Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Med Genet C Semin Med Genet ; : e32099, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39016117

RESUMEN

COL4A1/2 variants are associated with highly variable multiorgan manifestations. Depicting the whole clinical spectrum of COL4A1/2-related manifestations is challenging, and there is no consensus on management and preventative strategies. Based on a systematic review of current evidence on COL4A1/2-related disease, we developed a clinical questionnaire that we administered to 43 individuals from 23 distinct families carrying pathogenic variants. In this cohort, we extended ophthalmological and cardiological examinations to asymptomatic individuals and those with only limited or mild, often nonspecific, clinical signs commonly occurring in the general population (i.e., oligosymptomatic). The most frequent clinical findings emerging from both the literature review and the questionnaire included stroke (203/685, 29.6%), seizures or epilepsy (199/685, 29.0%), intellectual disability or developmental delay (168/685, 24.5%), porencephaly/schizencephaly (168/685, 24.5%), motor impairment (162/685, 23.6%), cataract (124/685, 18.1%), hematuria (63/685, 9.2%), and retinal arterial tortuosity (58/685, 8.5%). In oligosymptomatic and asymptomatic carriers, ophthalmological investigations detected retinal vascular tortuosity (5/13, 38.5%), dysgenesis of the anterior segment (4/13, 30.8%), and cataract (2/13, 15.4%), while cardiological investigations were unremarkable except for mild ascending aortic ectasia in 1/8 (12.5%). Our multimodal approach confirms highly variable penetrance and expressivity in COL4A1/2-related conditions, even at the intrafamilial level with neurological involvement being the most frequent and severe finding in both children and adults. We propose a protocol for prevention and management based on individualized risk estimation and periodic multiorgan evaluations.

2.
Epilepsia ; 65(5): 1439-1450, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38491959

RESUMEN

OBJECTIVE: YWHAG variant alleles have been associated with a rare disease trait whose clinical synopsis includes an early onset epileptic encephalopathy with predominantly myoclonic seizures, developmental delay/intellectual disability, and facial dysmorphisms. Through description of a large cohort, which doubles the number of reported patients, we further delineate the spectrum of YWHAG-related epilepsy. METHODS: We included in this study 24 patients, 21 new and three previously described, with pathogenic/likely pathogenic variants in YWHAG. We extended the analysis of clinical, electroencephalographic, brain magnetic resonance imaging, and molecular genetic information to 24 previously published patients. RESULTS: The phenotypic spectrum of YWHAG-related disorders ranges from mild developmental delay to developmental and epileptic encephalopathy (DEE). Epilepsy onset is in the first 2 years of life. Seizure freedom can be achieved in half of the patients (13/24, 54%). Intellectual disability (23/24, 96%), behavioral disorders (18/24, 75%), neurological signs (13/24, 54%), and dysmorphisms (6/24, 25%) are common. A genotype-phenotype correlation emerged, as DEE is more represented in patients with missense variants located in the ligand-binding domain than in those with truncating or missense variants in other domains (90% vs. 19%, p < .001). SIGNIFICANCE: This study suggests that pathogenic YWHAG variants cause a wide range of clinical presentations with variable severity, ranging from mild developmental delay to DEE. In this allelic series, a genotype-phenotype correlation begins to emerge, potentially providing prognostic information for clinical management and genetic counseling.


Asunto(s)
Epilepsia , Adolescente , Adulto , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Adulto Joven , Estudios de Cohortes , Discapacidades del Desarrollo/genética , Electroencefalografía , Epilepsia/diagnóstico por imagen , Epilepsia/genética , Epilepsia/patología , Estudios de Asociación Genética , Discapacidad Intelectual/genética , Imagen por Resonancia Magnética , Fenotipo
3.
Neurocase ; 30(2): 68-72, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38769754

RESUMEN

KCNB1-associated encephalopathy is characterized by intellectual disability (ID), autism spectrum disorder and epilepsy. Specific treatments are still lacking. We describe a 12-year-old boy with severe ID and treatment-resistant seizures due to a pathogenic KCNB1 variant. His EEG showed a CSWS pattern. Aged 11, he started treatment with highly purified cannabidiol (CBD) and has been seizure free for 18 months, with significant EEG and social skills improvements. This suggests CBD may benefit CSWS, likely due to its anti-inflammatory properties. Some preclinical studies also indicate CBDs interact with voltage-gated channels, leading us to speculate its possible role for treating KCNB1 related encephalopathy.


Asunto(s)
Cannabidiol , Electroencefalografía , Niño , Humanos , Masculino , Cannabidiol/farmacología , Epilepsia/tratamiento farmacológico , Epilepsia/fisiopatología , Discapacidad Intelectual/tratamiento farmacológico , Discapacidad Intelectual/complicaciones , Canales de Potasio Shab/genética
4.
Cereb Cortex ; 33(17): 9709-9717, 2023 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-37429835

RESUMEN

The clinical phenotype of Cyclin-Dependent Kinase-Like 5 (CDKL5) deficiency disorder (CDD) has been delineated but neuroimaging features have not been systematically analyzed. We studied brain magnetic resonance imaging (MRI) scans in a cohort of CDD patients and reviewed age at seizure onset, seizure semiology, head circumference. Thirty-five brain MRI from 22 unrelated patients were included. The median age at study entry was 13.4 years. In 14/22 patients (85.7%), MRI in the first year of life was unremarkable in all but two. In 11/22, we performed MRI after 24 months of age (range 2.5-23 years). In 8 out of 11 (72.7%), MRI showed supratentorial atrophy and in six cerebellar atrophy. Quantitative analysis detected volumetric reduction of the whole brain (-17.7%, P-value = 0.014), including both white matter (-25.7%, P-value = 0.005) and cortical gray matter (-9.1%, P-value = 0.098), with a reduction of surface area (-18.0%, P-value = 0.032), mainly involving the temporal regions, correlated with the head circumference (ρ = 0.79, P-value = 0.109). Both the qualitative structural assessment and the quantitative analysis detected brain volume reduction involving the gray and white matter. These neuroimaging findings may be related to either progressive changes due to CDD pathogenesis, or to the extreme severity of epilepsy, or both. Larger prospective studies are needed to clarify the bases for the structural changes we observed.


Asunto(s)
Espasmos Infantiles , Humanos , Espasmos Infantiles/genética , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Convulsiones/patología , Atrofia/patología , Proteínas Serina-Treonina Quinasas/genética
5.
Artículo en Inglés | MEDLINE | ID: mdl-37132416

RESUMEN

Dynamin 1 is a GTPase protein involved in synaptic vesicle fission, which facilitates the exocytosis of neurotransmitters necessary for normal signaling. Pathogenic variants in the DNM1 gene are associated with intractable epilepsy, often manifested as infantile spasms at onset, developmental delay, and a movement disorder, and are located in the GTPase and middle domains of the protein. We describe a 36-year-old man with autism and moderate intellectual disability who experienced only a few generalized seizures between the age 16 and 30 years. Using a whole sequencing approach, we identified the c.1994T>C p.(Leu665Pro) de novo novel missense pathogenic variant in the GTPase effector domain (GED) of the DNM1 protein. Structural analyses suggest that this substitution impairs both the stalk formation and its interactions, known to be important for the dynamin-1 physiological cellular function. Our data expand the spectrum of phenotypes associated with pathogenic variants in the DNM1 gene, linking a variant in the GED domain with autism and onset in the adolescence of mild epilepsy, a phenotypic presentation remarkably different from the early infantile epileptic encephalopathy associated with pathogenic variants in the GTPase or middle domains.

6.
Brain ; 145(9): 3274-3287, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-35769015

RESUMEN

Reelin, a large extracellular protein, plays several critical roles in brain development and function. It is encoded by RELN, first identified as the gene disrupted in the reeler mouse, a classic neurological mutant exhibiting ataxia, tremors and a 'reeling' gait. In humans, biallelic variants in RELN have been associated with a recessive lissencephaly variant with cerebellar hypoplasia, which matches well with the homozygous mouse mutant that has abnormal cortical structure, small hippocampi and severe cerebellar hypoplasia. Despite the large size of the gene, only 11 individuals with RELN-related lissencephaly with cerebellar hypoplasia from six families have previously been reported. Heterozygous carriers in these families were briefly reported as unaffected, although putative loss-of-function variants are practically absent in the population (probability of loss of function intolerance = 1). Here we present data on seven individuals from four families with biallelic and 13 individuals from seven families with monoallelic (heterozygous) variants of RELN and frontotemporal or temporal-predominant lissencephaly variant. Some individuals with monoallelic variants have moderate frontotemporal lissencephaly, but with normal cerebellar structure and intellectual disability with severe behavioural dysfunction. However, one adult had abnormal MRI with normal intelligence and neurological profile. Thorough literature analysis supports a causal role for monoallelic RELN variants in four seemingly distinct phenotypes including frontotemporal lissencephaly, epilepsy, autism and probably schizophrenia. Notably, we observed a significantly higher proportion of loss-of-function variants in the biallelic compared to the monoallelic cohort, where the variant spectrum included missense and splice-site variants. We assessed the impact of two canonical splice-site variants observed as biallelic or monoallelic variants in individuals with moderately affected or normal cerebellum and demonstrated exon skipping causing in-frame loss of 46 or 52 amino acids in the central RELN domain. Previously reported functional studies demonstrated severe reduction in overall RELN secretion caused by heterozygous missense variants p.Cys539Arg and p.Arg3207Cys associated with lissencephaly suggesting a dominant-negative effect. We conclude that biallelic variants resulting in complete absence of RELN expression are associated with a consistent and severe phenotype that includes cerebellar hypoplasia. However, reduced expression of RELN remains sufficient to maintain nearly normal cerebellar structure. Monoallelic variants are associated with incomplete penetrance and variable expressivity even within the same family and may have dominant-negative effects. Reduced RELN secretion in heterozygous individuals affects only cortical structure whereas the cerebellum remains intact. Our data expand the spectrum of RELN-related neurodevelopmental disorders ranging from lethal brain malformations to adult phenotypes with normal brain imaging.


Asunto(s)
Lisencefalia , Proteína Reelina , Adulto , Cerebelo/anomalías , Niño , Discapacidades del Desarrollo/genética , Humanos , Lisencefalia/complicaciones , Mutación , Malformaciones del Sistema Nervioso , Proteína Reelina/genética
7.
Fetal Pediatr Pathol ; 42(2): 334-341, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36048137

RESUMEN

Background: Walker-Warburg syndrome (WWS) (OMIM #236670) is an autosomal recessive disorder characterized by congenital muscular dystrophy, hydrocephalus, cobblestone lissencephaly, and retinal dysplasia. The main genes involved are: POMT1, POMT2, POMGNT1, FKTN, LARGE1, and FKRP. Case report: We present a fetus with WWS showing at ultrasound severe triventricular hydrocephalus. Pregnancy was legally terminated at 21 weeks +2 days of gestation. In vivo and postmortem magnetic resonance revealed corpus callosum agenesis and cerebellar hypoplasia. Cobblestone lissencephaly was observed at post-mortem. Next generation sequencing (NGS) of 193 genes, performed on fetal DNA extracted from amniocytes, detected two heterozygous mutations in the POMT2 gene. The c.1238G > C p.(Arg413Pro) mutation was paternally inherited and is known to be pathogenic. The c.553G > A p.(Gly185Arg) mutation was maternally inherited and has not been previously described. Conclusion: Compound heterozygous mutations in the POMT2 gene caused a severe cerebral fetal phenotype diagnosed prenatally at midgestation allowing therapeutic pregnancy termination.


Asunto(s)
Lisencefalia de Cobblestone , Hidrocefalia , Síndrome de Walker-Warburg , Humanos , Femenino , Embarazo , Síndrome de Walker-Warburg/diagnóstico , Síndrome de Walker-Warburg/genética , Mutación Missense , Lisencefalia de Cobblestone/genética , Mutación , Hidrocefalia/diagnóstico por imagen , Hidrocefalia/genética , Presentación en Trabajo de Parto , Pentosiltransferasa/genética
8.
Am J Med Genet A ; 188(2): 522-533, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34713950

RESUMEN

CHD2 encodes the chromodomain helicase DNA-binding protein 2, an ATP-dependent enzyme that acts as a chromatin remodeler. CHD2 pathogenic variants have been associated with various early onset phenotypes including developmental and epileptic encephalopathy, self-limiting or pharmacoresponsive epilepsies and neurodevelopmental disorders without epilepsy. We reviewed 84 previously reported patients carrying 76 different CHD2 pathogenic or likely pathogenic variants and describe 18 unreported patients carrying 12 novel pathogenic or likely pathogenic variants, two recurrent likely pathogenic variants (in two patients each), three previously reported pathogenic variants, one gross deletion. We also describe a novel phenotype of adult-onset pharmacoresistant epilepsy, associated with a novel CHD2 missense likely pathogenic variant, located in an interdomain region. A combined review of previously published and our own observations indicates that although most patients (72.5%) carry truncating CHD2 pathogenic variants, CHD2-related phenotypes encompass a wide spectrum of conditions with developmental delay/intellectual disability (ID), including prominent language impairment, attention deficit hyperactivity disorder and autistic spectrum disorder. Epilepsy is present in 92% of patients with a median age at seizure onset of 2 years and 6 months. Generalized epilepsy types are prevalent and account for 75.5% of all epilepsies, with photosensitivity being a common feature and adult-onset nonsyndromic epilepsy a rare presentation. No clear genotype-phenotype correlation has emerged.


Asunto(s)
Epilepsia , Trastornos del Neurodesarrollo , Proteínas de Unión al ADN/genética , Electroencefalografía , Epilepsia/genética , Humanos , Mutación , Trastornos del Neurodesarrollo/genética , Fenotipo
9.
Brain ; 144(5): 1435-1450, 2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-33880529

RESUMEN

Constitutional heterozygous mutations of ATP1A2 and ATP1A3, encoding for two distinct isoforms of the Na+/K+-ATPase (NKA) alpha-subunit, have been associated with familial hemiplegic migraine (ATP1A2), alternating hemiplegia of childhood (ATP1A2/A3), rapid-onset dystonia-parkinsonism, cerebellar ataxia-areflexia-progressive optic atrophy, and relapsing encephalopathy with cerebellar ataxia (all ATP1A3). A few reports have described single individuals with heterozygous mutations of ATP1A2/A3 associated with severe childhood epilepsies. Early lethal hydrops fetalis, arthrogryposis, microcephaly, and polymicrogyria have been associated with homozygous truncating mutations in ATP1A2. We investigated the genetic causes of developmental and epileptic encephalopathies variably associated with malformations of cortical development in a large cohort and identified 22 patients with de novo or inherited heterozygous ATP1A2/A3 mutations. We characterized clinical, neuroimaging and neuropathological findings, performed in silico and in vitro assays of the mutations' effects on the NKA-pump function, and studied genotype-phenotype correlations. Twenty-two patients harboured 19 distinct heterozygous mutations of ATP1A2 (six patients, five mutations) and ATP1A3 (16 patients, 14 mutations, including a mosaic individual). Polymicrogyria occurred in 10 (45%) patients, showing a mainly bilateral perisylvian pattern. Most patients manifested early, often neonatal, onset seizures with a multifocal or migrating pattern. A distinctive, 'profound' phenotype, featuring polymicrogyria or progressive brain atrophy and epilepsy, resulted in early lethality in seven patients (32%). In silico evaluation predicted all mutations to be detrimental. We tested 14 mutations in transfected COS-1 cells and demonstrated impaired NKA-pump activity, consistent with severe loss of function. Genotype-phenotype analysis suggested a link between the most severe phenotypes and lack of COS-1 cell survival, and also revealed a wide continuum of severity distributed across mutations that variably impair NKA-pump activity. We performed neuropathological analysis of the whole brain in two individuals with polymicrogyria respectively related to a heterozygous ATP1A3 mutation and a homozygous ATP1A2 mutation and found close similarities with findings suggesting a mainly neural pathogenesis, compounded by vascular and leptomeningeal abnormalities. Combining our report with other studies, we estimate that ∼5% of mutations in ATP1A2 and 12% in ATP1A3 can be associated with the severe and novel phenotypes that we describe here. Notably, a few of these mutations were associated with more than one phenotype. These findings assign novel, 'profound' and early lethal phenotypes of developmental and epileptic encephalopathies and polymicrogyria to the phenotypic spectrum associated with heterozygous ATP1A2/A3 mutations and indicate that severely impaired NKA pump function can disrupt brain morphogenesis.


Asunto(s)
Encefalopatías/genética , Epilepsia/genética , Polimicrogiria/genética , ATPasa Intercambiadora de Sodio-Potasio/genética , Adolescente , Animales , Células COS , Niño , Preescolar , Chlorocebus aethiops , Femenino , Genotipo , Humanos , Lactante , Recién Nacido , Masculino , Mutación , Fenotipo
10.
Ann Neurol ; 88(2): 348-362, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32515017

RESUMEN

OBJECTIVE: Pathogenic variants in SCN3A, encoding the voltage-gated sodium channel subunit Nav1.3, cause severe childhood onset epilepsy and malformation of cortical development. Here, we define the spectrum of clinical, genetic, and neuroimaging features of SCN3A-related neurodevelopmental disorder. METHODS: Patients were ascertained via an international collaborative network. We compared sodium channels containing wild-type versus variant Nav1.3 subunits coexpressed with ß1 and ß2 subunits using whole-cell voltage clamp electrophysiological recordings in a heterologous mammalian system (HEK-293T cells). RESULTS: Of 22 patients with pathogenic SCN3A variants, most had treatment-resistant epilepsy beginning in the first year of life (16/21, 76%; median onset, 2 weeks), with severe or profound developmental delay (15/20, 75%). Many, but not all (15/19, 79%), exhibited malformations of cortical development. Pathogenic variants clustered in transmembrane segments 4 to 6 of domains II to IV. Most pathogenic missense variants tested (10/11, 91%) displayed gain of channel function, with increased persistent current and/or a leftward shift in the voltage dependence of activation, and all variants associated with malformation of cortical development exhibited gain of channel function. One variant (p.Ile1468Arg) exhibited mixed effects, with gain and partial loss of function. Two variants demonstrated loss of channel function. INTERPRETATION: Our study defines SCN3A-related neurodevelopmental disorder along a spectrum of severity, but typically including epilepsy and severe or profound developmental delay/intellectual disability. Malformations of cortical development are a characteristic feature of this unusual channelopathy syndrome, present in >75% of affected individuals. Gain of function at the channel level in developing neurons is likely an important mechanism of disease pathogenesis. ANN NEUROL 2020;88:348-362.


Asunto(s)
Encéfalo/diagnóstico por imagen , Epilepsia/diagnóstico por imagen , Epilepsia/genética , Canal de Sodio Activado por Voltaje NAV1.3/genética , Trastornos del Neurodesarrollo/diagnóstico por imagen , Trastornos del Neurodesarrollo/genética , Canales de Sodio/genética , Adolescente , Adulto , Niño , Preescolar , Femenino , Feto/diagnóstico por imagen , Variación Genética/genética , Células HEK293 , Humanos , Lactante , Masculino
11.
Am J Med Genet A ; 185(8): 2526-2531, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34008900

RESUMEN

Cerebral folate transporter deficiency syndrome, caused by FOLR-1 mutations is characterized by late infantile onset, severe developmental regression, epilepsy, and leukodystrophy. An extremely low concentration of 5-methyltetrahydrofolate in the cerebrospinal fluid provides a crucial clue to its diagnosis and is a treatment target. Oral or intravenous folinic acid (5-formyltetrahydrofolate) administration improves clinical symptoms and brain magnetic resonance imaging (MRI) findings. We describe three siblings carrying a novel homozygous FOLR1 nonsense mutation, that were referred due to intractable epilepsy and progressive neurological decline. Brain MRI showed hypomyelination and cerebellar atrophy. Folinic acid (oral and intravenous) supplementation, initiated after over 15 years illness, has failed to result in any sizeable clinical or neurophysiological improvement. Cerebral folate transport deficiency bears overlapping clinical features with many severe developmental encephalopathies. It is crucial to recognize FOLR1 signs and establish an early clinical and molecular diagnosis in order to provide timely folinic acid treatment and improve outcome.


Asunto(s)
Receptor 1 de Folato/deficiencia , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Distrofias Neuroaxonales/diagnóstico , Distrofias Neuroaxonales/genética , Hermanos , Adolescente , Alelos , Encéfalo/diagnóstico por imagen , Encéfalo/efectos de los fármacos , Encéfalo/patología , Consanguinidad , Discapacidades del Desarrollo/diagnóstico , Discapacidades del Desarrollo/genética , Manejo de la Enfermedad , Epilepsia/diagnóstico , Epilepsia/genética , Femenino , Receptor 1 de Folato/genética , Ácido Fólico/administración & dosificación , Pruebas Genéticas , Genotipo , Humanos , Imagen por Resonancia Magnética , Masculino , Mutación , Distrofias Neuroaxonales/terapia , Fenotipo , Síndrome , Resultado del Tratamiento
12.
Am J Med Genet A ; 185(9): 2690-2718, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33205886

RESUMEN

Twins have an increased risk for congenital malformations and disruptions, including defects in brain morphogenesis. We analyzed data on brain imaging, zygosity, sex, and fetal demise in 56 proband twins and 7 less affected co-twins with abnormal brain imaging and compared them to population-based data and to a literature series. We separated our series into malformations of cortical development (MCD, N = 39), cerebellar malformations without MCD (N = 13), and brain disruptions (N = 11). The MCD group included 37/39 (95%) with polymicrogyria (PMG), 8/39 (21%) with pia-ependymal clefts (schizencephaly), and 15/39 (38%) with periventricular nodular heterotopia (PNH) including 2 with PNH but not PMG. Cerebellar malformations were found in 19 individuals including 13 with a cerebellar malformation only and another 6 with cerebellar malformation and MCD. The pattern varied from diffuse cerebellar hypoplasia to classic Dandy-Walker malformation. Brain disruptions were seen in 11 individuals with hydranencephaly, porencephaly, or white matter loss without cysts. Our series included an expected statistically significant excess of monozygotic (MZ) twin pairs (22/41 MZ, 54%) compared to population data (482/1448 MZ, 33.3%; p = .0110), and an unexpected statistically significant excess of dizygotic (DZ) twins (19/41, 46%) compared to the literature cohort (1/46 DZ, 2%; p < .0001. Recurrent association with twin-twin transfusion syndrome, intrauterine growth retardation, and other prenatal factors support disruption of vascular perfusion as the most likely unifying cause.


Asunto(s)
Encéfalo/anomalías , Encéfalo/patología , Enfermedades en Gemelos/patología , Gemelos Dicigóticos/genética , Gemelos Monocigóticos/genética , Adulto , Enfermedades en Gemelos/genética , Femenino , Humanos , Recién Nacido , Masculino , Embarazo , Literatura de Revisión como Asunto
13.
Epilepsia ; 61(6): 1142-1155, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32452540

RESUMEN

OBJECTIVE: To define the phenotypic spectrum of phosphatidylinositol glycan class A protein (PIGA)-related congenital disorder of glycosylation (PIGA-CDG) and evaluate genotype-phenotype correlations. METHODS: Our cohort encompasses 40 affected males with a pathogenic PIGA variant. We performed a detailed phenotypic assessment, and in addition, we reviewed the available clinical data of 36 previously published cases and assessed the variant pathogenicity using bioinformatical approaches. RESULTS: Most individuals had hypotonia, moderate to profound global developmental delay, and intractable seizures. We found that PIGA-CDG spans from a pure neurological phenotype at the mild end to a Fryns syndrome-like phenotype. We found a high frequency of cardiac anomalies including structural anomalies and cardiomyopathy, and a high frequency of spontaneous death, especially in childhood. Comparative bioinformatical analysis of common variants, found in the healthy population, and pathogenic variants, identified in affected individuals, revealed a profound physiochemical dissimilarity of the substituted amino acids in variant constrained regions of the protein. SIGNIFICANCE: Our comprehensive analysis of the largest cohort of published and novel PIGA patients broadens the spectrum of PIGA-CDG. Our genotype-phenotype correlation facilitates the estimation on pathogenicity of variants with unknown clinical significance and prognosis for individuals with pathogenic variants in PIGA.


Asunto(s)
Variación Genética/genética , Hernia Diafragmática/diagnóstico por imagen , Hernia Diafragmática/genética , Deformidades Congénitas de las Extremidades/diagnóstico por imagen , Deformidades Congénitas de las Extremidades/genética , Proteínas de la Membrana/genética , Adulto , Secuencia de Aminoácidos , Niño , Estudios de Cohortes , Electroencefalografía/métodos , Facies , Hernia Diafragmática/fisiopatología , Humanos , Recién Nacido , Deformidades Congénitas de las Extremidades/fisiopatología , Imagen por Resonancia Magnética/métodos , Masculino
14.
Epilepsia ; 61(11): 2461-2473, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32954514

RESUMEN

OBJECTIVE: We aimed to delineate the phenotypic spectrum and long-term outcome of individuals with KCNB1 encephalopathy. METHODS: We collected genetic, clinical, electroencephalographic, and imaging data of individuals with KCNB1 pathogenic variants recruited through an international collaboration, with the support of the family association "KCNB1 France." Patients were classified as having developmental and epileptic encephalopathy (DEE) or developmental encephalopathy (DE). In addition, we reviewed published cases and provided the long-term outcome in patients older than 12 years from our series and from literature. RESULTS: Our series included 36 patients (21 males, median age = 10 years, range = 1.6 months-34 years). Twenty patients (56%) had DEE with infantile onset seizures (seizure onset = 10 months, range = 10 days-3.5 years), whereas 16 (33%) had DE with late onset epilepsy in 10 (seizure onset = 5 years, range = 18 months-25 years) and without epilepsy in six. Cognitive impairment was more severe in individuals with DEE compared to those with DE. Analysis of 73 individuals with KCNB1 pathogenic variants (36 from our series and 37 published individuals in nine reports) showed developmental delay in all with severe to profound intellectual disability in 67% (n = 41/61) and autistic features in 56% (n = 32/57). Long-term outcome in 22 individuals older than 12 years (14 in our series and eight published individuals) showed poor cognitive, psychiatric, and behavioral outcome. Epilepsy course was variable. Missense variants were associated with more frequent and more severe epilepsy compared to truncating variants. SIGNIFICANCE: Our study describes the phenotypic spectrum of KCNB1 encephalopathy, which varies from severe DEE to DE with or without epilepsy. Although cognitive impairment is worse in patients with DEE, long-term outcome is poor for most and missense variants are associated with more severe epilepsy outcome. Further understanding of disease mechanisms should facilitate the development of targeted therapies, much needed to improve the neurodevelopmental prognosis.


Asunto(s)
Encefalopatías/diagnóstico por imagen , Encefalopatías/genética , Epilepsia/diagnóstico por imagen , Epilepsia/genética , Variación Genética/genética , Canales de Potasio Shab/genética , Adolescente , Adulto , Encefalopatías/fisiopatología , Niño , Preescolar , Estudios de Cohortes , Electroencefalografía/tendencias , Epilepsia/fisiopatología , Femenino , Humanos , Lactante , Masculino , Estudios Retrospectivos , Factores de Tiempo , Resultado del Tratamiento , Adulto Joven
15.
Brain ; 142(8): 2319-2335, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31257402

RESUMEN

Genetic mutations in TBC1D24 have been associated with multiple phenotypes, with epilepsy being the main clinical manifestation. The TBC1D24 protein consists of the unique association of a Tre2/Bub2/Cdc16 (TBC) domain and a TBC/lysin motif domain/catalytic (TLDc) domain. More than 50 missense and loss-of-function mutations have been described and are spread over the entire protein. Through whole genome/exome sequencing we identified compound heterozygous mutations, R360H and G501R, within the TLDc domain, in an index family with a Rolandic epilepsy exercise-induced dystonia phenotype (http://omim.org/entry/608105). A 20-year long clinical follow-up revealed that epilepsy was self-limited in all three affected patients, but exercise-induced dystonia persisted into adulthood in two. Furthermore, we identified three additional sporadic paediatric patients with a remarkably similar phenotype, two of whom had compound heterozygous mutations consisting of an in-frame deletion I81_K84 and an A500V mutation, and the third carried T182M and G511R missense mutations, overall revealing that all six patients harbour a missense mutation in the subdomain of TLDc between residues 500 and 511. We solved the crystal structure of the conserved Drosophila TLDc domain. This allowed us to predict destabilizing effects of the G501R and G511R mutations and, to a lesser degree, of R360H and potentially A500V. Next, we characterized the functional consequences of a strong and a weak TLDc mutation (TBC1D24G501R and TBC1D24R360H) using Drosophila, where TBC1D24/Skywalker regulates synaptic vesicle trafficking. In a Drosophila model neuronally expressing human TBC1D24, we demonstrated that the TBC1D24G501R TLDc mutation causes activity-induced locomotion and synaptic vesicle trafficking defects, while TBC1D24R360H is benign. The neuronal phenotypes of the TBC1D24G501R mutation are consistent with exacerbated oxidative stress sensitivity, which is rescued by treating TBC1D24G501R mutant animals with antioxidants N-acetylcysteine amide or α-tocopherol as indicated by restored synaptic vesicle trafficking levels and sustained behavioural activity. Our data thus show that mutations in the TLDc domain of TBC1D24 cause Rolandic-type focal motor epilepsy and exercise-induced dystonia. The humanized TBC1D24G501R fly model exhibits sustained activity and vesicle transport defects. We propose that the TBC1D24/Sky TLDc domain is a reactive oxygen species sensor mediating synaptic vesicle trafficking rates that, when dysfunctional, causes a movement disorder in patients and flies. The TLDc and TBC domain mutations' response to antioxidant treatment we observed in the animal model suggests a potential for combining antioxidant-based therapeutic approaches to TBC1D24-associated disorders with previously described lipid-altering strategies for TBC domain mutations.


Asunto(s)
Acetilcisteína/análogos & derivados , Antioxidantes/uso terapéutico , Modelos Animales de Enfermedad , Drosophila melanogaster/fisiología , Distonía/tratamiento farmacológico , Epilepsia Rolándica/genética , Proteínas Activadoras de GTPasa/genética , Esfuerzo Físico , alfa-Tocoferol/uso terapéutico , Acetilcisteína/uso terapéutico , Adolescente , Secuencias de Aminoácidos/genética , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Transporte Biológico/efectos de los fármacos , Dominio Catalítico/genética , Niño , Preescolar , Cristalografía por Rayos X , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Distonía/etiología , Epilepsia Rolándica/tratamiento farmacológico , Femenino , Proteínas Activadoras de GTPasa/química , Proteínas Activadoras de GTPasa/fisiología , Humanos , Lactante , Locomoción/genética , Locomoción/fisiología , Masculino , Modelos Moleculares , Mutación Missense , Neuronas/fisiología , Estrés Oxidativo , Linaje , Conformación Proteica , Especies Reactivas de Oxígeno/metabolismo , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Eliminación de Secuencia , Homología de Secuencia de Aminoácido , Vesículas Sinápticas/metabolismo , Proteínas de Unión al GTP rab/química , Proteínas de Unión al GTP rab/genética
16.
Brain ; 141(11): 3160-3178, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30351409

RESUMEN

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels control neuronal excitability and their dysfunction has been linked to epileptogenesis but few individuals with neurological disorders related to variants altering HCN channels have been reported so far. In 2014, we described five individuals with epileptic encephalopathy due to de novo HCN1 variants. To delineate HCN1-related disorders and investigate genotype-phenotype correlations further, we assembled a cohort of 33 unpublished patients with novel pathogenic or likely pathogenic variants: 19 probands carrying 14 different de novo mutations and four families with dominantly inherited variants segregating with epilepsy in 14 individuals, but not penetrant in six additional individuals. Sporadic patients had epilepsy with median onset at age 7 months and in 36% the first seizure occurred during a febrile illness. Overall, considering familial and sporadic patients, the predominant phenotypes were mild, including genetic generalized epilepsies and genetic epilepsy with febrile seizures plus (GEFS+) spectrum. About 20% manifested neonatal/infantile onset otherwise unclassified epileptic encephalopathy. The study also included eight patients with variants of unknown significance: one adopted patient had two HCN1 variants, four probands had intellectual disability without seizures, and three individuals had missense variants inherited from an asymptomatic parent. Of the 18 novel pathogenic missense variants identified, 12 were associated with severe phenotypes and clustered within or close to transmembrane domains, while variants segregating with milder phenotypes were located outside transmembrane domains, in the intracellular N- and C-terminal parts of the channel. Five recurrent variants were associated with similar phenotypes. Using whole-cell patch-clamp, we showed that the impact of 12 selected variants ranged from complete loss-of-function to significant shifts in activation kinetics and/or voltage dependence. Functional analysis of three different substitutions altering Gly391 revealed that these variants had different consequences on channel biophysical properties. The Gly391Asp variant, associated with the most severe, neonatal phenotype, also had the most severe impact on channel function. Molecular dynamics simulation on channel structure showed that homotetramers were not conducting ions because the permeation path was blocked by cation(s) strongly complexed to the Asp residue, whereas heterotetramers showed an instantaneous current component possibly linked to deformation of the channel pore. In conclusion, our results considerably expand the clinical spectrum related to HCN1 variants to include common generalized epilepsy phenotypes and further illustrate how HCN1 has a pivotal function in brain development and control of neuronal excitability.


Asunto(s)
Epilepsia Generalizada/genética , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Mutación/genética , Canales de Potasio/genética , Espasmos Infantiles/genética , Adolescente , Adulto , Anciano , Animales , Células CHO , Niño , Preescolar , Cricetulus , Estimulación Eléctrica , Femenino , Estudios de Asociación Genética , Humanos , Lactante , Masculino , Potenciales de la Membrana/genética , Persona de Mediana Edad , Modelos Moleculares , Mutagénesis Sitio-Dirigida/métodos , Adulto Joven
17.
Epilepsy Behav ; 101(Pt B): 106373, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31300382

RESUMEN

Status epilepticus is a life-threatening medical condition which requires immediate diagnosis and treatment. In children, it may be a recurrent manifestation in the context of heterogeneous severe developmental genetic encephalopathies, as well as the first neurological manifestation. Mutations in several genes have been consistently associated with status epilepticus despite none of them can be considered as 'pure' Mendelian status epilepticus gene. Most genetic conditions featuring status epilepticus can be assigned to specific phenotypic subgroups, including cortical dysplasias, inborn errors of metabolism, mitochondrial diseases, or epileptic encephalopathies and childhood syndromes. Next generation sequencing (NGS) has increased the number of genes associated with, and improved the turnaround time for molecular diagnosis of, status epilepticus, allowing more timely and rationale management choices for specific conditions. Next generation sequencing might become part of the standard of care in the near future for a large subset of patients with status epilepticus, especially in early life. At present, trios whole exome sequencing, with a first analysis of point and copy number variants of an in silico panel containing 'status epilepticus' genes might represent best choice as it would allow a rapid screening. This article is part of the Special Issue "Proceedings of the 7th London-Innsbruck Colloquium on Status Epilepticus and Acute Seizures".


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Mutación , Estado Epiléptico/diagnóstico , Predisposición Genética a la Enfermedad , Pruebas Genéticas , Humanos , Estado Epiléptico/genética
18.
Genet Med ; 20(11): 1354-1364, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29671837

RESUMEN

PURPOSE: To estimate diagnostic yield and genotype-phenotype correlations in a cohort of 811 patients with lissencephaly or subcortical band heterotopia. METHODS: We collected DNA from 756 children with lissencephaly over 30 years. Many were tested for deletion 17p13.3 and mutations of LIS1, DCX, and ARX, but few other genes. Among those tested, 216 remained unsolved and were tested by a targeted panel of 17 genes (ACTB, ACTG1, ARX, CRADD, DCX, LIS1, TUBA1A, TUBA8, TUBB2B, TUBB, TUBB3, TUBG1, KIF2A, KIF5C, DYNC1H1, RELN, and VLDLR) or by whole-exome sequencing. Fifty-five patients studied at another institution were added as a validation cohort. RESULTS: The overall mutation frequency in the entire cohort was 81%. LIS1 accounted for 40% of patients, followed by DCX (23%), TUBA1A (5%), and DYNC1H1 (3%). Other genes accounted for 1% or less of patients. Nineteen percent remained unsolved, which suggests that several additional genes remain to be discovered. The majority of unsolved patients had posterior pachygyria, subcortical band heterotopia, or mild frontal pachygyria. CONCLUSION: The brain-imaging pattern correlates with mutations in single lissencephaly-associated genes, as well as in biological pathways. We propose the first LIS classification system based on the underlying molecular mechanisms.


Asunto(s)
Encéfalo/diagnóstico por imagen , Lisencefalias Clásicas y Heterotopias Subcorticales en Banda/diagnóstico , Secuenciación del Exoma , Lisencefalia/diagnóstico , Encéfalo/fisiopatología , Lisencefalias Clásicas y Heterotopias Subcorticales en Banda/diagnóstico por imagen , Lisencefalias Clásicas y Heterotopias Subcorticales en Banda/genética , Lisencefalias Clásicas y Heterotopias Subcorticales en Banda/fisiopatología , Análisis Mutacional de ADN , Femenino , Estudios de Asociación Genética , Humanos , Lisencefalia/diagnóstico por imagen , Lisencefalia/genética , Lisencefalia/fisiopatología , Masculino , Mutación/genética , Proteína Reelina
20.
Am J Med Genet A ; 176(12): 2841-2845, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30345727

RESUMEN

The PRICKLE1 (Prickle Planar Cell Polarity Protein 1-MIM 608500) gene is involved in different phases of human development. The related diseases include autosomal recessive progressive myoclonus epilepsy - ataxia syndrome, neural tube defects associated with heterozygous mutations, agenesis of corpus callosum, polymicrogyria, and autistic spectrum disorder. Reported here is a young boy with a new variant (NM_153026.2:c.820G>A, p.Ala274Thr) presenting with an early infantile epileptic encephalopathy with developmental arrest.


Asunto(s)
Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Proteínas con Dominio LIM/genética , Espasmos Infantiles/diagnóstico , Espasmos Infantiles/genética , Proteínas Supresoras de Tumor/genética , Preescolar , Análisis Mutacional de ADN , Electroencefalografía , Genotipo , Humanos , Masculino , Mutación , Linaje , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA