Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-37565577

RESUMEN

A novel Gram-reaction-negative, facultatively anaerobic, rod-shaped, non-motile, non-spore forming, orange-pigmented bacterium identified as M10.2AT, was isolated from marine residues submerged on the Malva-rosa beach (València, Spain), on the western coast of the Mediterranean Sea. This strain was catalase-positive and oxidase-negative and grew under mesophilic, neutrophilic and halophilic conditions. With respect to the 16S rRNA gene sequences, M10.2AT showed similarities with Gillisia mitskevichiae DSM 19839T and Gillisia hiemivida IC154T (97.57 and 97.50 % gene sequence similarity, respectively). The genome of M10.2AT was sequenced and has been deposited in the DDBJ/ENA/GenBank databases under the accession code JAKGTH000000000. The genomic DNA G+C content was 36.13 %. Its adscription to a novel species of the genus Gillisia was confirmed by the genomic indexes average nucleotide identity by blast (ANIb) and digital DNA-DNA hybridisation (dDDH). The major fatty acids were iso-C15 : 0, iso-C15 : 1G, iso-C16 : 0 3-OH, iso-C17 : 0 3-OH and summed feature 3 (C16 : 1ω7c/C16 : 1ω6c). According to the results of this polyphasic study, strain M10.2AT represents a novel species of the genus Gillisia, for which name Gillisia lutea sp. nov. (type strain M10.2AT = CECT 30308T = DSM 112385T) is proposed.


Asunto(s)
Aluminio , Ácidos Grasos , Ácidos Grasos/química , ARN Ribosómico 16S/genética , Mar Mediterráneo , ADN Bacteriano/genética , Análisis de Secuencia de ADN , Composición de Base , Filogenia , Técnicas de Tipificación Bacteriana , Vitamina K 2/química
2.
Artículo en Inglés | MEDLINE | ID: mdl-37200211

RESUMEN

A novel Gram-negative, aerobic, motile, rod-shaped, beige-pigmented bacterium, strain ARW1-2F2T, was isolated from a seawater sample collected from Roscoff, France. Strain ARW1-2F2T was catalase-negative and oxidase-positive, and grew under mesophilic, neutrophilic and halophilic conditions. The 16S rRNA sequences revealed that strain ARW1-2F2T was closely related to Arcobacter lekithochrous LFT 1.7T and Arcobacter caeni RW17-10T(95.8 and 95.5 % gene sequence similarity, respectively). The genome of strain ARW1-2F2T was sequenced and had a G+C content of 28.7%. Two different measures of genome similarity, average nucleotide identity based on blast and digital DNA-DNA hybridization, indicated that strain ARW1-2F2T represents a new Arcobacter species. The predominant fatty acids were C16 : 1 ω7c/C16 : 1 ω6c and C18 : 1 ω7c/C18 : 1 ω6c. The results of a polyphasic analysis supported the description of strain ARW1-2F2T as representing a novel species of the genus Arcobacter, for which the name Arcobacter roscoffensis sp. nov. is proposed with the type strain ARW1-2F2T (DSM 29169T=KCTC 52423T).


Asunto(s)
Arcobacter , Ácidos Grasos , Ácidos Grasos/química , Fosfolípidos/análisis , ARN Ribosómico 16S/genética , Composición de Base , Filogenia , ADN Bacteriano/genética , Análisis de Secuencia de ADN , Técnicas de Tipificación Bacteriana , Agua de Mar/microbiología
3.
Artículo en Inglés | MEDLINE | ID: mdl-36748519

RESUMEN

A novel Gram-reaction-negative, aerobic, motile, rod-shaped, grey bacterium, strain P4.10XT, was isolated from plastic debris sampled from shallow waters in the Mediterranean Sea (Valencia, Spain). P4.10XT was catalase- and oxidase-positive, and grew under mesophilic, neutrophilic and halophilic conditions. The 16S rRNA gene sequences revealed that P4.10XT was closely related to Maritalea myrionectae DSM 19524T and Maritalea mobilis E6T (98.25 and 98.03 % sequence similarity, respectively). The DNA G+C content of the genome sequence of P4.10XT was 53.66 %. The genomic indexes average nucleotide identity by blast (ANIb) and digital DNA-DNA hybridization (dDDH) confirmed its classification as representing a novel species of the genus Maritalea. The predominant fatty acids were summed feature 8 (C18 : 1ω7c/C18 : 1ω6c) and C18 : 1 ω7c 11-methyl. The results of this polyphasic study confirm that P4.10XT represents a novel species of the genus Maritalea, for which the name Maritalea mediterranea sp. nov. is proposed (type strain P4.10XT=CECT 30306T = DSM 112386T).


Asunto(s)
Alphaproteobacteria , Filogenia , Alphaproteobacteria/clasificación , Alphaproteobacteria/aislamiento & purificación , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Mediterranea , Hibridación de Ácido Nucleico , Fosfolípidos/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Contaminantes del Agua , Plásticos , Mar Mediterráneo
4.
Artículo en Inglés | MEDLINE | ID: mdl-35258448

RESUMEN

A novel Gram-stain-negative, non-motile, halophilic bacterium designated strain M10.9XT was isolated from the inner sediment of an aluminium can collected from the Mediterranean Sea (València, Spain). Cells of strain M10.9XT were rod-shaped and occasionally formed aggregates. The strain was oxidase-negative and catalase-positive, and showed a slightly psychrophilic, neutrophilic and slightly halophilic metabolism. The phylogenetic analyses revealed that strain M10.9XT was closely related to Sagittula stellata E-37T and Sagittula marina F028-2T. The genomic G+C content of strain M10.9XT was 65.2 mol%. The average nucleotide identity and digital DNA-DNA hybridization values were 76.6 and 20.9 %, respectively, confirming its adscription to a new species within the genus Sagittula. The major cellular fatty acids were C18 : 1 ω7c/C18 : 1 ω6c and C16 : 0. The polar lipids consisted of phosphatidylglycerol, phosphatidylethanolamine, an unidentified aminolipid, an unidentified glycolipid, an unidentified phospholipid and an unidentified lipid. According to the resuts of a polyphasic study, strain M10.9XT represents a novel species of the genus Sagittula for which the name Sagittula salina sp. nov. (type strain M10.9XT=DSM 112301T=CECT 30307T) is proposed.


Asunto(s)
Alphaproteobacteria/clasificación , Filogenia , Alphaproteobacteria/aislamiento & purificación , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Glucolípidos/química , Mar Mediterráneo , Hibridación de Ácido Nucleico , Fosfolípidos/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Contaminantes del Agua
5.
Int J Mol Sci ; 24(1)2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36613590

RESUMEN

Breast cancer (BC) is the most prevalent cancer in women. While usually detected when localized, invasive procedures are still required for diagnosis. Herein, we developed a novel ultrasensitive pipeline to detect circulating tumor DNA (ctDNA) in a series of 75 plasma samples from localized BC patients prior to any medical intervention. We first performed a tumor-informed analysis to correlate the mutations found in tumor tissue and plasma. Disregarding the tumor data next, we developed an approach to detect tumor mutations in plasma. We observed a mutation concordance between the tumor and plasma of 29.50% with a sensitivity down to 0.03% in mutant variant allele frequency (VAF). We detected mutations in 33.78% of the samples, identifying eight patients with plasma-only mutations. Altogether, we determined a specificity of 86.36% and a positive predictive value of 88.46% for BC detection. We demonstrated an association between higher ctDNA median VAF and higher tumor grade, multiple plasma mutations with a likelihood of relapse and more frequent TP53 plasma mutations in hormone receptor-negative tumors. Overall, we have developed a unique ultra-sensitive sequencing workflow with a technology not previously employed in early BC, paving the way for its application in BC screening.


Asunto(s)
Neoplasias de la Mama , ADN Tumoral Circulante , Humanos , Femenino , ADN Tumoral Circulante/genética , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/genética , Recurrencia Local de Neoplasia/genética , Mutación , Biomarcadores de Tumor/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
6.
Artículo en Inglés | MEDLINE | ID: mdl-34292142

RESUMEN

Two novel Gram-staining-negative, aerobic, cocci-shaped, non-motile, non-spore forming, pink-pigmented bacteria designated strains T6T and T18T, were isolated from a biocrust (biological soil crust) sample from the vicinity of the Tabernas Desert (Spain). Both strains were catalase-positive and oxidase-negative, and grew under mesophilic, neutrophilic and non-halophilic conditions. According to the 16S rRNA gene sequences, strains T6T and T18T showed similarities with Belnapia rosea CGMCC 1.10758T and Belnapia moabensis CP2CT (98.11 and 98.55% gene sequence similarity, respectively). The DNA G+C content was 69.80 and 68.96% for strains T6T and T18T, respectively; the average nucleotide identity by blast (ANIb) and digital DNA-DNA hybridization (dDDH) values confirmed their adscription to two novel species within the genus Belnapia. The predominant fatty acids were summed feature 8 (C18 : 1ω7c/C18 : 1ω6c), C16 : 0, C18 : 1 2-OH and summed feature 3 (C16 : 1ω7c/C16 : 1ω6c). According to he results of the polyphasic study, strains T6T and T18T represent two novel species in the genus Belnapia (which currently includes only three species), for which names Belnapia mucosa sp. nov. (type strain T6T = CECT 30228T=DSM 112073T) and Belnapia arida sp. nov. (type strain T18T=CECT 30229T=DSM 112074T) are proposed, respectively.


Asunto(s)
Acetobacteraceae/clasificación , Clima Desértico , Filogenia , Microbiología del Suelo , Acetobacteraceae/aislamiento & purificación , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Hibridación de Ácido Nucleico , Fosfolípidos/química , Pigmentación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , España
7.
Int J Syst Evol Microbiol ; 70(9): 4966-4977, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32762801

RESUMEN

The family Caulobacteraceae comprises prosthecate bacteria with a dimorphic cell cycle and also non-prosthecate bacteria. Cells of all described species divide by binary fission. Strain 0127_4T was isolated from forest soil in Baden Württemberg (Germany) and determined to be the first representative of the family Caulobacteraceae which divided by budding. Cells of strain 0127_4T were Gram-negative, rod-shaped, prosthecate, motile by means of a polar flagellum, non-spore-forming and non-capsulated. The strain formed small white colonies and grew aerobically and chemo-organotrophically utilizing organic acids, amino acids and proteinaceous substrates. 16S rRNA gene sequence analysis indicated that this bacterium was related to Aquidulcibacter paucihalophilus TH1-2T and Asprobacter aquaticus DRW22-8T with 91.3 and 89.7% sequence similarity, respectively. Four unidentified glycolipids were detected as the major polar lipids and, unlike all described members of the family Caulobacteraceae, phosphatidylglycerol was absent. The major fatty acids were summed feature 8 (C18 : 1ω7c/C18 : 1ω6c), summed feature 9 (iso-C17 : 1ω9c/C16 : 0 10-methyl), C16 : 0 and summed feature 3 (C16 : 1 ω6c/C16 : 1 ω7c). The major respiratory quinone was Q-10. The G+C content of the genomic DNA was 63.5 %. Based on the present taxonomic characterization, strain 0127_4T represents a novel species of a new genus, Terricaulis silvestris gen. nov., sp. nov. The type strain of Terricaulis silvestris is 0127_4T (=DSM 104635T=CECT 9243T).


Asunto(s)
Caulobacteraceae/clasificación , Bosques , Filogenia , Microbiología del Suelo , Técnicas de Tipificación Bacteriana , Composición de Base , Caulobacteraceae/aislamiento & purificación , ADN Bacteriano/genética , Ácidos Grasos/química , Alemania , Glucolípidos/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Ubiquinona/análogos & derivados , Ubiquinona/química
8.
Int J Syst Evol Microbiol ; 70(3): 1814-1821, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31951194

RESUMEN

Solar panel surfaces, although subjected to a range of extreme environmental conditions, are inhabited by a diverse microbial community adapted to solar radiation, desiccation and temperature fluctuations. This is the first time a new bacterial species has been isolated from this environment. Strain R4DWNT belongs to the genus Sphingomonas and was isolated from a solar panel surface in Boston, MA, USA. Strain R4DWNT is a Gram-negative, non-motile and rod-shaped bacteria that tested positive for oxidase and catalase and forms round-shaped, shiny and orange-coloured colonies. It is mesophilic, neutrophilic and non-halophilic, and presents a more stenotrophic metabolism than its closest neighbours. The major fatty acids in this strain are C18:1ω7c/C18:1ω6c, C16:1ω7c/C16:1ω6c, C14:0 2OH and C16:0. Comparison of 16S rRNA gene sequences revealed that the closest type strains to R4DWNT are Sphingomonas fennica, Sphingomonas formosensis, Sphingomonas prati, Sphingomonas montana and Sphingomonas oleivorans with 96.3, 96.1, 96.0, 95.9 and 95.7 % pairwise similarity, respectively. The genomic G+C content of R4DWNT is 67.9 mol%. Based on these characteristics, strain R4DWNT represents a novel species of the genus Sphingomonas for which the name Sphingomonas solaris sp. nov. is proposed with the type strain R4DWNT (=CECT 9811T=LMG 31344T).


Asunto(s)
Filogenia , Energía Solar , Sphingomonas/clasificación , Técnicas de Tipificación Bacteriana , Composición de Base , Boston , ADN Bacteriano/genética , Ácidos Grasos/química , Pigmentación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Sphingomonas/aislamiento & purificación
9.
Int J Syst Evol Microbiol ; 70(3): 1850-1860, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31958043

RESUMEN

Two strains of the family Rhodospirillaceae were isolated from the rhizosphere of the medicinal plant Hypericum perforatum. Cells of both strains were Gram-stain-negative, motile by means of a single polar flagellum, non-spore-forming, non-capsulated, short rods that divided by binary fission. Colonies were small and white. Strains R5913T and R5959T were oxidase-positive, mesophilic, neutrophilic and grew optimally without NaCl. Both grew under aerobic and microaerophilic conditions and on a limited range of substrates with best results on yeast extract. Major fatty acids were C19 : 0 cyclo ω8c and C16 : 0; in addition, C18 : 1ω7c was also found as a predominant fatty acid in strain R5913T. The major respiratory quinone was ubiquinone 10 (Q-10). The DNA G+C contents of strains R5913T and R5959T were 66.0 and 67.4 mol%, respectively. 16S rRNA gene sequence comparison revealed that the closest relatives (<92 % similarity) of the strains are Oceanibaculum pacificum MCCC 1A02656T, Dongia mobilis CGMCC 1.7660T, Dongia soli D78T and Dongia rigui 04SU4-PT. The two novel strains shared 98.6 % sequence similarity and represent different species on the basis of low average nucleotide identity of their genomes (83.8 %). Based on the combined phenotypic, genomic and phylogenetic investigations, the two strains represent two novel species of a new genus in the family Rhodospirillaceae, for which the name Hypericibacter gen. nov. is proposed, comprising the type species Hypericibacter terrae sp. nov. (type strain R5913T=DSM 109816T=CECT 9472T) and Hypericibacter adhaerens sp. nov. (type strain R5959T=DSM 109817T=CECT 9620T).


Asunto(s)
Hypericum/microbiología , Filogenia , Rizosfera , Rhodospirillaceae/clasificación , Microbiología del Suelo , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Alemania , ARN Ribosómico 16S/genética , Rhodospirillaceae/aislamiento & purificación , Análisis de Secuencia de ADN , Ubiquinona/análogos & derivados , Ubiquinona/química
10.
Appl Environ Microbiol ; 84(15)2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29858203

RESUMEN

Among the plethora of unusual secondary metabolites isolated from Stachylidium bicolor are the tetrapeptidic endolides A and B. Both tetrapeptides contain 3-(3-furyl)-alanine residues, previously proposed to originate from bacterial metabolism. Inspired by this observation, we aimed to identify the presence of endosymbiotic bacteria in S. bicolor and to discover the true producer of the endolides. The endobacterium Burkholderia contaminans was initially detected by 16S rRNA gene amplicon sequencing from the fungal metagenome and was subsequently isolated. It was confirmed that the tetrapeptides were produced by the axenic B. contaminans only when in latency. Fungal colonies unable to produce conidia and the tetrapeptides were isolated and confirmed to be free of B. contaminans A second endosymbiont identified as related to Sphingomonas leidyi was also isolated. In situ imaging of the mycelium supported an endosymbiotic relationship between S. bicolor and the two endobacteria. Besides the technical novelty, our in situ analyses revealed that the two endobacteria are compartmentalized in defined fungal cells, prevailing mostly in latency when in symbiosis. Within the emerging field of intracellular bacterial symbioses, fungi are the least studied eukaryotic hosts. Our study further supports the Fungi as a valuable model for understanding endobacterial symbioses in eukaryotes.IMPORTANCE The discovery of two bacterial endosymbionts harbored in Stachylidium bicolor mycelium, Burkholderia contaminans and Sphingomonas leidyi, is described here. Production of tetrapeptides inside the mycelium is ensured by B. contaminans, and fungal sporulation is influenced by the endosymbionts. Here, we illustrate the bacterial endosymbiotic origin of secondary metabolites in an Ascomycota host.


Asunto(s)
Ascomicetos/fisiología , Burkholderia/fisiología , Sphingomonas/fisiología , Simbiosis , Ascomicetos/química , Ascomicetos/crecimiento & desarrollo , Burkholderia/genética , Burkholderia/aislamiento & purificación , Micelio/química , Micelio/fisiología , Péptidos Cíclicos/metabolismo , Sphingomonas/genética , Sphingomonas/aislamiento & purificación , Esporas Fúngicas/crecimiento & desarrollo , Esporas Fúngicas/fisiología
11.
Int J Syst Evol Microbiol ; 68(4): 1028-1036, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29458671

RESUMEN

A novel slow-growing bacterium, designated strain AW1220T, was isolated from agricultural floodplain soil sampled at Mashare (Kavango region, Namibia) by using a high-throughput cultivation approach. Strain AW1220T was characterized as a Gram-negative, non-motile, rod-shaped bacterium. Occasionally, some cells attained an unusual length of up to 35 µm. The strain showed positive responses for catalase and cytochrome-c oxidase and divided by binary fission and/or budding. The strain had an aerobic chemoorganoheterotrophic metabolism and was also able to grow under micro-oxic conditions. Colonies were small and pink pigmented. Strain AW1220T was found to be a mesophilic, neutrophilic and non-halophilic bacterium. Cells accumulated polyphosphate intracellularly and mainly utilized complex protein substrates for growth. 16S rRNA gene sequence comparisons revealed that strain AW1220T belonged to the class Gemmatimonadetes (=group 1). Its closest relatives were found to be Gemmatimonas aurantiaca T-27T (90.9 % gene sequence similarity), Gemmatimonas phototrophica AP64T (90.8 %) and Longimicrobiumterrae CB-286315T (84.2 %). The genomic G+C content was 73.3 mol%. The major fatty acids were iso-C15 : 0, C16 : 1ω7c and/or iso-C15 : 0 2-OH, iso-C17 : 1ω9c, iso-C15 : 0 3-OH and C16 : 0. The predominant respiratory quinone was MK-9, albeit minor amounts of MK-8 and MK-10 are also present. The polar lipids comprised major amounts of phosphatidylethanolamine, phosphatidylcholine, diphosphatidylglycerol and one unidentified phosphoglycolipid. On the basis of its polyphasic characterization, strain AW1220T represents a novel genus and species of the class Gemmatimonadetes for which the name Roseisolibacter agri gen. nov., sp. nov. is proposed, with the type strain AW1220T (=DSM 104292T=LMG 29977T).


Asunto(s)
Bacterias/clasificación , Filogenia , Microbiología del Suelo , Agricultura , Bacterias/genética , Bacterias/aislamiento & purificación , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Complejo IV de Transporte de Electrones/genética , Ácidos Grasos/química , Namibia , Fosfolípidos/química , Pigmentación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Vitamina K 2/análogos & derivados , Vitamina K 2/química
12.
Antonie Van Leeuwenhoek ; 111(7): 1105-1115, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29299771

RESUMEN

Strain Corallo1T was isolated from mucus of red coral (Corallium rubrum) at Punta Pizzaco (Procida island, Naples, Italy). It was characterised as a Gram-stain negative, motile, rod-shaped bacterium. Strain Corallo1T was found to show positive responses for cytochrome-c oxidase, catalase, reduction of nitrate and nitrite, ß-galactosidase activity and hydrolysis of starch, xylan, peptone, Tween 40, Tween 80 and casein. Strain Corallo1T was found to be mesophilic, neutrophilic to alkalophilic and slightly halophilic. According to analysis of the almost-complete 16S rRNA gene, strain Corallo1T is closely related to Vibrio celticus (100% sequence similarity), Vibrio gigantis (100%), Vibrio crassostreae (99.7%), Vibrio artabrorum (99.7%) and Vibrio pomeroyi (99.6%). MLSA of five housekeeping genes (atpA, pyrH, recA, rpoA and rpoD) was performed to refine the phylogenetic relationships of strain Corallo1T. A draft genome sequence of strain Corallo1T was obtained. The DNA G+C content of this strain was determined to be 44.5 mol %. The major cellular fatty acids of strain Corallo1T are C16:1, n-C16:0 and C18:1, and the major isoprenoid ubiquinone is Q8. ANI indexes, in silico estimations of DDH values and wet lab DDH values demonstrated that strain Corallo1T represents an independent genomospecies. Based on a polyphasic taxonomic characterisation, strain Corallo1T is concluded to represent a novel species of the genus Vibrio, for which the name Vibrio coralliirubri sp. nov. is proposed. The type strain is Corallo1T (= DSM 27495T = CIP 110630T).


Asunto(s)
Antozoos/microbiología , Vibrio/aislamiento & purificación , Animales , Proteínas Bacterianas/genética , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , ADN Ribosómico/genética , Ácidos Grasos/química , Ácidos Grasos/metabolismo , Italia , Moco/microbiología , Filogenia , ARN Ribosómico 16S/genética , Vibrio/clasificación , Vibrio/genética , Vibrio/metabolismo
13.
Environ Microbiol ; 19(8): 3310-3322, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28631411

RESUMEN

The decomposition of dead mammalian tissue involves a complex temporal succession of epinecrotic bacteria. Microbial activity may release different cadaveric volatile organic compounds which in turn attract other key players of carcass decomposition such as scavenger insects. To elucidate the dynamics and potential functions of epinecrotic bacteria on carcasses, we monitored bacterial communities developing on still-born piglets incubated in different forest ecosystems by combining high-throughput Illumina 16S rRNA sequencing with gas chromatography-mass spectrometry of volatiles. Our results show that the community structure of epinecrotic bacteria and the types of cadaveric volatile compounds released over the time course of decomposition are driven by deterministic rather than stochastic processes. Individual cadaveric volatile organic compounds were correlated with specific taxa during the first stages of decomposition which are dominated by bacteria. Through best-fitting multiple linear regression models, the synthesis of acetic acid, indole and phenol could be linked to the activity of Enterobacteriaceae, Tissierellaceae and Xanthomonadaceae, respectively. These conclusions are also commensurate with the metabolism described for the dominant taxa identified for these families. The predictable nature of in situ synthesis of cadaveric volatile organic compounds by epinecrotic bacteria provides a new basis for future chemical ecology and forensic studies.


Asunto(s)
Autólisis/metabolismo , Bacterias/metabolismo , Cadáver , Insectos/metabolismo , Necrosis/metabolismo , Animales , Bacterias/clasificación , Cromatografía de Gases y Espectrometría de Masas , Humanos , Feromonas , ARN Ribosómico 16S/genética , Sus scrofa/metabolismo , Porcinos/metabolismo , Compuestos Orgánicos Volátiles/metabolismo
14.
Int J Syst Evol Microbiol ; 67(10): 3951-3959, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28905697

RESUMEN

A novel chemo-organoheterotrophic bacterium, strain CB-286403T, was isolated from a Mediterranean forest soil, collected at Sierra de Tejeda, Almijara and Alhama Natural Park, Spain, by using the Diffusion Sandwich System, a device with 384 miniature diffusion chambers. The 16S rRNA gene sequence analyses identified the isolate as a member of the genus Luteolibacter where the type strains Luteolibacterpohnpeiensis A4T-83T (GenBank acc. no. AB331895), Luteolibacteryonseiensis EBTL01T (JQ319003), Luteolibacterluojiensis DR4-30T (JN630810) and Luteolibacteralgae A5J-41-2T (AB331893) were the closest relatives with similarities of 97.0, 96.3, 96.3 and 94.5 %, respectively. The novel isolate was characterized as a Gram-stain-negative, non-motile, short-rod-shaped bacterium. The strain showed a positive response for catalase and cytochrome-c oxidase, divided by binary fission and/or budding, and exhibited an aerobic metabolism. Strain CB-286403T showed a mesophilic and neutrophilic growth range and showed a nutritional preference for simple sugars and complex protein substrates. Major fatty acids included iso-C14 : 0, C16 : 0, C16 : 1ω7c/iso-C15 : 0 2-OH and anteiso-C15 : 0. The predominant respiratory quinone was MK-9. Polar lipids comprised major amounts of phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol and minor amounts of three unidentified lipids, a glycolipid, a phospholipid and a phosphoglycolipid. Based on a polyphasic taxonomic characterization, strain CB-286403T represents a novel species of the genus Luteolibacter, for which the name Luteolibacter gellanilyticus sp. nov. is proposed. The type strain is CB-286403T (=DSM 28998T=CECT 8659T).


Asunto(s)
Bosques , Filogenia , Microbiología del Suelo , Verrucomicrobia/clasificación , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Fosfolípidos/química , Polisacáridos Bacterianos/metabolismo , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , España , Verrucomicrobia/genética , Verrucomicrobia/aislamiento & purificación , Vitamina K 2/análogos & derivados , Vitamina K 2/química
15.
Int J Syst Evol Microbiol ; 67(6): 1727-1734, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28632115

RESUMEN

A novel slow-growing bacterial strain designated as AW305T was isolated from an agricultural floodplain soil located in Mashare, Kavango region, Namibia. Cells stained Gram-negative, were non-motile, non-spore-forming, coccoid to rod-shaped and did not form a capsule. Colonies were yellow-pigmented, but flexirubin-type pigments were not detected. AW305T had an aerobic chemo-organoheterotrophic metabolism, using a narrow spectrum of carbon sources for growth, with preference for complex protein substrates, organic acids and amino acids. AW305T was able to grow at 15-40 °C, pH 5.3-8.3 and in the presence of up to 0.25 % (w/v) NaCl. 16S rRNA gene sequence comparison showed that AW305T belonged to the genus Flaviaesturariibacter (family Chitinophagaceae). Its closest relatives were Flaviaesturariibacter amylovorans GCR0105T (97.0 %), Flavisolibacter ginsengiterrae Gsoil 492T (93.6 %) and Flavisolibacter ginsengisoli Gsoil 643T (93.2 %). DNA-DNA hybridization experiments corroborated that AW305T represents an independent genomospecies. The genomic DNA G+C content was 57.6 mol%. Major fatty acids were iso-C15 : 1 G, iso-C15 : 0, C16 : 1ω5c, iso-C17 : 0 3-OH and summed feature 3 (C16 : 1ω7c and/or iso-C15 : 0 2-OH). The predominant respiratory quinone was MK-7, albeit minor amounts of MK-6 were also detected. The polar lipids comprised major amounts of phosphatidylethanolamine and minor amounts of two unidentified lipids, an unidentified phospholipid, an unidentified glycolipid and an unidentified aminoglycophospholipid. On the basis of the polyphasic characterization, strain AW305T represents a novel species of the genus Flaviaesturariibacter for which the name Flaviaesturariibacter luteus sp. nov. is proposed, with the type strain AW305T (=DSM 100282T=LMG 29416T).


Asunto(s)
Bacteroidetes/clasificación , Filogenia , Microbiología del Suelo , Agricultura , Técnicas de Tipificación Bacteriana , Bacteroidetes/genética , Bacteroidetes/aislamiento & purificación , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Namibia , Hibridación de Ácido Nucleico , Fosfolípidos/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Vitamina K 2/análogos & derivados , Vitamina K 2/química
16.
Int J Syst Evol Microbiol ; 66(5): 1976-1985, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26873585

RESUMEN

A novel chemo-organoheterotroph bacterium, strain CB-286315T, was isolated from a Mediterranean forest soil sampled at the Sierra de Tejeda, Almijara and Alhama Natural Park, Spain, by using the diffusion sandwich system, a device with 384 miniature diffusion chambers. 16S rRNA gene sequence analyses identified the isolate as a member of the under-represented phylum Gemmatimonadetes, where 'Gemmatirosa kalamazoonensis' KBS708, Gemmatimonas aurantiaca T-27T and Gemmatimonas phototrophica AP64T were the closest relatives, with respective similarities of 84.4, 83.6 and 83.3 %. Strain CB-286315T was characterized as a Gram-negative, non-motile, short to long rod-shaped bacterium. Occasionally, some cells attained an unusual length, up to 35-40 µm. The strain showed positive responses for catalase and cytochrome-c oxidase and division by binary fission, and exhibited an aerobic metabolism, showing optimal growth under normal atmospheric conditions. Strain CB-286315T was also able to grow under micro-oxic atmospheres, but not under anoxic conditions. The strain is a slowly growing bacterium able to grow under low nutrient concentrations. Major fatty acids included iso-C17 : 1ω9c, summed feature 3 (C16 : 1ω7c and/or iso-C15 : 0 2-OH), C16 : 0 and iso-C17 : 0. The major polar lipids were phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, two unidentified glycolipids and three phospholipids. The major isoprenoid quinone was MK-8 and the diagnostic diamino acid was meso-diaminopimelic acid. The DNA G+C content was 67.0 mol%. Based on a polyphasic taxonomic characterization, strain CB-286315T represents a novel genus and species, Longimicrobium terrae gen. nov., sp. nov., within the phylum Gemmatimonadetes. The type strain of Longimicrobium terrae is strain CB-286315T ( = DSM 29007T = CECT 8660T). In order to classify the novel taxon within the existing taxonomic framework, the family Longimicrobiaceae fam. nov., order Longimicrobiales ord. nov. and class Longimicrobia classis nov. are also proposed.


Asunto(s)
Bacilos y Cocos Aerobios Gramnegativos/clasificación , Filogenia , Microbiología del Suelo , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácido Diaminopimélico/química , Complejo IV de Transporte de Electrones/genética , Ácidos Grasos/química , Bosques , Bacilos y Cocos Aerobios Gramnegativos/genética , Bacilos y Cocos Aerobios Gramnegativos/aislamiento & purificación , Fosfolípidos/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , España , Vitamina K 2/análogos & derivados , Vitamina K 2/química
17.
Antonie Van Leeuwenhoek ; 109(5): 685-95, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26936255

RESUMEN

A novel actinomycete strain F-240,109(T) from the MEDINA collection was isolated from a soil sample collected in the forest of Pama, on the plateau of Bangui, Central African Republic. The strain was identified according to its 16S rRNA gene sequence as a new member of the genus Kibdelosporangium, being closely related to Kibdelosporangium aridum subsp. aridum (98.6 % sequence similarity), Kibledosporangium phytohabitans (98.3 %), Kibdelosporangium aridum subsp. largum (97.7 %), Kibdelosporangium philippinense (97.6 %) and Kibledosporangium lantanae (96.9 %). In order to resolve its precise taxonomic status, the strain was characterised through a polyphasic approach. The strain is a Gram-stain positive, aerobic, non-motile and catalase-positive actinomycete characterised by formation of extensively branched substrate mycelia and sparse brownish grey aerial mycelia with sporangium-like globular structures. The chemotaxonomic characterisation of strain F-240,109(T) corroborated its affiliation into the genus Kibdelosporangium. The peptidoglycan contains meso-diaminopimelic acid; the major menaquinone is MK-9(H4); the phospholipid profile contains high amounts of phosphatidylethanolamine, hydroxyphosphatidylethanolamine, diphosphatidylglycerol and an unidentified phospholipid; and the predominant cellular fatty acid methyl esters are iso-C16:0, iso-C14:0, iso-C15:0 and 2OH iso-C16:0. However, some key phenotypic differences regarding to its close relatives and DNA-DNA hybridization values indicate that strain F-240,109(T) represents a novel Kibdelosporangium species, for which the name Kibdelosporangium banguiense sp. nov. is proposed. The type strain is strain F-240,109(T) (=DSM 46670(T), =LMG 28181(T)).


Asunto(s)
Actinomycetales/clasificación , Actinomycetales/aislamiento & purificación , Bosques , Microbiología del Suelo , Actinomycetales/citología , Actinomycetales/genética , Técnicas de Tipificación Bacteriana , República Centroafricana , ADN Bacteriano/genética , Fenotipo , Filogenia , ARN Ribosómico 16S/genética , Suelo
18.
Int J Syst Evol Microbiol ; 65(Pt 2): 625-632, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25410940

RESUMEN

During the course of screening bacterial isolates as sources of as-yet unknown bioactive compounds with pharmaceutical applications, a chemo-organotrophic, Gram-negative bacterium was isolated from a soil sample taken from the Tejeda, Almijara and Alhama Natural Park, Granada, Spain. Strain F-278,770(T) was oxidase- and catalase-positive, aerobic, with a respiratory type of metabolism with oxygen as the terminal electron acceptor, non-spore-forming and motile by one polar flagellum, although some cells had two polar flagella. Phylogenetic analysis of the 16S rRNA, gyrB, rpoB and rpoD genes revealed that strain F-278,770(T) belongs to the Pseudomonas koreensis subgroup (Pseudomonas fluorescens lineage), with Pseudomonas moraviensis, P. koreensis, P. baetica and P. helmanticensis as its closest relatives. Chemotaxonomic traits such as polar lipid and fatty acid compositions and G+C content of genomic DNA corroborated the placement of strain F-278,770(T) in the genus Pseudomonas. DNA-DNA hybridization assays and phenotypic traits confirmed that this strain represents a novel species of the genus Pseudomonas, for which the name Pseudomonas granadensis sp. nov. is proposed. The type strain is F-278,770(T) ( = DSM 28040(T) = LMG 27940(T)).


Asunto(s)
Filogenia , Pseudomonas/clasificación , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Flagelos , Genes Bacterianos , Datos de Secuencia Molecular , Hibridación de Ácido Nucleico , Fosfolípidos/química , Pseudomonas/genética , Pseudomonas/aislamiento & purificación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , España
19.
Int J Syst Evol Microbiol ; 65(10): 3297-3304, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26297491

RESUMEN

A novel aerobic, chemo-organoheterotrophic bacterium, strain Ac_26_B10T, was isolated from a semiarid savannah soil collected in northern Namibia (Mashare, Kavango region). Based on analysis of its nearly full-length 16S rRNA gene sequence, the isolate belongs to the genus Terriglobus (family Acidobacteriaceae, order Acidobacteriales, class Acidobacteria) and shares 98.3 and 96.9 % 16S rRNA gene sequence similarity with its closest relatives, Terriglobus tenax DRP 35T and T. aquaticus O3SUJ4T. Cells were Gram-negative, coccoid to rod-shaped, non-motile and divided by binary fission. Strain Ac_26_B10T showed weak catalase activity and, in contrast to the other described species of the genus Terriglobus, was oxidase-positive. Compared with the already established species of the genus Terriglobus, the novel strain used a larger range of sugars and sugar alcohols for growth, lacked α-mannosidase activity and exhibited a higher temperature optimum of growth. DNA­DNA hybridization studies with its closest phylogenetic relative, T. tenax DSM 28898T, confirmed that strain Ac_26_B10T represents a distinct genomospecies. Its most abundant fatty acids were iso-C15 : 0, summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c) and C16 : 0. Dominant polar lipids were phosphatidylethanolamine and diphosphatidylglycerol. The predominant menaquinone was MK-8; minor amounts of MK-7 and MK-8(H2) were also recorded. The G+C content of the genomic DNA was 58.5 mol%. On the basis of our polyphasic analysis, Ac_26_B10T represents a novel species of the genus Terriglobus, for which the name Terriglobus albidus sp. nov. is proposed. The type strain is Ac_26_B10T ( = DSM 26559T = LMG 27984T).


Asunto(s)
Acidobacteria/clasificación , Pradera , Filogenia , Microbiología del Suelo , Acidobacteria/genética , Acidobacteria/aislamiento & purificación , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Datos de Secuencia Molecular , Namibia , Hibridación de Ácido Nucleico , Fosfolípidos/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Vitamina K 2/química
20.
Appl Microbiol Biotechnol ; 99(8): 3559-71, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25773973

RESUMEN

The objective of this study is to improve the viability after freeze-drying and during storage of delicate or recalcitrant strains safeguarded at biological resource centers. To achieve this objective, a joint experimental strategy was established among the different involved partner collections of the EMbaRC project ( www.embarc.eu ). Five bacterial strains considered as recalcitrant to freeze-drying were subjected to a standardized freeze-drying protocol and to seven agreed protocol variants. Viability of these strains was determined before and after freeze-drying (within 1 week, after 6 and 12 months, and after accelerated storage) for each of the protocols. Furthermore, strains were exchanged between partners to perform experiments with different freeze-dryer-dependent parameters. Of all tested variables, choice of the lyoprotectant had the biggest impact on viability after freeze-drying and during storage. For nearly all tested strains, skim milk as lyoprotectant resulted in lowest viability after freeze-drying and storage. On the other hand, best freeze-drying and storage conditions were strain and device dependent. For Aeromonas salmonicida CECT 894(T), best survival was obtained when horse serum supplemented with trehalose was used as lyoprotectant, while Aliivibrio fischeri LMG 4414(T) should be freeze-dried in skim milk supplemented with marine broth in a 1:1 ratio. Freeze-drying Campylobacter fetus CIP 53.96(T) using skim milk supplemented with trehalose as lyoprotectant resulted in best recovery. Xanthomonas fragariae DSM 3587(T) expressed high viability after freeze-drying and storage for all tested lyoprotectants and could not be considered as recalcitrant. In contrary, Flavobacterium columnare LMG 10406(T) did not survive the freeze-drying process under all tested conditions.


Asunto(s)
Fenómenos Fisiológicos Bacterianos/efectos de la radiación , Liofilización/métodos , Viabilidad Microbiana/efectos de la radiación , Preservación Biológica/métodos , Bancos de Muestras Biológicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA