2): 377-82, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24665765

RESUMEN

A colorless volatile liquid dichloromethane (DCM) is used as solvents in chemical manufacturing processes. The major route of exposure is via inhalation and to a lesser extent through the skin and digestive tract. We investigated the effects of DCM on rats and analyzed their liver proteome expression changes. Approximately 1,100 protein spots that were detected by 2-dimensional gel electrophoresis showed reproducible abundance. Mass spectrometry based proteomics was used to characterize the changes in the liver proteome in response to DCM exposure. Consequently, 7 of these spots showed significant changes in expression level after DCM treatment. These proteins were 3 paralogues of glutathione S-transferase, beta 1 globin, 2 hemoglobin beta-2 and alpha-2 globulin. Of these, the expression of alpha-2 globulin was also confirmed by western blot. The differential expression of these proteins might be caused by DCM exposure.


Asunto(s)
Regulación de la Expresión Génica/efectos de los fármacos , Cloruro de Metileno/toxicidad , Transcriptoma/efectos de los fármacos , Animales , Contaminantes Ambientales/toxicidad , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA