Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Cell Mol Life Sci ; 76(8): 1459-1471, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30607432

RESUMEN

LncRNAs have recently emerged as new and fundamental transcriptional and post-transcriptional regulators acting at multiple levels of gene expression. Indeed, lncRNAs participate in a wide variety of stem cell and developmental processes, acting in cis and/or in trans in the nuclear and/or in the cytoplasmic compartments, and generating an intricate network of interactions with RNAs, enhancers, and chromatin-modifier complexes. Given the versatility of these molecules to operate in different subcellular compartments, via different modes of action and with different target specificity, the interest in this research field is rapidly growing. Here, we review recent progress in defining the functional role of lncRNAs in stem cell biology with a specific focus on the underlying mechanisms. We also discuss recent findings on a new family of evolutionary conserved lncRNAs transcribed from ultraconserved elements, which show perfect conservation between human, mouse, and rat genomes, and that are emerging as new player in this complex scenario.


Asunto(s)
Evolución Biológica , Diferenciación Celular , Células Madre Embrionarias/fisiología , ARN Largo no Codificante/metabolismo , Animales , Linaje de la Célula , Núcleo Celular/metabolismo , Citoplasma/metabolismo , ADN/química , ADN/genética , ADN/metabolismo , Células Madre Embrionarias/citología , Genoma Humano , Humanos , Ratones , ARN Largo no Codificante/química , ARN Largo no Codificante/genética , Ratas
2.
Cells ; 11(6)2022 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-35326391

RESUMEN

Cell reprogramming is a groundbreaking technology that, in few decades, generated a new paradigm in biomedical science. To date we can use cell reprogramming to potentially generate every cell type by converting somatic cells and suitably modulating the expression of key transcription factors. This approach can be used to convert skin fibroblasts into pluripotent stem cells as well as into a variety of differentiated and medically relevant cell types, including cardiomyocytes and neural cells. The molecular mechanisms underlying such striking cell phenotypes are still largely unknown, but in the last decade it has been proven that cell reprogramming approaches are significantly influenced by non-coding RNAs. Specifically, this review will focus on the role of microRNAs in the reprogramming processes that lead to the generation of pluripotent stem cells, neurons, and cardiomyocytes. As highlighted here, non-coding RNA-forced expression can be sufficient to support some cell reprogramming processes, and, therefore, we will also discuss how these molecular determinants could be used in the future for biomedical purposes.


Asunto(s)
MicroARNs , Células Madre Pluripotentes , Diferenciación Celular/genética , Reprogramación Celular/genética , Fibroblastos/metabolismo , MicroARNs/metabolismo , Células Madre Pluripotentes/metabolismo
3.
Biomolecules ; 10(9)2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32899172

RESUMEN

Midbrain dopamine neurons have crucial functions in motor and emotional control and their degeneration leads to several neurological dysfunctions such as Parkinson's disease, addiction, depression, schizophrenia, and others. Despite advances in the understanding of specific altered proteins and coding genes, little is known about cumulative changes in the transcriptional landscape of noncoding genes in midbrain dopamine neurons. Noncoding RNAs-specifically microRNAs and long noncoding RNAs-are emerging as crucial post-transcriptional regulators of gene expression in the brain. The identification of noncoding RNA networks underlying all stages of dopamine neuron development and plasticity is an essential step to deeply understand their physiological role and also their involvement in the etiology of dopaminergic diseases. Here, we provide an update about noncoding RNAs involved in dopaminergic development and metabolism, and the related evidence of these biomolecules for applications in potential treatments for dopaminergic neurodegeneration.


Asunto(s)
Neuronas Dopaminérgicas/química , Neuronas Dopaminérgicas/metabolismo , Mesencéfalo/química , Mesencéfalo/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , ARN no Traducido/fisiología , ARN no Traducido/uso terapéutico , Animales , Dopamina/metabolismo , Neuronas Dopaminérgicas/fisiología , Regulación de la Expresión Génica , Humanos , Enfermedad de Parkinson/genética
4.
Stem Cell Reports ; 15(4): 836-844, 2020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-32976763

RESUMEN

Neural stem cell populations generate a wide spectrum of neuronal and glial cell types in a highly ordered fashion. MicroRNAs are essential regulators of this process. T-UCstem1 is a long non-coding RNA containing an ultraconserved element, and in vitro analyses in pluripotent stem cells provided evidence that it regulates the balance between proliferation and differentiation. Here we investigate the in vivo function of T-UCstem1. We show that T-UCstem1 is expressed in the forebrain neurogenic lineage that generates interneurons for the postnatal olfactory bulb. Gain of function in neural stem cells increased progenitor proliferation at the expense of neuron production, whereas knockdown had the opposite effect. This regulatory function is mediated by its interaction with miR-9-3p and miR-9-5p. Based thereon, we propose a mechanistic model for the role of T-UCstem1 in the dynamic regulation of neural progenitor proliferation during neurogenesis.


Asunto(s)
MicroARNs/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neurogénesis/genética , Bulbo Olfatorio/citología , ARN Largo no Codificante/metabolismo , Animales , Animales Recién Nacidos , Recuento de Células , Proliferación Celular/genética , Ratones , MicroARNs/genética , Neuronas/citología , Neuronas/metabolismo , ARN Largo no Codificante/genética
5.
Epigenomes ; 3(3)2019 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-34968226

RESUMEN

The power of embryonic stem cells (ESCs) lies in their ability to self-renew and differentiate. Behind these two unique capabilities is a fine-tuned molecular network that shapes the genetic, epigenetic, and epitranscriptomic ESC plasticity. Although RNA has been shown to be functionally important in only a small minority of long non-coding RNA genes, a growing body of evidence has highlighted the pivotal and intricate role of lncRNAs in chromatin remodeling. Due to their multifaceted nature, lncRNAs interact with DNA, RNA, and proteins, and are emerging as new modulators of extensive gene expression programs through their participation in ESC-specific regulatory circuitries. Here, we review the tight cooperation between lncRNAs and Polycomb repressive complex 2 (PRC2), which is intimately involved in determining and maintaining the ESC epigenetic landscape. The lncRNA-PRC2 partnership is fundamental in securing the fully pluripotent state of ESCs, which must be primed to differentiate properly. We also reflect on the advantages brought to this field of research by the advent of single-cell analysis.

6.
Stem Cell Reports ; 10(3): 1102-1114, 2018 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-29456181

RESUMEN

Ultraconserved elements (UCEs) show the peculiar feature to retain extended perfect sequence identity among human, mouse, and rat genomes. Most of them are transcribed and represent a new family of long non-coding RNAs (lncRNAs), the transcribed UCEs (T-UCEs). Despite their involvement in human cancer, the physiological role of T-UCEs is still unknown. Here, we identify a lncRNA containing the uc.170+, named T-UCstem1, and provide in vitro and in vivo evidence that it plays essential roles in embryonic stem cells (ESCs) by modulating cytoplasmic miRNA levels and preserving transcriptional dynamics. Specifically, while T-UCstem1::miR-9 cytoplasmic interplay regulates ESC proliferation by reducing miR-9 levels, nuclear T-UCstem1 maintains ESC self-renewal and transcriptional identity by stabilizing polycomb repressive complex 2 on bivalent domains. Altogether, our findings provide unprecedented evidence that T-UCEs regulate physiological cellular functions and point to an essential role of T-UCstem1 in preserving ESC identity.


Asunto(s)
Secuencia Conservada/genética , Células Madre Embrionarias/fisiología , ARN Largo no Codificante/genética , Animales , Proliferación Celular/genética , Citoplasma/fisiología , Humanos , Ratones , MicroARNs/genética , Complejo Represivo Polycomb 2/genética , Ratas , Transcripción Genética/genética
7.
Nat Commun ; 7: 12589, 2016 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-27586544

RESUMEN

Known molecular determinants of developmental plasticity are mainly transcription factors, while the extrinsic regulation of this process has been largely unexplored. Here we identify Cripto as one of the earliest epiblast markers and a key extracellular determinant of the naive and primed pluripotent states. We demonstrate that Cripto sustains mouse embryonic stem cell (ESC) self-renewal by modulating Wnt/ß-catenin, whereas it maintains mouse epiblast stem cell (EpiSC) and human ESC pluripotency through Nodal/Smad2. Moreover, we provide unprecedented evidence that Cripto controls the metabolic reprogramming in ESCs to EpiSC transition. Remarkably, Cripto deficiency attenuates ESC lineage restriction in vitro and in vivo, and permits ESC transdifferentiation into trophectoderm lineage, suggesting that Cripto has earlier functions than previously recognized. All together, our studies provide novel insights into the current model of mammalian pluripotency and contribute to the understanding of the extrinsic regulation of the first cell lineage decision in the embryo.


Asunto(s)
Desarrollo Embrionario/fisiología , Células Madre Embrionarias/fisiología , Factor de Crecimiento Epidérmico/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Células Madre Pluripotentes/fisiología , beta Catenina/metabolismo , Animales , Reprogramación Celular/genética , Factor de Crecimiento Epidérmico/genética , Estratos Germinativos/citología , Humanos , Glicoproteínas de Membrana/genética , Ratones , Ratones Noqueados , Proteínas de Neoplasias/genética , Proteína Nodal/metabolismo , Proteína Smad2/metabolismo , Proteínas Wnt/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA