Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 175(1): 239-253.e17, 2018 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-30197081

RESUMEN

Many disease-causing missense mutations affect intrinsically disordered regions (IDRs) of proteins, but the molecular mechanism of their pathogenicity is enigmatic. Here, we employ a peptide-based proteomic screen to investigate the impact of mutations in IDRs on protein-protein interactions. We find that mutations in disordered cytosolic regions of three transmembrane proteins (GLUT1, ITPR1, and CACNA1H) lead to an increased clathrin binding. All three mutations create dileucine motifs known to mediate clathrin-dependent trafficking. Follow-up experiments on GLUT1 (SLC2A1), the glucose transporter causative of GLUT1 deficiency syndrome, revealed that the mutated protein mislocalizes to intracellular compartments. Mutant GLUT1 interacts with adaptor proteins (APs) in vitro, and knocking down AP-2 reverts the cellular mislocalization and restores glucose transport. A systematic analysis of other known disease-causing variants revealed a significant and specific overrepresentation of gained dileucine motifs in structurally disordered cytosolic domains of transmembrane proteins. Thus, several mutations in disordered regions appear to cause "dileucineopathies."


Asunto(s)
Transportador de Glucosa de Tipo 1/fisiología , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/fisiología , Secuencias de Aminoácidos/genética , Secuencia de Aminoácidos , Animales , Sitios de Unión , Canales de Calcio Tipo T/genética , Canales de Calcio Tipo T/fisiología , Errores Innatos del Metabolismo de los Carbohidratos , Clatrina/metabolismo , Citoplasma/metabolismo , Transportador de Glucosa de Tipo 1/genética , Transportador de Glucosa de Tipo 1/metabolismo , Humanos , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/fisiología , Proteínas Intrínsecamente Desordenadas/metabolismo , Leucina/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas de Transporte de Monosacáridos/deficiencia , Mutación/genética , Péptidos , Unión Proteica , Proteómica/métodos
2.
J Physiol ; 602(11): 2649-2664, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38299894

RESUMEN

Evolution depends upon genetic variations that influence physiology. As defined in a genetic screen, phenotypic performance may be enhanced or degraded by such mutations. We set out to detect mutations that influence motor function, including motor learning. Thus, we tested the motor effects of 36,444 non-synonymous coding/splicing mutations induced in the germline of C57BL/6J mice with N-ethyl-N-nitrosourea by measuring changes in the performance of repetitive rotarod trials while blinded to genotype. Automated meiotic mapping was used to implicate individual mutations in causation. In total, 32,726 mice bearing all the variant alleles were screened. This was complemented with the simultaneous testing of 1408 normal mice for reference. In total, 16.3% of autosomal genes were thus rendered detectably hypomorphic or nullified by mutations in homozygosity and motor tested in at least three mice. This approach allowed us to identify superperformance mutations in Rif1, Tk1, Fan1 and Mn1. These genes are primarily related, among other less well-characterized functions, to nucleic acid biology. We also associated distinct motor learning patterns with groups of functionally related genes. These functional sets included, preferentially, histone H3 methyltransferase activity for mice that learnt at an accelerated rate relative to the remaining mutant mice. The results allow for an estimation of the fraction of mutations that can modify a behaviour influential for evolution such as locomotion. They may also enable, once the loci are further validated and the mechanisms elucidated, the harnessing of the activity of the newly identified genes to enhance motor ability or to counterbalance disability or disease. KEY POINTS: We studied the effect of chemically induced random mutations on mouse motor performance. An array of mutations influenced the rate of motor learning. DNA regulation genes predominated among these mutant loci. Several mutations in unsuspected genes led to superperformance. Assuming little-biased mutagenicity, the results allow for an estimation of the probability for any spontaneous mutation to influence a behaviour such as motor learning and ultimate performance.


Asunto(s)
Ratones Endogámicos C57BL , Mutación , Animales , Ratones , Masculino , Aprendizaje/fisiología , Genoma , Actividad Motora/fisiología , Actividad Motora/genética , Femenino
3.
J Pharmacol Exp Ther ; 384(3): 393-405, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36635085

RESUMEN

Metabolic flux augmentation via glucose transport activation may be desirable in glucose transporter 1 (Glut1) deficiency syndrome (G1D) and dementia, whereas suppression might prove useful in cancer. Using lung adenocarcinoma cells that predominantly express Glut1 relative to other glucose transporters, we screened 9,646 compounds for effects on the accumulation of an extracellularly applied fluorescent glucose analog. Five drugs currently prescribed for unrelated indications or preclinically characterized robustly enhanced intracellular fluorescence. Additionally identified were 37 novel activating and nine inhibitory compounds lacking previous biologic characterization. Because few glucose-related mechanistic or pharmacological studies were available for these compounds, we developed a method to quantify G1D mouse behavior to infer potential therapeutic value. To this end, we designed a five-track apparatus to record and evaluate spontaneous locomotion videos. We applied this to a G1D mouse model that replicates the ataxia and other manifestations cardinal to the human disorder. Because the first two drugs that we examined in this manner (baclofen and acetazolamide) exerted various impacts on several gait aspects, we used deep learning neural networks to more comprehensively assess drug effects. Using this method, 49 locomotor parameters differentiated G1D from control mice. Thus, we used parameter modifiability to quantify efficacy on gait. We tested this by measuring the effects of saline as control and glucose as G1D therapy. The results indicate that this in vivo approach can estimate preclinical suitability from the perspective of G1D locomotion. This justifies the use of this method to evaluate our drugs or other interventions and sort candidates for further investigation. SIGNIFICANCE STATEMENT: There are few or no activators and few clinical inhibitors of glucose transport. Using Glut1-rich cells exposed to a glucose analog, we identified, in highthroughput fashion, a series of novel modulators. Some were drugs used to modify unrelated processes and some represented large but little studied chemical compound families. To facilitate their preclinical efficacy characterization regardless of potential mechanism of action, we developed a gait testing platform for deep learning neural network analysis of drug impact on Glut1-deficient mouse locomotion.


Asunto(s)
Errores Innatos del Metabolismo de los Carbohidratos , Aprendizaje Profundo , Animales , Humanos , Ratones , Errores Innatos del Metabolismo de los Carbohidratos/metabolismo , Glucosa/metabolismo , Transportador de Glucosa de Tipo 1
4.
Epilepsia ; 64(9): e184-e189, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37335529

RESUMEN

Epilepsy constitutes the most common paroxysmal manifestation of glucose transporter type 1 deficiency (G1D) and is generally considered medication-refractory. It can also prove therapeutic diet-resistant. We examined acetazolamide effects in G1D motivated by several longstanding and recent observations: First, the electrographic spike-waves characteristic of absence seizures often resemble those of G1D and, since the 1950s, they have occasionally been treated successfully with acetazolamide, well before G1D was segregated from absence epilepsy as a distinct syndrome. Second, synaptic inhibitory neuron failure characterizes G1D and, in other experimental models, this can be ameliorated by drugs that modify cellular chloride gradient such as acetazolamide. Third, acetazolamide potently stimulates model cell glucose transport in vitro. Seventeen antiepileptic drug or therapeutic diet-refractory individuals with G1D treated with acetazolamide were thus identified via medical record review complemented by worldwide individual survey. Acetazolamide was tolerated and decreased seizures in 76% of them, with 58% of all persons studied experiencing seizure reductions by more than one-half, including those who first manifested myoclonic-astatic epilepsy or infantile spams. Eighty-eight percent of individuals with G1D continued taking acetazolamide for over 6 months, indicating sustained tolerability and efficacy. The results provide a novel avenue for the treatment and mechanistic investigation of G1D.


Asunto(s)
Acetazolamida , Epilepsia Tipo Ausencia , Humanos , Acetazolamida/uso terapéutico , Transportador de Glucosa de Tipo 1/genética , Anticonvulsivantes/uso terapéutico , Convulsiones/tratamiento farmacológico , Epilepsia Tipo Ausencia/tratamiento farmacológico
5.
Mol Cell ; 58(5): 845-53, 2015 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-25982116

RESUMEN

Protein kinase C has been implicated in the phosphorylation of the erythrocyte/brain glucose transporter, GLUT1, without a clear understanding of the site(s) of phosphorylation and the possible effects on glucose transport. Through in vitro kinase assays, mass spectrometry, and phosphospecific antibodies, we identify serine 226 in GLUT1 as a PKC phosphorylation site. Phosphorylation of S226 is required for the rapid increase in glucose uptake and enhanced cell surface localization of GLUT1 induced by the phorbol ester 12-O-tetradecanoyl-phorbol-13-acetate (TPA). Endogenous GLUT1 is phosphorylated on S226 in primary endothelial cells in response to TPA or VEGF. Several naturally occurring, pathogenic mutations that cause GLUT1 deficiency syndrome disrupt this PKC phosphomotif, impair the phosphorylation of S226 in vitro, and block TPA-mediated increases in glucose uptake. We demonstrate that the phosphorylation of GLUT1 on S226 regulates glucose transport and propose that this modification is important in the physiological regulation of glucose transport.


Asunto(s)
Errores Innatos del Metabolismo de los Carbohidratos/genética , Transportador de Glucosa de Tipo 1/metabolismo , Proteínas de Transporte de Monosacáridos/deficiencia , Proteína Quinasa C-alfa/fisiología , Secuencia de Aminoácidos , Animales , Transporte Biológico , Errores Innatos del Metabolismo de los Carbohidratos/enzimología , Línea Celular , Células Endoteliales/metabolismo , Eritrocitos/metabolismo , Glucosa/metabolismo , Transportador de Glucosa de Tipo 1/genética , Células HeLa , Humanos , Datos de Secuencia Molecular , Proteínas de Transporte de Monosacáridos/genética , Mutación Missense , Fosforilación , Procesamiento Proteico-Postraduccional , Ratas , Xenopus laevis
6.
J Neurophysiol ; 127(3): 623-636, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35080429

RESUMEN

Biological principles sustain the inference that synaptic function is coupled to neural metabolism, but the precise relationship between these two activities is not known. For example, it is unclear whether all synaptic transmission events are uniformly dependent on metabolic flux. Most synapses use glutamate, and the principal metabolic function of the brain is glucose oxidation, which starts with glycolysis. Thus, we asked how glutamatergic synaptic currents are modified by partial deficiency of the main glycolytic enzyme pyruvate dehydrogenase (PDH), which generates the intermediary metabolism product acetyl coenzyme A (acetyl-CoA). Using brain slices obtained from mice that were genetically modified to harbor a behaviorally relevant degree of PDH suppression, we also asked whether such impact is indeed metabolic via the bypassing of PDH with a glycolysis-independent acetyl-CoA substrate. We analyzed spontaneous synaptic currents under recording conditions that minimize artificial metabolic augmentation. Principal component analysis identified synaptic charge transfer as the major difference between a subset of wild-type and PDH-deficiency (PDHD) postsynaptic currents. This was due to reduced charge transfer as well as diminished current rise and decay times. The alternate acetyl-CoA source acetate rapidly restored these features but only for events of large amplitude as revealed by correlational and kernel density analyses. Application of tetrodotoxin to block large-amplitude events evoked by action potentials removed synaptic event charge transfer and decay-time differences between wild-type and PDHD neurons. These results suggest that glucose metabolic flux and excitatory transmission are intimately coupled for synaptic events characterized by large current amplitude.NEW & NOTEWORTHY In all tissues, metabolism and excitation are coupled but the details of this relationship remain elusive. Using a brain-targeted genetic approach in mice, reduction of pyruvate dehydrogenase, a major gateway in glucose metabolism, leads to changes that affect the synaptic event charge associated primarily with large excitatory (i.e., glutamate mediated) synaptic potentials. This can be modified in the direction of normal using the alternative fuel acetate, indicating that this phenomenon depends on rapid metabolic flux.


Asunto(s)
Ácido Glutámico , Ácido Pirúvico , Acetatos/metabolismo , Acetilcoenzima A/genética , Acetilcoenzima A/metabolismo , Animales , Glucosa , Ratones , Oxidorreductasas/metabolismo , Ácido Pirúvico/farmacología , Transmisión Sináptica/fisiología
7.
Mol Genet Metab ; 135(1): 82-92, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34972656

RESUMEN

Localization within the nervous system provides context for neurological disease manifestations and treatment, with numerous disease mechanisms exhibiting predilect locations. In contrast, the molecular function of most disease-causing genes is generally considered dissociated from such brain regional correlations because most genes are expressed throughout the brain. We tested the factual basis for this dissociation by discerning between two distinct genetic disease mechanism possibilities: One, gene-specific, in which genetic disorders are poorly localizable because they are multiform at the molecular level, with each mutant gene acting more widely or complexly than via mere loss or gain of one function. The other, more general, where aspects shared by groups of genes such as membership in a gene set that sustains a concerted biological process accounts for a common or localizable phenotype. We analyzed mitochondrial substrate disorders as a paradigm of apparently heterogeneous diseases when considered from the point of view of their manifestations and individual function of their causal genes. We used publicly available transcriptomes, disease phenotypes published in peer-reviewed journals and Human Ontology classifications for 27 mitochondrial substrate metabolism diseases and analyzed if these disorders manifest common phenotypes and if this relates to common brain regions or cells as demarcated by their transcriptome. The most frequent phenotypic manifestations and brain structures involved were almost stereotypic regardless of the individual gene affected, correlating with the regional abundance of the transcriptome that served mitochondrial substrate metabolism. This also applied to the transcriptome of inhibitory neurons, which are dysfunctional in some mitochondrial diseases. This stands in contrast with resistance to dementia atrophy from other causes, which is known to also associate with greater expression of a similar fraction of the transcriptome. The results suggest that brain region or cell type dysfunction stemming from a broad process such as mitochondrial substrate metabolism is more relevant for disease manifestations than individual gene participation in specific molecular function.


Asunto(s)
Enfermedades Mitocondriales , Transcriptoma , Encéfalo/metabolismo , Humanos , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Neuronas , Fenotipo , Transcriptoma/genética
8.
Magn Reson Med ; 78(6): 2065-2071, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28112825

RESUMEN

PURPOSE: Disorders of brain energy metabolism and neurotransmitter recycling have been implicated in multiple neurological conditions. 13 C magnetic resonance spectroscopy (13 C MRS) during intravenous administration of 13 C-labeled compounds has been used to measure turnover rates of brain metabolites. This approach, however, requires prolonged infusion inside the magnet. Proton decoupling is typically required but may be difficult to implement with standard equipment. We examined an alternative approach to monitor glucose metabolism in the human brain. METHODS: 13 C-enriched glucose was infused in healthy subjects outside the magnet to a steady-state level of 13 C enrichment. Subsequently, the subjects were scanned at 7T for 60 min without 1 H decoupling. Metabolic modeling was used to calculate anaplerosis. RESULTS: Biomarkers of energy metabolism and anaplerosis were detected. The glutamate C5 doublet provided information about glucose-derived acetyl-coenzyme A flux into the tricarboxylic acid (TCA) cycle via pyruvate dehydrogenase, and the bicarbonate signal reflected overall TCA cycle activity. The glutamate C1/C5 ratio is sensitive to anaplerosis. CONCLUSION: Brain 13 C MRS at 7T provides information about glucose oxidation and anaplerosis without the need of prolonged 13 C infusions inside the scanner and without technical challenges of 1 H decoupling, making it a feasible approach for clinical research. Magn Reson Med 78:2065-2071, 2017. © 2017 International Society for Magnetic Resonance in Medicine.


Asunto(s)
Encéfalo/diagnóstico por imagen , Isótopos de Carbono/química , Glucosa/química , Oxígeno/química , Encéfalo/metabolismo , Ciclo del Ácido Cítrico , Estudios de Factibilidad , Humanos , Procesamiento de Imagen Asistido por Computador , Cetona Oxidorreductasas/metabolismo , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Magnetismo , Masculino , Neurotransmisores , Protones
10.
Metab Brain Dis ; 32(3): 717-726, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28130615

RESUMEN

Copper is a nutritional metal required for brain development and function. Wilson's disease (WD), or hepatolenticular degeneration, is an inherited human copper metabolism disorder caused by a mutation of the ATP7B gene. Many WD patients present with variable neurological and psychiatric symptoms, which may be related to neurodegeneration secondary to copper metabolism imbalance. The objective of this study was to explore the feasibility and use of copper-64 chloride ([64C]CuCl2) as a tracer for noninvasive assessment of age-dependent changes of cerebral copper metabolism in WD using an Atp7b -/- knockout mouse model of WD and positron emission tomography/computed tomography (PET/CT) imaging. Continuing from our recent study of biodistribution and radiation dosimetry of [64C]CuCl2 in Atp7b -/- knockout mice, PET quantitative analysis revealed low 64Cu radioactivity in the brains of Atp7b -/- knockout mice at 7th weeks of age, compared with 64Cu radioactivity in the brains of age- and gender-matched wild type C57BL/6 mice, at 24 h (h) post intravenous injection of [64C]CuCl2 as a tracer. Furthermore, age-dependent increase of 64Cu radioactivity was detected in the brains of Atp7b -/- knockout mice from the 13th to 21th weeks of age, based on the data derived from a longitudinal [64C]CuCl2-PET/CT study of Atp7b -/- knockout mice with orally administered [64Cu]CuCl2 as a tracer. The findings of this study support clinical use of [64Cu]CuCl2-PET/CT imaging as a tool for noninvasive assessment of age-dependent changes of cerebral copper metabolism in WD patients presenting with variable neurological and psychiatric symptoms.


Asunto(s)
Encéfalo/metabolismo , Radioisótopos de Cobre/metabolismo , ATPasas Transportadoras de Cobre/deficiencia , Cobre/metabolismo , Degeneración Hepatolenticular/metabolismo , Tomografía Computarizada por Tomografía de Emisión de Positrones , Animales , Encéfalo/diagnóstico por imagen , Modelos Animales de Enfermedad , Femenino , Degeneración Hepatolenticular/diagnóstico por imagen , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos
11.
Genet Med ; 18(11): 1143-1150, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-26986877

RESUMEN

PURPOSE: Bosch-Boonstra-Schaaf optic atrophy syndrome (BBSOAS) is an autosomal-dominant disorder characterized by optic atrophy and intellectual disability caused by loss-of-function mutations in NR2F1. We report 20 new individuals with BBSOAS, exploring the spectrum of clinical phenotypes and assessing potential genotype-phenotype correlations. METHODS: Clinical features of individuals with pathogenic NR2F1 variants were evaluated by review of medical records. The functional relevance of coding nonsynonymous NR2F1 variants was assessed with a luciferase assay measuring the impact on transcriptional activity. The effects of two start codon variants on protein expression were evaluated by western blot analysis. RESULTS: We recruited 20 individuals with novel pathogenic NR2F1 variants (seven missense variants, five translation initiation variants, two frameshifting insertions/deletions, one nonframeshifting insertion/deletion, and five whole-gene deletions). All the missense variants were found to impair transcriptional activity. In addition to visual and cognitive deficits, individuals with BBSOAS manifested hypotonia (75%), seizures (40%), autism spectrum disorder (35%), oromotor dysfunction (60%), thinning of the corpus callosum (53%), and hearing defects (20%). CONCLUSION: BBSOAS encompasses a broad range of clinical phenotypes. Functional studies help determine the severity of novel NR2F1 variants. Some genotype-phenotype correlations seem to exist, with missense mutations in the DNA-binding domain causing the most severe phenotypes.Genet Med 18 11, 1143-1150.


Asunto(s)
Trastorno del Espectro Autista/genética , Factor de Transcripción COUP I/genética , Estudios de Asociación Genética , Atrofia Óptica/genética , Adolescente , Adulto , Trastorno del Espectro Autista/complicaciones , Trastorno del Espectro Autista/fisiopatología , Niño , Preescolar , Femenino , Eliminación de Gen , Humanos , Masculino , Mutación Missense , Atrofia Óptica/complicaciones , Atrofia Óptica/fisiopatología , Linaje
12.
Hum Brain Mapp ; 36(2): 707-16, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25324201

RESUMEN

While it is known that specific nuclei of the brain, for example hypothalamus, contain glucose-sensing neurons thus their activity is affected by blood glucose level, the effect of glucose modulation on whole-brain metabolism is not completely understood. Several recent reports have elucidated the long-term impact of caloric restriction on the brain, showing that animals under caloric restriction had enhanced rate of tricarboxylic acid cycle (TCA) cycle flux accompanied by extended life span. However, acute effect of postprandial blood glucose increase has not been addressed in detail, partly due to a scarcity and complexity of measurement techniques. In this study, using a recently developed noninvasive MR technique, we measured dynamic changes in global cerebral metabolic rate of O2 (CMRO2 ) following a 50 g glucose ingestion (N = 10). A time dependent decrease in CMRO2 was observed, which was accompanied by a reduction in oxygen extraction fraction (OEF) with unaltered cerebral blood flow (CBF). At 40 min post-ingestion, the amount of CMRO2 reduction was 7.8 ± 1.6%. A control study without glucose ingestion was performed (N = 10), which revealed no changes in CMRO2 , CBF, or OEF, suggesting that the observations in the glucose study was not due to subject drowsiness or fatigue after staying inside the scanner. These findings suggest that ingestion of glucose may alter the rate of cerebral metabolism of oxygen in an acute setting.


Asunto(s)
Encéfalo/fisiología , Circulación Cerebrovascular/fisiología , Glucosa/metabolismo , Consumo de Oxígeno , Oxígeno/metabolismo , Adulto , Encéfalo/irrigación sanguínea , Femenino , Glucosa/administración & dosificación , Humanos , Imagen por Resonancia Magnética , Masculino , Adulto Joven
13.
Mol Vis ; 20: 368-75, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24715754

RESUMEN

PURPOSE: To describe the phenotypic characteristics and clinical course of a sporadic case of congenital fibrosis of the extraocular muscles (CFEOM) and Möbius syndrome with a de novo mutation in the KIF21A gene encoding a kinesin motor protein. METHODS: An individual with the rare combination of CFEOM and Möbius syndrome underwent comprehensive ophthalmologic and neurological evaluations. Magnetic resonance imaging (MRI) including diffusion tensor imaging (DTI) tractigraphy at 3T field strength was used to evaluate orbital, encephalic, and intracranial nerve integrity. The proband and her healthy parents underwent screening for mutations in the KIF21A, PHOX2A, and TUBB3 genes. RESULTS: The patient exhibited congenital, nonprogressive, bilateral external ophthalmoplegia, bilateral ptosis, bilateral facial palsy, and developmental delay. Her inability to blink resulted in severe exposure keratopathy and subsequent corneal perforation requiring a penetrating keratoplasty. MRI revealed an unremarkable configuration of the axial central nervous system and preservation of the intracranial portion of cranial nerves I, II, III, V, VI, VII, and VIII (cranial nerve IV is not normally visualized by MRI). A novel and de novo heterozygous KIF21A mutation (c.1056C>G, p.Asp352Glu) in a highly conserved region of the gene was present in the proband. CONCLUSIONS: The reported KIF21A D352E mutation and associated phenotype further expand the clinical and mutational spectrum of CFEOM and Möbius syndrome.


Asunto(s)
Enfermedades Hereditarias del Ojo/genética , Fibrosis/genética , Cinesinas/genética , Síndrome de Mobius/genética , Mutación/genética , Trastornos de la Motilidad Ocular/genética , Secuencia de Aminoácidos , Secuencia de Bases , Niño , Secuencia Conservada , Análisis Mutacional de ADN , Enfermedades Hereditarias del Ojo/fisiopatología , Femenino , Fibrosis/fisiopatología , Fijación Ocular , Humanos , Cinesinas/química , Imagen por Resonancia Magnética , Síndrome de Mobius/fisiopatología , Datos de Secuencia Molecular , Trastornos de la Motilidad Ocular/fisiopatología
14.
Mol Genet Metab ; 110(1-2): 153-61, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23932787

RESUMEN

Mitochondrial DNA (mtDNA) depletion syndromes (MDSs) are a clinically and molecularly heterogeneous group of mitochondrial cytopathies characterized by severe mtDNA copy number reduction in affected tissues. Clinically, MDSs are mainly categorized as myopathic, encephalomyopathic, hepatocerebral, or multi-systemic forms. To date, the myopathic form of MDS is mainly caused by mutations in the TK2 gene, which encodes thymidine kinase 2, the first and rate limiting step enzyme in the phosphorylation of pyrimidine nucleosides. We analyzed 9 unrelated families with 11 affected subjects exhibiting the myopathic form of MDS, by sequencing the TK2 gene. Twelve mutations including 4 novel mutations were detected in 9 families. Skeletal muscle specimens were available from 7 out of 11 subjects. Respiratory chain enzymatic activities in skeletal muscle were measured in 6 subjects, and enzymatic activities were reduced in 3 subjects. Quantitative analysis of mtDNA content in skeletal muscle was performed in 5 subjects, and marked mtDNA content reduction was observed in each. In addition, we outline the molecular and clinical characteristics of this syndrome in a total of 52 patients including those previously reported, and a total of 36 TK2 mutations are summarized. Clinically, hypotonia and proximal muscle weakness are the major phenotypes present in all subjects. In summary, our study expands the molecular and clinical spectrum associated with TK2 deficiency.


Asunto(s)
ADN Mitocondrial/genética , Enfermedades Mitocondriales/genética , Enfermedades Musculares/genética , Mutación , Timidina Quinasa/genética , Adolescente , Adulto , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Persona de Mediana Edad , Enfermedades Mitocondriales/patología , Músculo Esquelético/enzimología , Enfermedades Musculares/patología , Linaje , Análisis de Secuencia de ADN
15.
Pediatr Neurol ; 148: 198-205, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37652816

RESUMEN

We offer a primer to the modifiability of genetic neurological disease, particularly during development. One goal is to harness several unexpected observations made in the course of experimental gene modification or therapy into an explanatory conceptual context based on biological first principles. To this end, we anchor growing, disparate reports of unusual or untoward effects to a plausible framework wherein genes exhibit different degrees of modifiability and may result, when mutated or therapeutically modified, in unsuspected consequences. We propose that genetic pathogenic variant effects and modifiability depend on the number and complexity of associated protein-protein or higher-order interactions. Thus, gene malleability may range from that characteristic of the favorably modifiable primarily structural genes that subserve relatively invariant or circumscribed phenomena such as cell shape to that typical of some transcription factors, which are less functionally predictable when altered. The latter may be expressed developmentally, in compartmentalized manner, or only intermittently and yet exert vastly ramified influences sometimes circumscribed only to select species. We also argue that genetic diseases may steer the organism toward often poorly understood biological end points and co-opt multiple processes into hardly modifiable biology. Addition or modification of genes to approximate a normal state not previously experienced by the organism may lead to further aberration due to extraneous interference with the native biology of the disease state. Therefore, an understanding as perspicuous as possible of gene function, regulation, modifiability, and biological directionality down to seemingly minute but disease-relevant consequences is a prerequisite to intervention. Although we provide some groundwork steps to such an understanding, this may occasionally prove unattainable.

16.
bioRxiv ; 2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37425744

RESUMEN

Evolution depends upon genetic variations that influence physiology. As defined in a genetic screen, phenotypic performance may be enhanced or degraded by such mutations. We set out to detect mutations that influence motor function, including motor learning. Thus, we tested the motor effects of 36,444 non-synonymous coding/splicing mutations induced in the germline of C57BL/6J mice with N-ethyl-N-nitrosourea by measuring changes in the performance of repetitive rotarod trials while blinded to genotype. Automated meiotic mapping was used to implicate individual mutations in causation. 32,726 mice bearing all the variant alleles were screened. This was complemented with the simultaneous testing of 1,408 normal mice for reference. 16.3% of autosomal genes were thus rendered detectably hypomorphic or nullified by mutations in homozygosity and motor tested in at least 3 mice. This approach allowed us to identify superperformance mutations in Rif1, Tk1, Fan1 and Mn1. These genes are primarily related, among other less well characterized functions, to nucleic acid biology. We also associated distinct motor learning patterns with groups of functionally related genes. These functional sets included preferentially histone H3 methyltransferase activity for mice that learnt at an accelerated rate relative to the rest of mutant mice. The results allow for an estimation of the fraction of mutations that can modify a behavior influential for evolution such as locomotion. They may also enable, once the loci are further validated and the mechanisms elucidated, the harnessing of the activity of the newly identified genes to enhance motor ability or to counterbalance disability or disease.

17.
Cell Rep ; 42(12): 113533, 2023 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-38048226

RESUMEN

Cerebellar dysfunction has been linked to autism spectrum disorders (ASDs). Although cerebellar pathology has been observed in individuals with fragile X syndrome (FXS) and in mouse models of the disorder, a cerebellar functional contribution to ASD-relevant behaviors in FXS has yet to be fully characterized. In this study, we demonstrate a critical cerebellar role for Fmr1 (fragile X messenger ribonucleoprotein 1) in ASD-relevant behaviors. First, we identify reduced social behaviors, sensory hypersensitivity, and cerebellar dysfunction, with loss of cerebellar Fmr1. We then demonstrate that cerebellar-specific expression of Fmr1 is sufficient to impact social, sensory, cerebellar dysfunction, and cerebro-cortical hyperexcitability phenotypes observed in global Fmr1 mutants. Moreover, we demonstrate that targeting the ASD-implicated cerebellar region Crus1 ameliorates behaviors in both cerebellar-specific and global Fmr1 mutants. Together, these results demonstrate a critical role for the cerebellar contribution to FXS-related behaviors, with implications for future therapeutic strategies.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Enfermedades Cerebelosas , Síndrome del Cromosoma X Frágil , Animales , Ratones , Síndrome del Cromosoma X Frágil/metabolismo , Trastorno Autístico/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Modelos Animales de Enfermedad , Ratones Noqueados
18.
Sci Rep ; 13(1): 3465, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36859467

RESUMEN

Augmentation of anaplerosis, or replenishment of carbon lost during intermediary metabolic transitions, is desirable in energy metabolism defects. Triheptanoin, the triglyceride of 7-carbon heptanoic acid, is anaplerotic via direct oxidation or 5-carbon ketone body generation. In this context, triheptanoin can be used to treat Glucose transporter type 1 deficiency encephalopathy (G1D). An oral triheptanoin dose of 1 g/Kg/day supplies near 35% of the total caloric intake and impacted epilepsy and cognition in G1D. This provided the motivation to establish a maximum, potentially greater dose. Using a 3 + 3 dose-finding approach useful in oncology, we studied three age groups: 4-6, 6.8-10 and 11-16 years old. This allowed us to arrive at a maximum tolerated dose of 45% of daily caloric intake for each group. Safety was ascertained via analytical blood measures. One dose-limiting toxicity, occurring in 1 of 6 subjects, was encountered in the middle age group in the context of frequently reduced gastrointestinal tolerance for all groups. Ketonemia following triheptanoin was determined in another group of G1D subjects. In them, ß-ketopentanoate and ß-hydroxypentanoate concentrations were robustly but variably increased. These results enable the rigorous clinical investigation of triheptanoin in G1D by providing dosing and initial tolerability, safety and ketonemic potential.ClinicalTrials.gov registration: NCT03041363, first registration 02/02/2017.


Asunto(s)
Cetosis , Persona de Mediana Edad , Humanos , Preescolar , Transportador de Glucosa de Tipo 1 , Carbono , Triglicéridos
19.
bioRxiv ; 2023 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-37645928

RESUMEN

Glucose represents the principal brain energy source. Thus, not unexpectedly, genetic glucose transporter 1 (Glut1) deficiency (G1D) manifests with encephalopathy. G1D seizures, which constitute a prominent disease manifestation, often prove refractory to medications but may respond to therapeutic diets. These seizures are associated with aberrant thalamocortical oscillations as inferred from human electroencephalography and functional imaging. Mouse electrophysiological recordings indicate that inhibitory neuron failure in thalamus and cortex underlies these abnormalities. This provides the motivation to develop a neural circuit testbed to characterize the mechanisms of thalamocortical synchronization and the effects of known or novel interventions. To this end, we used mouse thalamocortical slices on multielectrode arrays and characterized spontaneous low frequency oscillations and less frequent 30-50 Hz or gamma oscillations under near-physiological bath glucose concentration. Using the cortical recordings from layer IV, we quantified oscillation epochs via an automated wavelet-based algorithm. This method proved analytically superior to power spectral density, short-time Fourier transform or amplitude-threshold detection. As expected from human observations, increased bath glucose reduced the lower frequency oscillations while augmenting the gamma oscillations, likely reflecting strengthened inhibitory neuron activity. This approach provides an ex vivo method for the evaluation of mechanisms, fuels, and pharmacological agents in a crucial G1D epileptogenic circuit.

20.
J Cereb Blood Flow Metab ; 43(3): 357-368, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36523131

RESUMEN

Red blood cells circulating through the brain are briefly but closely apposed to the capillary endothelium. We hypothesized that this contact provides a nearly direct pathway for metabolic substrate transfer to neural cells that complements the better characterized plasma to endothelium transfer. While brain function is considered independent of normal fluctuations in blood glucose concentration, this is not borne out by persons with glucose transporter I (GLUT1) deficiency (G1D). In them, encephalopathy is often ameliorated by meal or carbohydrate administration, and this enabled us to test our hypothesis: Since red blood cells contain glucose, and since the red cells of G1D individuals are also deficient in GLUT1, replacing them with normal donor cells via exchange transfusion could augment erythrocyte to neural cell glucose transport via mass action in the setting of unaltered erythrocyte count or plasma glucose abundance. This motivated us to perform red blood cell exchange in 3 G1D persons. There were rapid, favorable and unprecedented changes in cognitive, electroencephalographic and quality-of-life measures. The hypothesized transfer mechanism was further substantiated by in vitro measurement of direct erythrocyte to endothelial cell glucose flux. The results also indicate that the adult intellect is capable of significant enhancement without deliberate practice. ClinicalTrials.gov registration: NCT04137692 https://clinicaltrials.gov/ct2/show/NCT04137692.


Asunto(s)
Encéfalo , Errores Innatos del Metabolismo de los Carbohidratos , Eritrocitos , Glucosa , Adulto , Humanos , Encéfalo/metabolismo , Eritrocitos/metabolismo , Glucosa/metabolismo , Transportador de Glucosa de Tipo 1/genética , Transportador de Glucosa de Tipo 1/metabolismo , Errores Innatos del Metabolismo de los Carbohidratos/metabolismo , Errores Innatos del Metabolismo de los Carbohidratos/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA