RESUMEN
This study introduces an approach to overcome the limitations of conventional pressure sensors by developing a thin and lightweight composite film specifically tailored for flexible capacitive pressure sensors, with a particular emphasis on the medium and high pressure range. To accomplish this, we have engineered a composite film by combining polyvinylidene fluoride (PVDF) and graphite nanoplatelets (GNP) derived from expanded graphite (Ex-G). A uniform sized GNPs with an average lateral size of 2.55av and an average thickness of 33.74 av with narrow size distribution was obtained with a gas-induced expansion of expandable graphite (EXP-G) combined with tip sonication in solvent. By this precisely controlled GNP within the composite film, a remarkable improvement in sensor sensitivity has been achieved, surpassing 4.18 MPa-1 within the pressure range of 0.1 to 1.6 MPa. This enhancement can be attributed to the generation of electric charge from the movement of GNP in the polymer matrix. Additionally, stability testing has demonstrated the reliable operation of the composite film over 1000 cycles. Notably, the composite film exhibits exceptional continuous pressure sensing capabilities with a rapid response time of approximately 100 milliseconds. Experimental validation using a 3 × 3 sensor array has confirmed the accurate detection of specific contact points, thus highlighting the potential of the composite film in selective pressure sensing. These findings signify an advancement in the field of flexible capacitive pressure sensors that offer enhanced sensitivity, consistent operation, rapid response time, and the unique ability to selectively sense pressure.
RESUMEN
A suitable and non-invasive methanol sensor workable in ambient temperature conditions with a high response has gained wide interest to prevent detrimental consequences for industrial workers from its low-level intoxication. In this work, we present a tunable and highly responsive ppb-level methanol gas sensor device working at room temperature via a bottom-up synthetic approach using exfoliated graphene sheet (EGs) and ZnO quantum dots (QDs) on an aluminum anodic oxide (AAO) template. It is verified that EGs-supported AAO with a vertical electrode configuration enabled high and fast-responsive methanol sensing. Moreover, the hydroxyl and carboxyl groups of the high surface area EGs and ZnO QDs with a 3.37 eV bandgap efficiently absorbing UV light led to 56 times high response due to the enhanced polarization on the sensor surface compared to non-UV-radiated EGs/AAO at 800 ppb of methanol. The optimal resonance frequency of methanol is determined to be 100 kHz, which could detect methanol with high response of 2.65% at 100 ppm. The limit of detection (LOD) concentration is obtained at 2 ppb level. This study demonstrates the potential of UV-assisted ZnO, EGs, and AAO-based capacitance sensor material for rapidly detecting hazardous gaseous light organic molecules at ambient conditions, and the overall approach can be easily expanded to a novel non-invasive monitoring strategy for light and hazardous volatile organic exposures.
Asunto(s)
Grafito , Nanoestructuras , Óxido de Zinc , Óxido de Aluminio/química , Gases , Grafito/química , Humanos , Metanol , Nanoestructuras/química , Temperatura , Óxido de Zinc/químicaRESUMEN
The electrochemical exfoliation of graphite has been considered to be an effective approach for the mass production of high-quality graphene due to its easy, simple, and eco-friendly synthetic features. However, water dispersion of graphene produced in the electrochemical exfoliation method has also been a challenging issue because of the hydrophobic properties of the resulting graphene. In this study, we report the electrochemical exfoliation method of producing water-dispersible graphene that importantly contains the relatively low oxygen content of <10% without any assistant dispersing agents. Through the mild in situ sulfate functionalization of graphite under alkaline electrochemical conditions using a pH buffer, the highly water-dispersible graphene could be produced without any additional separation processes of sedimentation and/or centrifugation. We found the resulting graphene sheets to have high crystalline basal planes, lateral sizes of several µm, and a thickness of <5 nm. Furthermore, the high aqueous dispersion stability of as-prepared graphene could be demonstrated using a multi-light scattering technique, showing very little change in the optical transmittance and the terbiscan stability index over time.
RESUMEN
Graphite foils (GFs) are emerging as a new class of electrodes in supercapacitors (SCs) based on their light weight, and high electrical conductivity, although the surface area remains low. A novel method of, in situ electrochemical exfoliation and modification of GF in the assembled SCs, showed high energy density and power density of the SC devices.
RESUMEN
Recent advances in nanomaterials and nano-microfabrication have enabled the development of flexible wearable electronics. However, existing manufacturing methods still rely on a multi-step, error-prone complex process that requires a costly cleanroom facility. Here, we report a new class of additive nanomanufacturing of functional materials that enables a wireless, multilayered, seamlessly interconnected, and flexible hybrid electronic system. All-printed electronics, incorporating machine learning, offers multi-class and versatile human-machine interfaces. One of the key technological advancements is the use of a functionalized conductive graphene with enhanced biocompatibility, anti-oxidation, and solderability, which allows a wireless flexible circuit. The high-aspect ratio graphene offers gel-free, high-fidelity recording of muscle activities. The performance of the printed electronics is demonstrated by using real-time control of external systems via electromyograms. Anatomical study with deep learning-embedded electrophysiology mapping allows for an optimal selection of three channels to capture all finger motions with an accuracy of about 99% for seven classes.
Asunto(s)
Técnicas Biosensibles/métodos , Electrónica/métodos , Grafito/química , Conductividad Eléctrica , Humanos , Nanoestructuras/química , Dispositivos Electrónicos Vestibles , Tecnología InalámbricaRESUMEN
BACKGROUND: The present study aims to compare the pulmonary function of residents of Seoul special city (Seoul) and Jeju special self-governing province including Jeju city and Seogwipo city (Jeju), characterized by vastly different annual average airborne particulate matter with an aerodynamic diameter less ≤10 µm (PM10) concentrations, with the annual average PM10 concentration in Seoul being significantly higher than that in Jeju. METHODS: This cross-sectional study analyzed the pulmonary function test results and sociodemographic data of Korean adults ≥19 years of age derived from the 4th KNHANES, 2007-2009. A total of 830 individuals residing in Seoul or Jeju were included in this study. T-tests were used to analyze predicted values of forced expiratory volume in 1 sec (FEV1p), predicted values of forced vital capacity (FVCp) and FEV1/FVC ratio (FEV1/FVC), as dependent variables, to examine the differences in the subjects' pulmonary function according to the city of residence. Stratified analysis was then performed to adjust for variables potentially affecting pulmonary function. The analysis was performed on subjects as a group and also following stratification according to sex and other variables. RESULTS: Seoul residents had a significantly lower FVCp than that of the Jeju residents (difference: 3.48%, p = 0.002). FEV1p, FVCp and FEV1/FVC of male Seoul residents were significantly lower than those of male Jeju residents (difference: 6.99, 5.11% and 0.03, respectively; p < 0.001, p = 0.001, p = 0.001). In male subjects, statistically significant results were obtained even after adjusting the influence of other variables through stratified analysis. CONCLUSION: The present analysis was based on cross-sectional data collected at one point in time. Therefore, unlike longitudinal studies, it does not establish a clear causal association between the variables. Nevertheless, this study found that pulmonary function among subjects residing in Seoul was significantly decreased compared to that of subjects residing in Jeju.