Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(9): 1108-1120, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29908368

RESUMEN

Hyperosmolarity is a controversial signal for renal cells. It can induce cell stress or differentiation and both require an active lipid metabolism. We showed that hyperosmolarity upregulates phospholipid (PL) de novo synthesis in renal cells. PL synthesis requires fatty acids (FA), usually stored as triglycerides (TAG). PL and TAG de novo synthesis utilize the same initial biosynthetic route: sn-glycerol 3P (G3P) → phosphatidic acid (PA) → diacylglycerol (DAG). In the present work, we evaluate how such pathway contributes to PL and TAG synthesis in renal cells subjected to hyperosmolarity. Our results show an increase in PA and DAG formation under hyperosmotic conditions; augmented DAG production, due to lipin enzyme activity, lead to the increase of both TAG and PL. However, at early stages (24 and 48 h), most of the de novo synthesized DAG was directed to PL synthesis; longer treatments downregulated PL synthesis and the DAG formed was mainly driven to TAG synthesis. Hyperosmolarity induced ACC and FASN transcription which mediated FA de novo synthesis. New FA molecules were stored in TAG. Silencing experiments revealed that hyperosmotic-induction of lipin-1 and -2 was mediated by SREBP1. Interestingly, SREBP1 knockdown also dropped SREBP2, indicating a modulatory action between both isoforms. Impairing SREBP activity leads to a decline in TAG levels but not PL. Membrane homeostasis is maintained through the adequate PL synthesis and renewal and constitute a protective mechanism against hyperosmolarity. The present data reveal the relevance of TAG synthesis and storage for PL synthesis in renal cells.


Asunto(s)
Membrana Celular/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Homeostasis/efectos de los fármacos , Presión Osmótica , Cloruro de Sodio/farmacología , Triglicéridos/biosíntesis , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/metabolismo , Animales , Membrana Celular/metabolismo , Diacilglicerol O-Acetiltransferasa/genética , Diacilglicerol O-Acetiltransferasa/metabolismo , Diglicéridos/metabolismo , Perros , Acido Graso Sintasa Tipo I/genética , Acido Graso Sintasa Tipo I/metabolismo , Ácidos Grasos/metabolismo , Homeostasis/genética , Isoenzimas/genética , Isoenzimas/metabolismo , Células de Riñón Canino Madin Darby , Concentración Osmolar , Fosfatidato Fosfatasa/genética , Fosfatidato Fosfatasa/metabolismo , Ácidos Fosfatidicos/metabolismo , Fosfolípidos/metabolismo , Transducción de Señal , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Proteína 2 de Unión a Elementos Reguladores de Esteroles/genética , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo
2.
FEBS J ; 291(4): 722-743, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37947039

RESUMEN

Physiologically, renal medullary cells are surrounded by a hyperosmolar interstitium. However, different pathological situations can induce abrupt changes in environmental osmolality, causing cell stress. Therefore, renal cells must adapt to survive in this new condition. We previously demonstrated that, among the mechanisms involved in osmoprotection, renal cells upregulate triglyceride biosynthesis (which helps preserve glycerophospholipid synthesis and membrane homeostasis) and cyclooxygenase-2 (which generates prostaglandins from arachidonic acid) to maintain lipid metabolism in renal tissue. Herein, we evaluated whether hyperosmolality modulates phospholipase A2 (PLA2 ) activity, leading to arachidonic acid release from membrane glycerophospholipid, and investigated its possible role in hyperosmolality-induced triglyceride synthesis and accumulation. We found that hyperosmolality induced PLA2 expression and activity in Madin-Darby canine kidney cells. Cytosolic PLA2 (cPLA2) inhibition, but not secreted or calcium-independent PLA2 (sPLA2 or iPLA2 , respectively), prevented triglyceride synthesis and reduced cell survival. Inhibition of prostaglandin synthesis with indomethacin not only failed to prevent hyperosmolality-induced triglyceride synthesis but also exacerbated it. Similar results were observed with the peroxisomal proliferator activated receptor gamma (PPARγ) agonist rosiglitazone. Furthermore, hyperosmolality increased free intracellular arachidonic acid levels, which were even higher when prostaglandin synthesis was inhibited by indomethacin. Blocking PPARγ with GW-9662 prevented the effects of both indomethacin and rosiglitazone on triglyceride synthesis and even reduced hyperosmolality-induced triglyceride synthesis, suggesting that arachidonic acid may stimulate triglyceride synthesis through PPARγ activation. These results highlight the role of cPLA2 in osmoprotection, since it is essential to provide arachidonic acid, which is involved in PPARγ-regulated triglyceride synthesis, thus guaranteeing cell survival.


Asunto(s)
PPAR gamma , Prostaglandinas , Animales , Perros , PPAR gamma/genética , Ácido Araquidónico/metabolismo , Rosiglitazona , Presión Osmótica , Fosfolipasas A2 , Indometacina , Homeostasis , Glicerofosfolípidos , Triglicéridos
3.
Life Sci ; 319: 121544, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36871933

RESUMEN

AIMS: Calcium oxalate (Oxa), constituent of most common kidney stones, damages renal tubular epithelial cells leading to kidney disease. Most in vitro studies designed to evaluate how Oxa exerts its harmful effects were performed in proliferative or confluent non-differentiated renal epithelial cultures; none of them considered physiological hyperosmolarity of renal medullary interstitium. Cyclooxygenase 2 (COX2) has been associated to Oxa deleterious actions; however, up to now, it is not clear how COX2 acts. In this work, we proposed an in vitro experimental system resembling renal differentiated-epithelial cells that compose medullary tubular structures which were grown and maintained in a physiological hyperosmolar environment and evaluated whether COX2 â†’ PGE2 axis (COX2 considered a cytoprotective protein for renal cells) induces Oxa damage or epithelial restitution. MAIN METHODS: MDCK cells were differentiated with NaCl hyperosmolar medium for 72 h where cells acquired the typical apical and basolateral membrane domains and a primary cilium. Then, cultures were treated with 1.5 mM Oxa for 24, 48, and 72 h to evaluate epithelial monolayer restitution dynamics and COX2-PGE2 effect. KEY FINDINGS: Oxa completely turned the differentiated phenotype into mesenchymal one (epithelial-mesenchymal transition). Such effect was partially and totally reverted after 48 and 72 h, respectively. Oxa damage was even deeper when COX2 was blocked by NS398. PGE2 addition restituted the differentiated-epithelial phenotype in a time and concentration dependence. SIGNIFICANCE: This work presents an experimental system that approaches in vitro to in vivo renal epithelial studies and, more important, warns about NSAIDS use in patients suffering from kidney stones.


Asunto(s)
Oxalato de Calcio , Cálculos Renales , Oxalato de Calcio/química , Ciclooxigenasa 2/metabolismo , Dinoprostona/metabolismo , Células Epiteliales/metabolismo , Cálculos Renales/química , Células de Riñón Canino Madin Darby , Animales , Perros
4.
Methods Mol Biol ; 2378: 169-187, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34985700

RESUMEN

The unfolded protein response (UPR) is a complex network of intracellular pathways that transmits signals from ER lumen and/or ER bilayer to the nuclear compartment in order to activate gene transcription. UPR is activated by the loss of ER capacities, known as ER stress, and occurs to restore ER properties. In this regard, glycerolipid (GL) synthesis activation contributes to ER membrane homeostasis and IRE1α-XBP1, one UPR pathway, has a main role in lipogenic genes transcription. Herein, we describe the strategy and methodology used to evaluate whether IRE1α-XBP1 pathway regulates lipid metabolism in renal epithelial cells subjected to hyperosmolar environment. XBP1s activity was hindered by blocking IRE1α RNAse activity and by impeding its expression; under these conditions, we determined GL synthesis and lipogenic enzymes expression.


Asunto(s)
Endorribonucleasas , Proteínas Serina-Treonina Quinasas , Estrés del Retículo Endoplásmico/genética , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Lípidos , Proteínas Serina-Treonina Quinasas/genética , Respuesta de Proteína Desplegada , Proteína 1 de Unión a la X-Box/genética , Proteína 1 de Unión a la X-Box/metabolismo
5.
Artículo en Inglés | MEDLINE | ID: mdl-31927142

RESUMEN

In renal cells, hyperosmolarity can induce cellular stress or differentiation. Both processes require active endoplasmic reticulum (ER)-associated protein synthesis. Lipid biosynthesis also occurs at ER surface. We showed that hyperosmolarity upregulates glycerophospholipid (GP) and triacylglycerol (GL-TG) de novo synthesis. Considering that massive synthesis of proteins and/or lipids may drive to ER stress, herein we evaluated whether hyperosmolar environment induces ER stress and the participation of inositol-requiring enzyme 1α (IRE1α)-XBP1 in hyperosmotic-induced lipid synthesis. Treatment of Madin-Darby canine kidney (MDCK) cells with hyperosmolar medium triggered ER stress-associated unfolded protein response (UPR). Hyperosmolarity significantly increased xbp1 mRNA and protein as function of time; 24 h of treatment raised the spliced form of XBP1 protein (XBP1s) and induced its translocation to nuclear compartment where it can act as a transcription factor. XBP1 silencing or IRE1α ribonuclease (RNAse) inhibition impeded the expression of lipin1, lipin2 and diacylglycerol acyl transferase-1 (DGAT1) enzymes which yielded decreased GL-TG synthesis. The lack of XBP1s also decreased sterol regulatory element binding protein (SREBP) 1 and 2. Together our data demonstrate that hyperosmolarity induces IRE1α â†’ XBP1s activation; XBP1s drives the expression of SREBP1 and SREBP2 which in turn regulates the expression of the lipogenic enzymes lipin1 (LPIN1) and 2 (LPIN2) and DGAT1. We also demonstrated for the first time that tonicity-responsive enhancer binding protein (TonEBP), the master regulator of osmoprotective response, regulates XBP1 expression. Thus, XBP1 acts as an osmoprotective protein since it is activated by high osmolarity and upregulates lipid metabolism, membranes generation and the restoration of ER homeostasis.


Asunto(s)
Riñón/metabolismo , Lipogénesis , Osmorregulación , Proteína 1 de Unión a la X-Box/metabolismo , Animales , Perros , Estrés del Retículo Endoplásmico , Riñón/citología , Células de Riñón Canino Madin Darby , Presión Osmótica , ARN Mensajero/genética , Regulación hacia Arriba , Proteína 1 de Unión a la X-Box/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA