Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 23(6): 927-939, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35624205

RESUMEN

Hypoxemia is a defining feature of acute respiratory distress syndrome (ARDS), an often-fatal complication of pulmonary or systemic inflammation, yet the resulting tissue hypoxia, and its impact on immune responses, is often neglected. In the present study, we have shown that ARDS patients were hypoxemic and monocytopenic within the first 48 h of ventilation. Monocytopenia was also observed in mouse models of hypoxic acute lung injury, in which hypoxemia drove the suppression of type I interferon signaling in the bone marrow. This impaired monopoiesis resulted in reduced accumulation of monocyte-derived macrophages and enhanced neutrophil-mediated inflammation in the lung. Administration of colony-stimulating factor 1 in mice with hypoxic lung injury rescued the monocytopenia, altered the phenotype of circulating monocytes, increased monocyte-derived macrophages in the lung and limited injury. Thus, tissue hypoxia altered the dynamics of the immune response to the detriment of the host and interventions to address the aberrant response offer new therapeutic strategies for ARDS.


Asunto(s)
Lesión Pulmonar , Síndrome de Dificultad Respiratoria , Animales , Humanos , Hipoxia/etiología , Inflamación/complicaciones , Pulmón , Lesión Pulmonar/complicaciones , Ratones
3.
Genome Res ; 25(2): 226-34, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25367293

RESUMEN

V(D)J genomic recombination joins single gene segments to encode an extensive repertoire of antigen receptor specificities in T and B lymphocytes. This process initiates with double-stranded breaks adjacent to conserved recombination signal sequences that contain either 12- or 23-nucleotide spacer regions. Only recombination between signal sequences with unequal spacers results in productive coding genes, a phenomenon known as the "12/23 rule." Here we present two novel genomic tools that allow the capture and analysis of immune locus rearrangements from whole thymic and splenic tissues using second-generation sequencing. Further, we provide strong evidence that the 12/23 rule of genomic recombination is frequently violated under physiological conditions, resulting in unanticipated hybrid recombinations in ∼10% of Tcra excision circles. Hence, we demonstrate that strict adherence to the 12/23 rule is intrinsic neither to recombination signal sequences nor to the catalytic process of recombination and propose that nonclassical excision circles are liberated during the formation of antigen receptor diversity.


Asunto(s)
Genómica , Linfocitos/metabolismo , Recombinación V(D)J , Animales , Diferenciación Celular/genética , Reordenamiento Génico , Genes RAG-1 , Humanos , Linfocitos/citología , Ratones , Ratones Noqueados , Modelos Biológicos , Análisis de Secuencia de ADN
4.
Genome Res ; 22(1): 125-33, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22090378

RESUMEN

New sequencing technologies can address diverse biomedical questions but are limited by a minimum required DNA input of typically 1 µg. We describe how sequencing libraries can be reproducibly created from 20 pg of input DNA using a modified transpososome-mediated fragmentation technique. Resulting libraries incorporate in-line bar-coding, which facilitates sample multiplexes that can be sequenced using Illumina platforms with the manufacturer's sequencing primer. We demonstrate this technique by providing deep coverage sequence of the Escherichia coli K-12 genome that shows equivalent target coverage to a 1-µg input library prepared using standard Illumina methods. Reducing template quantity does, however, increase the proportion of duplicate reads and enriches coverage in low-GC regions. This finding was confirmed with exhaustive resequencing of a mouse library constructed from 20 pg of gDNA input (about seven haploid genomes) resulting in ∼0.4-fold statistical coverage of uniquely mapped fragments. This implies that a near-complete coverage of the mouse genome is obtainable with this approach using 20 genomes as input. Application of this new method now allows genomic studies from low mass samples and routine preparation of sequencing libraries from enrichment procedures.


Asunto(s)
ADN Bacteriano/química , Escherichia coli K12/química , Biblioteca de Genes , Análisis de Secuencia de ADN/métodos , Animales , ADN Bacteriano/genética , ADN Bacteriano/aislamiento & purificación , Escherichia coli K12/genética , Ratones
5.
Nat Genet ; 37(8): 806-8, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16041373

RESUMEN

We have previously reported a large Danish pedigree with autosomal dominant frontotemporal dementia (FTD) linked to chromosome 3 (FTD3). Here we identify a mutation in CHMP2B, encoding a component of the endosomal ESCRTIII complex, and show that it results in aberrant mRNA splicing in tissue samples from affected members of this family. We also describe an additional missense mutation in an unrelated individual with FTD. Aberration in the endosomal ESCRTIII complex may result in FTD and neurodegenerative disease.


Asunto(s)
Demencia/genética , Mutación , Proteínas del Tejido Nervioso/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte , Humanos , Mutación Missense , Linaje , Empalme del ARN
6.
PLoS Genet ; 5(12): e1000773, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20019802

RESUMEN

Spinal muscular atrophy is a severe motor neuron disease caused by inactivating mutations in the SMN1 gene leading to reduced levels of full-length functional SMN protein. SMN is a critical mediator of spliceosomal protein assembly, and complete loss or drastic reduction in protein leads to loss of cell viability. However, the reason for selective motor neuron degeneration when SMN is reduced to levels which are tolerated by all other cell types is not currently understood. Widespread splicing abnormalities have recently been reported at end-stage in a mouse model of SMA, leading to the proposition that disruption of efficient splicing is the primary mechanism of motor neuron death. However, it remains unclear whether splicing abnormalities are present during early stages of the disease, which would be a requirement for a direct role in disease pathogenesis. We performed exon-array analysis of RNA from SMN deficient mouse spinal cord at 3 time points, pre-symptomatic (P1), early symptomatic (P7), and late-symptomatic (P13). Compared to littermate control mice, SMA mice showed a time-dependent increase in the number of exons showing differential expression, with minimal differences between genotypes at P1 and P7, but substantial variation in late-symptomatic (P13) mice. Gene ontology analysis revealed differences in pathways associated with neuronal development as well as cellular injury. Validation of selected targets by RT-PCR confirmed the array findings and was in keeping with a shift between physiologically occurring mRNA isoforms. We conclude that the majority of splicing changes occur late in SMA and may represent a secondary effect of cell injury, though we cannot rule out significant early changes in a small number of transcripts crucial to motor neuron survival.


Asunto(s)
Empalme Alternativo/genética , Atrofia Muscular Espinal/patología , Animales , Modelos Animales de Enfermedad , Exones , Regulación de la Expresión Génica , Ratones , Neuronas Motoras , Isoformas de Proteínas , ARN Mensajero/análisis , Médula Espinal , Factores de Tiempo
7.
Viruses ; 13(8)2021 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-34452438

RESUMEN

Herpesviruses are large DNA viruses, which encode up to 300 different proteins including enzymes enabling efficient replication. Nevertheless, they depend on a multitude of host cell proteins for successful propagation. To uncover cellular host factors important for replication of pseudorabies virus (PrV), an alphaherpesvirus of swine, we performed an unbiased genome-wide CRISPR/Cas9 forward screen. To this end, a porcine CRISPR-knockout sgRNA library (SsCRISPRko.v1) targeting 20,598 genes was generated and used to transduce porcine kidney cells. Cells were then infected with either wildtype PrV (PrV-Ka) or a PrV mutant (PrV-gD-Pass) lacking the receptor-binding protein gD, which regained infectivity after serial passaging in cell culture. While no cells survived infection with PrV-Ka, resistant cell colonies were observed after infection with PrV-gD-Pass. In these cells, sphingomyelin synthase 1 (SMS1) was identified as the top hit candidate. Infection efficiency was reduced by up to 90% for PrV-gD-Pass in rabbit RK13-sgms1KO cells compared to wildtype cells accompanied by lower viral progeny titers. Exogenous expression of SMS1 partly reverted the entry defect of PrV-gD-Pass. In contrast, infectivity of PrV-Ka was reduced by 50% on the knockout cells, which could not be restored by exogenous expression of SMS1. These data suggest that SMS1 plays a pivotal role for PrV infection, when the gD-mediated entry pathway is blocked.


Asunto(s)
Sistemas CRISPR-Cas/genética , Genoma Viral , Herpesvirus Suido 1/genética , Interacciones Microbiota-Huesped , Mutación , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética , Animales , Línea Celular , Edición Génica , Riñón/citología , Riñón/virología , Porcinos , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo , Replicación Viral
8.
Nat Commun ; 11(1): 164, 2020 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-31919360

RESUMEN

Host dependency factors that are required for influenza A virus infection may serve as therapeutic targets as the virus is less likely to bypass them under drug-mediated selection pressure. Previous attempts to identify host factors have produced largely divergent results, with few overlapping hits across different studies. Here, we perform a genome-wide CRISPR/Cas9 screen and devise a new approach, meta-analysis by information content (MAIC) to systematically combine our results with prior evidence for influenza host factors. MAIC out-performs other meta-analysis methods when using our CRISPR screen as validation data. We validate the host factors, WDR7, CCDC115 and TMEM199, demonstrating that these genes are essential for viral entry and regulation of V-type ATPase assembly. We also find that CMTR1, a human mRNA cap methyltransferase, is required for efficient viral cap snatching and regulation of a cell autonomous immune response, and provides synergistic protection with the influenza endonuclease inhibitor Xofluza.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Interacciones Huésped-Patógeno/genética , Virus de la Influenza A/patogenicidad , Gripe Humana/genética , Gripe Humana/patología , Células A549 , Proteínas Adaptadoras Transductoras de Señales/genética , Antivirales/farmacología , Sistemas CRISPR-Cas , Línea Celular , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Dibenzotiepinas , Estudio de Asociación del Genoma Completo , Humanos , Proteínas de la Membrana/genética , Metiltransferasas/metabolismo , Morfolinas , Proteínas del Tejido Nervioso/genética , Oxazinas/farmacología , Piridinas/farmacología , Piridonas , Tiepinas/farmacología , Triazinas/farmacología , ATPasas de Translocación de Protón Vacuolares/metabolismo , Internalización del Virus
9.
Neurobiol Dis ; 34(3): 511-7, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19332122

RESUMEN

Mutations in the ubiquitously expressed survival motor neuron 1 (SMN1) and superoxide dismutase 1 (SOD1) genes are selectively lethal to motor neurons in spinal muscular atrophy (SMA) and familial amyotrophic lateral sclerosis (ALS), respectively. Genetic association studies provide compelling evidence that SMN1 and SMN2 genotypes encoding lower SMN protein levels are implicated in sporadic ALS, suggesting that SMN expression is a potential determinant of ALS severity. We therefore sought genetic evidence of SMN involvement in ALS by generating transgenic mutant SOD1 mice on an Smn deficient background. Partial genetic disruption of Smn significantly worsened motor performance and survival in transgenic SOD1(G93A) mice. Furthermore, ALS-linked mutant SOD1 expression severely reduced SMN protein levels, but not transcript, in neuronal culture and mouse models from early presymptomatic disease. SMN protein depletion was linked to the nuclear compartment and a physical interaction between SMN and mutant SOD1 was confirmed in mouse spinal cord. Treatment with the environmental toxin paraquat also depleted SMN protein, implicating oxidative stress in the mechanism underlying SMN deficiency in familial ALS and potentially sporadic disease. In contrast, transgenic SOD1(WT) overexpression in SMA type I mice was incapable of modulating SMN protein levels or disease progression. These data establish that SMN deficiency accelerates phenotypic severity in transgenic familial ALS mice, consistent with an enhancing genetic modifier role. We therefore propose that SMN replacement and upregulation strategies considered for SMA therapy may have protective potential for ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Superóxido Dismutasa/genética , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/mortalidad , Animales , Línea Celular , Núcleo Celular/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Mutación Missense , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Oxidantes/farmacología , Paraquat/farmacología , ARN Mensajero/metabolismo , Médula Espinal/metabolismo , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1 , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo
10.
BMC Neurosci ; 9: 104, 2008 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-18957104

RESUMEN

BACKGROUND: Redistribution of nuclear TAR DNA binding protein 43 (TDP-43) to the cytoplasm and ubiquitinated inclusions of spinal motor neurons and glial cells is characteristic of amyotrophic lateral sclerosis (ALS) pathology. Recent evidence suggests that TDP-43 pathology is common to sporadic ALS and familial ALS without SOD1 mutation, but not SOD1-related fALS cases. Furthermore, it remains unclear whether TDP-43 abnormalities occur in non-ALS forms of motor neuron disease. Here, we characterise TDP-43 localisation, expression levels and post-translational modifications in mouse models of ALS and spinal muscular atrophy (SMA). RESULTS: TDP-43 mislocalisation to ubiquitinated inclusions or cytoplasm was notably lacking in anterior horn cells from transgenic mutant SOD1G93A mice. In addition, abnormally phosphorylated or truncated TDP-43 species were not detected in fractionated ALS mouse spinal cord or brain. Despite partial colocalisation of TDP-43 with SMN, depletion of SMN- and coilin-positive Cajal bodies in motor neurons of affected SMA mice did not alter nuclear TDP-43 distribution, expression or biochemistry in spinal cords. CONCLUSION: These results emphasise that TDP-43 pathology characteristic of human sporadic ALS is not a core component of the neurodegenerative mechanisms caused by SOD1 mutation or SMN deficiency in mouse models of ALS and SMA, respectively.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Proteínas de Unión al ADN/metabolismo , Atrofia Muscular Espinal/metabolismo , Médula Espinal/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Animales , Células del Asta Anterior/metabolismo , Células del Asta Anterior/patología , Núcleo Celular/metabolismo , Núcleo Celular/patología , Cuerpos Enrollados/patología , Citoplasma/metabolismo , Citoplasma/patología , Modelos Animales de Enfermedad , Femenino , Cuerpos de Inclusión/metabolismo , Cuerpos de Inclusión/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/patología , Procesamiento Proteico-Postraduccional/genética , Transporte de Proteínas/genética , Médula Espinal/patología , Superóxido Dismutasa/genética , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Ubiquitinación
11.
J Vet Intern Med ; 32(2): 805-814, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29460300

RESUMEN

BACKGROUND: Venous air embolism is a potentially life-threatening complication of IV catheter use in horses. Despite widespread anecdotal reports of their occurrence, few cases have been reported in the literature and the prognosis is currently unknown. HYPOTHESIS/OBJECTIVES: Our objective was to describe the surrounding circumstances, clinical signs, treatment, progression, and outcome of venous air embolism in hospitalized horses. ANIMALS: Thirty-two horses with acute onset of compatible clinical signs associated with IV catheter disconnection or damage. METHODS: Multicenter retrospective study. Data extracted from clinical records included signalment, presenting complaint, catheter details, clinical signs, treatments, and outcome. RESULTS: Most cases resulted from extension set disconnection occurring within approximately 24 hours after catheter placement. In fewer horses, extension set damage was cited as a cause. Common clinical signs included tachycardia, tachypnea, recumbency, muscle fasciculations and agitation, with abnormal behavior including kicking and flank biting. Less commonly, pathological arrhythmias or more severe neurologic signs, including blindness and seizures, were noted. Progression was unpredictable, with some affected horses developing delayed-onset neurologic signs. Mortality was 6/32 (19%), including 2 cases of sudden death and other horses euthanized because of persistent neurologic deficits. Negative outcomes were more common in horses with recorded blindness, sweating or recumbency, but blindness resolved in 5/8 affected horses. CONCLUSIONS AND CLINICAL IMPORTANCE: The prognosis for resolution of clinical signs after air embolism is fair, but permanent neurologic deficits or pathologic cardiac arrhythmias can arise. Unpredictable progression warrants close monitoring. Systematic clinic-based surveillance could provide additional useful information to aid prevention.


Asunto(s)
Embolia Aérea/veterinaria , Enfermedades de los Caballos/etiología , Dispositivos de Acceso Vascular/veterinaria , Animales , Arritmias Cardíacas/complicaciones , Arritmias Cardíacas/veterinaria , Ceguera/complicaciones , Ceguera/veterinaria , Embolia Aérea/complicaciones , Embolia Aérea/etiología , Embolia Aérea/mortalidad , Enfermedades de los Caballos/mortalidad , Caballos , Enfermedades del Sistema Nervioso/complicaciones , Enfermedades del Sistema Nervioso/veterinaria , Estudios Retrospectivos , Convulsiones/complicaciones , Convulsiones/veterinaria , Dispositivos de Acceso Vascular/efectos adversos
12.
PLoS One ; 12(5): e0177664, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28552958

RESUMEN

The innate immune response to lipopolysaccharide contributes substantially to the morbidity and mortality of gram-negative sepsis. Horses and humans share an exquisite sensitivity to lipopolysaccharide and thus the horse may provide valuable comparative insights into this aspect of the inflammatory response. MicroRNAs, small non-coding RNA molecules acting as post-transcriptional regulators of gene expression, have key roles in toll-like receptor signaling regulation but have not been studied in this context in horses. The central hypothesis of this study was that lipopolysaccharide induces differential microRNA expression in equine peripheral blood mononuclear cells in a manner comparable to humans. Illumina Next Generation Sequencing was used to characterize the basal microRNA transcriptome in isolated peripheral blood mononuclear cells from healthy adult horses, and to evaluate LPS-induced changes in microRNA expression in cells cultured for up to four hours. Selected expression changes were validated using quantitative reverse-transcriptase PCR. Only miR-155 was significantly upregulated by LPS, changing in parallel with supernatant tumor necrosis factor-α concentration. Eight additional microRNAs, including miR-146a and miR-146b, showed significant expression change with time in culture without a clear LPS effect. Target predictions indicated a number of potential immunity-associated targets for miR-155 in the horse, including SOCS1, TAB2 and elements of the PI3K signaling pathway, suggesting that it is likely to influence the acute inflammatory response to LPS. Gene alignment showed extensive conservation of the miR-155 precursor gene and associated promoter regions between horses and humans. The basal and LPS-stimulated microRNA expression pattern characterized here were similar to those described in human leukocytes. As well as providing a resource for further research into the roles of microRNAs in immune responses in horses, this will facilitate inter-species comparative study of the role of microRNAs in the inflammatory cascade during endotoxemia and sepsis.


Asunto(s)
Leucocitos Mononucleares/metabolismo , Lipopolisacáridos/farmacología , MicroARNs/genética , Animales , Citocinas/biosíntesis , Secuenciación de Nucleótidos de Alto Rendimiento , Caballos , MicroARNs/sangre , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA