Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Neural Comput Appl ; 35(23): 16805-16819, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37455836

RESUMEN

In this work, we present a perspective on the role machine intelligence can play in supporting human abilities. In particular, we consider research in rehabilitation technologies such as prosthetic devices, as this domain requires tight coupling between human and machine. Taking an agent-based view of such devices, we propose that human-machine collaborations have a capacity to perform tasks which is a result of the combined agency of the human and the machine. We introduce communicative capital as a resource developed by a human and a machine working together in ongoing interactions. Development of this resource enables the partnership to eventually perform tasks at a capacity greater than either individual could achieve alone. We then examine the benefits and challenges of increasing the agency of prostheses by surveying literature which demonstrates that building communicative resources enables more complex, task-directed interactions. The viewpoint developed in this article extends current thinking on how best to support the functional use of increasingly complex prostheses, and establishes insight toward creating more fruitful interactions between humans and supportive, assistive, and augmentative technologies.

2.
Front Neurorobot ; 15: 661603, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33897401

RESUMEN

During every waking moment, we must engage with our environments, the people around us, the tools we use, and even our own bodies to perform actions and achieve our intentions. There is a spectrum of control that we have over our surroundings that spans the extremes from full to negligible. When the outcomes of our actions do not align with our goals, we have a tremendous capacity to displace blame and frustration on external factors while forgiving ourselves. This is especially true when we cooperate with machines; they are rarely afforded the level of forgiveness we provide our bodies and often bear much of our blame. Yet, our brain readily engages with autonomous processes in controlling our bodies to coordinate complex patterns of muscle contractions, make postural adjustments, adapt to external perturbations, among many others. This acceptance of biological autonomy may provide avenues to promote more forgiving human-machine partnerships. In this perspectives paper, we argue that striving for machine embodiment is a pathway to achieving effective and forgiving human-machine relationships. We discuss the mechanisms that help us identify ourselves and our bodies as separate from our environments and we describe their roles in achieving embodied cooperation. Using a representative selection of examples in neurally interfaced prosthetic limbs and intelligent mechatronics, we describe techniques to engage these same mechanisms when designing autonomous systems and their potential bidirectional interfaces.

3.
IEEE Int Conf Rehabil Robot ; 2019: 1239-1246, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31374799

RESUMEN

Learning to get by without an arm or hand can be very challenging, and existing prostheses do not yet fill the needs of individuals with amputations. One promising solution is to improve the feedback from the device to the user. Towards this end, we present a simple machine learning interface to supplement the control of a robotic limb with feedback to the user about what the limb will be experiencing in the near future. A real-time prediction learner was implemented to predict impact-related electrical load experienced by a robot limb; the learning system's predictions were then communicated to the device's user to aid in their interactions with a workspace. We tested this system with five able-bodied subjects. Each subject manipulated the robot arm while receiving different forms of vibrotactile feedback regarding the arm's contact with its workspace. Our trials showed that using machine-learned predictions as a basis for feedback led to a statistically significant improvement in task performance when compared to purely reactive feedback from the device. Our study therefore contributes initial evidence that prediction learning and machine intelligence can benefit not just control, but also feedback from an artificial limb. We expect that a greater level of acceptance and ownership can be achieved if the prosthesis itself takes an active role in transmitting learned knowledge about its state and its situation of use.


Asunto(s)
Miembros Artificiales , Aprendizaje Automático , Robótica , Amputación Quirúrgica , Retroalimentación Sensorial/fisiología , Humanos , Diseño de Prótesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA