Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(3)2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36768273

RESUMEN

This work demonstrates the potential of calcium- and nickel-crosslinked Gellan Gum (GG) microspheres to capture the Six-Transmembrane Epithelial Antigen of the Prostate 1 (STEAP1) directly from complex Komagataella pastoris mini-bioreactor lysates in a batch method. Calcium-crosslinked microspheres were applied in an ionic exchange strategy, by manipulation of pH and ionic strength, whereas nickel-crosslinked microspheres were applied in an affinity strategy, mirroring a standard immobilized metal affinity chromatography. Both formulations presented small diameters, with appreciable crosslinker content, but calcium-crosslinked microspheres were far smoother. The most promising results were obtained for the ionic strategy, wherein calcium-crosslinked GG microspheres were able to completely bind 0.1% (v/v) DM solubilized STEAP1 in lysate samples (~7 mg/mL). The target protein was eluted in a complexed state at pH 11 with 500 mM NaCl in 10 mM Tris buffer, in a single step with minimal losses. Coupling the batch clarified sample with a co-immunoprecipitation polishing step yields a sample of monomeric STEAP1 with a high degree of purity. For the first time, we demonstrate the potential of a gellan batch method to function as a clarification and primary capture method towards STEAP1, a membrane protein, simplifying and reducing the costs of standard purification workflows.


Asunto(s)
Calcio , Níquel , Masculino , Humanos , Microesferas , Próstata , Polisacáridos Bacterianos/química
2.
Int J Mol Sci ; 24(7)2023 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-37047621

RESUMEN

The Six Transmembrane Epithelial Antigen of the Prostate 1 (STEAP1) protein has been indicated as an overexpressed oncoprotein in prostate cancer (PCa), associated with tumor progression and aggressiveness. Taxane-based antineoplastic drugs such as paclitaxel, docetaxel, or cabazitaxel, have been investigated in PCa treatment, namely for the development of combined therapies with the improvement of therapeutic effectiveness. This study aimed to evaluate the expression of STEAP1 in response to taxane-based drugs and assess whether the sensitivity of PCa cells to treatment with paclitaxel, docetaxel, or cabazitaxel may change when the STEAP1 gene is silenced. Thus, wild-type and STEAP1 knockdown LNCaP and C4-2B cells were exposed to paclitaxel, docetaxel or cabazitaxel, and STEAP1 expression, cell viability, and survival pathways were evaluated. The results obtained showed that STEAP1 knockdown or taxane-based drugs treatment significantly reduced the viability and survival of PCa cells. Relatively to the expression of proliferation markers and apoptosis regulators, LNCaP cells showed a reduced proliferation, whereas apoptosis was increased. However, the effect of paclitaxel, docetaxel, or cabazitaxel treatment was reversed when combined with STEAP1 knockdown. Besides, these chemotherapeutic drugs may stimulate the cell growth of PCa cells knocked down for STEAP1. In conclusion, this study demonstrated that STEAP1 expression levels might influence the response of PCa cells to chemotherapeutics drugs, indicating that the use of paclitaxel, docetaxel, or cabazitaxel may lead to harmful effects in PCa cells with decreased expression of STEAP1.


Asunto(s)
Antineoplásicos , Neoplasias de la Próstata , Masculino , Humanos , Docetaxel/farmacología , Docetaxel/uso terapéutico , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Próstata/patología , Línea Celular Tumoral , Taxoides/farmacología , Taxoides/uso terapéutico , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Antígenos de Neoplasias/uso terapéutico , Oxidorreductasas
3.
Molecules ; 28(5)2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36903275

RESUMEN

Antipsychotics have narrow therapeutic windows, and their monitoring in biological fluids is therefore important; consequently, stability in those fluids must be investigated during method development and validation. This work evaluates the stability of chlorpromazine, levomepromazine, cyamemazine, clozapine, haloperidol, and quetiapine in oral fluid (OF) samples, using the dried saliva spots (DSS) sampling approach and gas chromatography coupled to tandem mass spectrometry. Since many parameters can influence the stability of the target analytes, design of experiments was adopted to check the crucial factors that affect that stability in a multivariate fashion. The studied parameters were the presence of preservatives at different concentrations, temperature, light, and time. It was possible to observe that antipsychotic stability improved when OF samples in DSS were stored at 4 °C, with a low ascorbic acid concentration, and in the absence of light. With these conditions, chlorpromazine and quetiapine were stable for 14 days, clozapine and haloperidol were stable for 28 days, levomepromazine remained stable for 44 days, and cyamemazine was stable for the entire monitored period (146 days). This is the first study that evaluates the stability of these antipsychotics in OF samples after application to DSS cards.


Asunto(s)
Antipsicóticos , Clozapina , Fumarato de Quetiapina , Haloperidol , Clorpromazina , Metotrimeprazina/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos
4.
Int J Mol Sci ; 23(13)2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35806268

RESUMEN

Membrane-bound catechol-O-methyltransferase (MBCOMT), present in the brain and involved in the main pathway of the catechol neurotransmitter deactivation, is linked to several types of human dementia, which are relevant pharmacological targets for new potent and nontoxic inhibitors that have been developed, particularly for Parkinson's disease treatment. However, the inexistence of an MBCOMT 3D-structure presents a blockage in new drugs' design and clinical studies due to its instability. The enzyme has a clear tendency to lose its biological activity in a short period of time. To avoid the enzyme sequestering into a non-native state during the downstream processing, a multi-component buffer plays a major role, with the addition of additives such as cysteine, glycerol, and trehalose showing promising results towards minimizing hMBCOMT damage and enhancing its stability. In addition, ionic liquids, due to their virtually unlimited choices for cation/anion paring, are potential protein stabilizers for the process and storage buffers. Screening experiments were designed to evaluate the effect of distinct cation/anion ILs interaction in hMBCOMT enzymatic activity. The ionic liquids: choline glutamate [Ch][Glu], choline dihydrogen phosphate ([Ch][DHP]), choline chloride ([Ch]Cl), 1- dodecyl-3-methylimidazolium chloride ([C12mim]Cl), and 1-butyl-3-methylimidazolium chloride ([C4mim]Cl) were supplemented to hMBCOMT lysates in a concentration from 5 to 500 mM. A major potential stabilizing effect was obtained using [Ch][DHP] (10 and 50 mM). From the DoE 146% of hMBCOMT activity recovery was obtained with [Ch][DHP] optimal conditions (7.5 mM) at -80 °C during 32.4 h. These results are of crucial importance for further drug development once the enzyme can be stabilized for longer periods of time.


Asunto(s)
Catecol O-Metiltransferasa , Líquidos Iónicos , Aniones , Catecol O-Metiltransferasa/química , Colina/química , Estabilidad de Enzimas , Humanos , Líquidos Iónicos/química
5.
Int J Mol Sci ; 23(20)2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-36293152

RESUMEN

Catechol-O-methyltransferase (COMT) has been involved in a number of medical conditions including catechol-estrogen-induced cancers and a great range of cardiovascular and neurodegenerative diseases such as Parkinson's disease. Currently, Parkinson's disease treatment relies on a triple prophylaxis, involving dopamine replacement by levodopa, the use of aromatic L-amino acid decarboxylase inhibitors, and the use of COMT inhibitors. Typically, COMT is highly thermolabile, and its soluble isoform (SCOMT) loses biological activity within a short time span preventing further structural and functional trials. Herein, we characterized the thermal stability profile of lysate cells from Komagataella pastoris containing human recombinant SCOMT (hSCOMT) and enzyme-purified fractions (by Immobilized Metal Affinity Chromatography-IMAC) upon interaction with several buffers and additives by Thermal Shift Assay (TSA) and a biological activity assessment. Based on the obtained results, potential conditions able to increase the thermal stability of hSCOMT have been found through the analysis of melting temperature (Tm) variations. Moreover, the use of the ionic liquid 1-butyl-3-methylimidazolium chloride [C4mim]Cl (along with cysteine, trehalose, and glycerol) ensures complete protein solubilization as well as an increment in the protein Tm of approximately 10 °C. Thus, the developed formulation enhances hSCOMT stability with an increment in the percentage of activity recovery of 200% and 70% when the protein was stored at 4 °C and -80 °C, respectively, for 12 h. The formation of metanephrine over time confirmed that the enzyme showed twice the productivity in the presence of the additive. These outstanding achievements might pave the way for the development of future hSCOMT structural and biophysical studies, which are fundamental for the design of novel therapeutic molecules.


Asunto(s)
Carboxiliasas , Líquidos Iónicos , Enfermedad de Parkinson , Humanos , Catecol O-Metiltransferasa/genética , Catecol O-Metiltransferasa/metabolismo , Levodopa/uso terapéutico , Enfermedad de Parkinson/tratamiento farmacológico , Dopamina/uso terapéutico , Cisteína , Metanefrina , Glicerol/uso terapéutico , Trehalosa/uso terapéutico , Líquidos Iónicos/uso terapéutico , Catecoles/farmacología , Catecoles/química , Estrógenos/uso terapéutico
6.
Molecules ; 27(10)2022 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-35630663

RESUMEN

New developments in instrumental approaches, for instance, hyphenated techniques, have allowed great advances in the bioanalytical field over the last half century, and there is no doubt that toxicology was one of the most improved areas [...].


Asunto(s)
Biomarcadores
7.
Molecules ; 27(3)2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-35163906

RESUMEN

Drug abuse still represents a global problem, and it is associated with an increased risk of diseases, injuries, and deaths. Cocaine (COC) and opiates are the most abused drugs and account for a significant number of fatalities. Therefore, it is important to develop methods capable of effectively identifying and quantifying these substances. The present study aims to evaluate the long-term stability of COC, ecgonine methylester (EME), benzoylecgonine (BEG), cocaethylene (COET), norcocaine (NCOC), morphine (MOR), codeine (COD) and 6-monoacetylmorphine (6-MAM) in oral fluid samples. The analytes of interest were isolated from the matrix (50 µL) using the dried saliva spots (DSS) sampling approach and were subsequently analyzed by gas chromatography coupled with tandem mass spectrometry (GC-MS/MS). The parameters that could influence the stability of the target compounds were studied, and these were storage temperature, light, use of preservatives (and respective concentrations), and time. The effects of each parameter were evaluated using the design of experiments (DOE) approach. The stability of the target analytes was improved when the DSS were stored at room temperature, in the presence of light and using 1% sodium fluoride. The best conditions were then adopted for the DSS storage and long-term stability was assessed. COD was only stable for 1 day, EME was stable for 3 days, COC, COET, NCOC and 6-MAM were stable for 7 days, MOR for 14 days and BEG remained stable throughout the study (136 days). This is the first study that evaluates the stability of these compounds in oral fluid samples after application in DSS cards, and optimizes the conditions in order to improve their stability.


Asunto(s)
Cocaína , Alcaloides Opiáceos , Cocaína/metabolismo , Cromatografía de Gases y Espectrometría de Masas/métodos , Narcóticos/análisis , Saliva/química , Espectrometría de Masas en Tándem
8.
Molecules ; 27(17)2022 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-36080271

RESUMEN

Cannabis is the most consumed illicit drug worldwide, and its legal status is a source of concern. This study proposes a rapid procedure for the simultaneous quantification of Δ9-tetrahydrocannabinol (THC), 11-hydroxy-Δ9-tetrahydrocannabinol (11-OH-THC), 11-nor-9-carboxy-Δ9-tetrahydrocannabinol (THC-COOH), cannabidiol (CBD), and cannabinol (CBN) in urine samples. Microextraction by packed sorbent (MEPS) was used to pre-concentrate the analytes, which were detected by gas chromatography-mass spectrometry. The procedure was previously optimized, and the final conditions were: conditioning with 50 µL methanol and 50 µL of water, sample load with two draw-eject cycles, and washing with 310 µL of 0.1% formic acid in water with 5% isopropanol; the elution was made with 35 µL of 0.1% ammonium hydroxide in methanol. This fast extraction procedure allowed quantification in the ranges of 1-400 ng/mL for THC and CBD, 5-400 ng/mL for CBN and 11-OH-THC, and 10-400 ng/mL for THC-COOH with coefficients of determination higher than 0.99. The limits of quantification and detection were between 1 and 10 ng/mL using 0.25 mL of sample. The extraction efficiencies varied between 26 and 85%. This analytical method is the first allowing the for determination of cannabinoids in urine samples using MEPS, a fast, simple, and low-cost alternative to conventional techniques.


Asunto(s)
Cannabidiol , Cannabinoides , Cannabidiol/análisis , Cannabinoides/análisis , Cannabinol/análisis , Dronabinol/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Metanol/análisis , Agua
9.
Int J Mol Sci ; 22(18)2021 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-34576175

RESUMEN

BACKGROUND: The STEAP1 is a cell-surface antigen over-expressed in prostate cancer, which contributes to tumor progression and aggressiveness. However, the molecular mechanisms underlying STEAP1 and its structural determinants remain elusive. METHODS: The fraction capacity of Butyl- and Octyl-Sepharose matrices on LNCaP lysates was evaluated by manipulating the ionic strength of binding and elution phases, followed by a Co-Immunoprecipitation (Co-IP) polishing. Several potential stabilizing additives were assessed, and the melting temperature (Tm) values ranked the best/worst compounds. The secondary structure of STEAP1 was identified by circular dichroism. RESULTS: The STEAP1 was not fully captured with 1.375 M (Butyl), in contrast with interfering heterologous proteins, which were strongly retained and mostly eluted with water. This single step demonstrated higher selectivity of Butyl-Sepharose for host impurities removal from injected crude samples. Co-IP allowed recovering a purified fraction of STEAP1 and contributed to unveil potential physiologically interacting counterparts with the target. A Tm of ~55 °C was determined, confirming STEAP1 stability in the purification buffer. A predominant α-helical structure was identified, ensuring the protein's structural stability. CONCLUSIONS: A method for successfully isolating human STEAP1 from LNCaP cells was provided, avoiding the use of detergents to achieve stability, even outside a membrane-mimicking environment.


Asunto(s)
Antígenos de Neoplasias/metabolismo , Oxidorreductasas/metabolismo , Neoplasias de la Próstata/metabolismo , Antígenos de Neoplasias/genética , Dicroismo Circular , Humanos , Inmunoprecipitación , Masculino , Oxidorreductasas/genética , Neoplasias de la Próstata/genética , Estabilidad Proteica , Sefarosa/análogos & derivados , Sefarosa/química
10.
Molecules ; 26(8)2021 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-33920326

RESUMEN

Neurodegenerative diseases (ND), including Alzheimer's (AD) and Parkinson's Disease (PD), are becoming increasingly more common and are recognized as a social problem in modern societies. These disorders are characterized by a progressive neurodegeneration and are considered one of the main causes of disability and mortality worldwide. Currently, there is no existing cure for AD nor PD and the clinically used drugs aim only at symptomatic relief, and are not capable of stopping neurodegeneration. Over the last years, several drug candidates reached clinical trials phases, but they were suspended, mainly because of the unsatisfactory pharmacological benefits. Recently, the number of compounds developed using in silico approaches has been increasing at a promising rate, mainly evaluating the affinity for several macromolecular targets and applying filters to exclude compounds with potentially unfavorable pharmacokinetics. Thus, in this review, an overview of the current therapeutics in use for these two ND, the main targets in drug development, and the primary studies published in the last five years that used in silico approaches to design novel drug candidates for AD and PD treatment will be presented. In addition, future perspectives for the treatment of these ND will also be briefly discussed.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Antiparkinsonianos/uso terapéutico , Inhibidores de la Colinesterasa/uso terapéutico , Dopaminérgicos/uso terapéutico , Antagonistas de Aminoácidos Excitadores/uso terapéutico , Fármacos Neuroprotectores/uso terapéutico , Enfermedad de Parkinson/tratamiento farmacológico , Acetilcolinesterasa/genética , Acetilcolinesterasa/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Secretasas de la Proteína Precursora del Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Antiparkinsonianos/síntesis química , Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Ácido Aspártico Endopeptidasas/genética , Ácido Aspártico Endopeptidasas/metabolismo , Catecol O-Metiltransferasa/genética , Catecol O-Metiltransferasa/metabolismo , Inhibidores de la Colinesterasa/síntesis química , Ensayos Clínicos como Asunto , Simulación por Computador , Dopaminérgicos/síntesis química , Diseño de Fármacos , Antagonistas de Aminoácidos Excitadores/síntesis química , Proteínas Ligadas a GPI/antagonistas & inhibidores , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/metabolismo , Regulación de la Expresión Génica , Humanos , Fármacos Neuroprotectores/síntesis química , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Sirtuinas/antagonistas & inhibidores , Sirtuinas/genética , Sirtuinas/metabolismo
11.
Anal Bioanal Chem ; 411(20): 5115-5126, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31152220

RESUMEN

Despite technological advances, two-dimensional electrophoresis (2DE) of biological fluids, such as vitreous, remains a major challenge. In this study, artificial neural network was applied to optimize the recovery of vitreous proteins and its detection by 2DE analysis through the combination of several solubilizing agents (CHAPS, Genapol, DTT, IPG buffer), temperature, and total voltage. The highest protein recovery (94.9% ± 4.5) was achieved using 4% (w/v) CHAPS, 0.1% (v/v) Genapol, 20 mM DTT, and 2% (v/v) IPG buffer. Two iterations were required to achieve an optimized response (580 spots) using 4% (w/v) CHAPS, 0.2% (v/v) Genapol, 60 mM DTT, and 0.5% (v/v) IPG buffer at 35 kVh and 25 °C, representing a 2.4-fold improvement over the standard initial conditions of the experimental design. The analysis of depleted vitreous using the optimized protocol resulted in an additional 1.3-fold increment in protein detection over the optimal output, with an average of 761 spots detected in vitreous from different vitreoretinopathies. Our results clearly indicate the importance of combining the appropriate amount of solubilizing agents with a suitable control of the temperature and voltage to obtain high-quality gels. The high-throughput of this model provides an effective starting point for the optimization of 2DE protocols. This experimental design can be adapted to other types of matrices. Graphical abstract.


Asunto(s)
Electroforesis en Gel Bidimensional/métodos , Redes Neurales de la Computación , Proteómica/métodos , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad
12.
Growth Factors ; 36(1-2): 48-57, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29969324

RESUMEN

VEGF-A and VEGF-B are proangiogenic and key regulating factors for blood vessel growth. This study aims to compare VEGF-A and VEGF-B levels in the serum and vitreous of patients with neovascular pathology versus non-neovascular pathology. Our findings showed vitreous VEGF-A and VEGF-B levels increased in patients with neovascular disease, with higher levels of VEGF-A compared to VEGF-B (p ≤ .05). In the diabetic retinopathy (DR) group, higher vitreous VEGF-A or VEGF-B were found in proliferative diabetic retinopathy (PDR) than in non-PDR. The strong correlation between VEGF-A and VEGF-B demonstrates a simultaneous pathological increase of cytokines (p < .001), suggesting besides VEGF-A, VEGF-B is another contributor to ocular pathologies involving angiogenesis. There was no correlation between vitreous and serum VEGF-A or VEGF-B; however, a correlation between vitreous (VEGF-A or VEGF-B) and macular volume (p < .05) in DR patients was found. Targeting VEGF-A and VEGF-B in macular and retinal vascular diseases, involving neovascularization, may improve treatment outcomes.


Asunto(s)
Neovascularización Patológica/metabolismo , Enfermedades de la Retina/metabolismo , Factor A de Crecimiento Endotelial Vascular/sangre , Factor B de Crecimiento Endotelial Vascular/sangre , Cuerpo Vítreo/metabolismo , Anciano , Femenino , Humanos , Masculino , Estudios Retrospectivos
13.
J Pineal Res ; 65(4): e12528, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30260503

RESUMEN

The cerebrospinal fluid melatonin is released from the pineal gland, directly into the third ventricle, or produced de novo in the brain from extrapineal melatonin sources leading to a melatonin concentration gradient in the cerebrospinal fluid. Despite the interest on this topic, the brain areas capable of producing melatonin are not yet clear. Bearing this in mind, we hypothesized that the choroid plexus (CP) could be one of these melatonin sources. We analyzed and confirmed the presence of the four enzymes required for melatonin synthesis in rat CP and demonstrated that arylalkylamine N-acetyltransferase shows a circadian expression in female and male rat CP. Specifically, this enzyme colocalizes with mitochondria in rat CP epithelial cells, an organelle known to be involved in melatonin function and synthesis. Then, we demonstrated that melatonin is synthesized by porcine CP explants, although without a circadian pattern. In conclusion, our data show that the CP is a local source of melatonin to the central nervous system, probably contributing to its high levels in the cerebrospinal fluid. We believe that in the CP, melatonin might be regulated by its endogenous clock machinery and by the hormonal background.


Asunto(s)
Encéfalo/metabolismo , Sistema Nervioso Central/metabolismo , Plexo Coroideo/metabolismo , Melatonina/metabolismo , Animales , Líquido Cefalorraquídeo/metabolismo , Femenino , Masculino , Ratas
14.
Microb Cell Fact ; 14: 113, 2015 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-26246150

RESUMEN

BACKGROUND: Membrane proteins are important drug targets in many human diseases and gathering structural information regarding these proteins encourages the pharmaceutical industry to develop new molecules using structure-based drug design studies. Specifically, membrane-bound catechol-O-methyltransferase (MBCOMT) is an integral membrane protein that catalyzes the methylation of catechol substrates and has been linked to several diseases such as Parkinson's disease and Schizophrenia. Thereby, improvements in the clinical outcome of the therapy to these diseases may come from structure-based drug design where reaching MBCOMT samples in milligram quantities are crucial for acquiring structural information regarding this target protein. Therefore, the main aim of this work was to optimize the temperature, dimethylsulfoxide (DMSO) concentration and the methanol flow-rate for the biosynthesis of recombinant MBCOMT by Pichia pastoris bioreactor methanol-induced cultures using artificial neural networks (ANN). RESULTS: The optimization trials intended to evaluate MBCOMT expression by P. pastoris bioreactor cultures led to the development of a first standard strategy for MBCOMT bioreactor biosynthesis with a batch growth on glycerol until the dissolved oxygen spike, 3 h of glycerol feeding and 12 h of methanol induction. The ANN modeling of the aforementioned fermentation parameters predicted a maximum MBCOMT specific activity of 384.8 nmol/h/mg of protein at 30°C, 2.9 mL/L/H methanol constant flow-rate and with the addition of 6% (v/v) DMSO with almost 90% of healthy cells at the end of the induction phase. These results allowed an improvement of MBCOMT specific activity of 6.4-fold in comparison to that from the small-scale biosynthesis in baffled shake-flasks. CONCLUSIONS: The ANN model was able to describe the effects of temperature, DMSO concentration and methanol flow-rate on MBCOMT specific activity, as shown by the good fitness between predicted and observed values. This experimental procedure highlights the potential role of chemical chaperones such as DMSO in improving yields of recombinant membrane proteins with a different topology than G-coupled receptors. Finally, the proposed ANN shows that the manipulation of classic fermentation parameters coupled with the addition of specific molecules can open and reinforce new perspectives in the optimization of P. pastoris bioprocesses for membrane proteins biosynthesis.


Asunto(s)
Catecol O-Metiltransferasa/biosíntesis , Membrana Celular/enzimología , Medios de Cultivo/química , Metanol/metabolismo , Pichia/metabolismo , Reactores Biológicos/microbiología , Catecol O-Metiltransferasa/química , Catecol O-Metiltransferasa/genética , Catecoles/metabolismo , Membrana Celular/genética , Medios de Cultivo/metabolismo , Fermentación , Humanos , Redes Neurales de la Computación , Pichia/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Temperatura
15.
Electrophoresis ; 35(17): 2495-508, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24825767

RESUMEN

Proteomic analysis of human vitreous humor (VH) may elucidate the pathogenesis of retinal ocular diseases and may provide information for the development of potential therapeutic targets due to its pivotal location near lens and retina. The discovery of whole VH proteome involves a complex analysis of thousands of proteins simultaneously. Therefore, in proteomic studies the protein fractionation is important for reducing sample complexity, facilitating the access to the low-abundant proteins, and recognizing them as biotargets for clinical research. Although several separation methods have been used, gel-based proteomics are the most popular and versatile ones applied for global protein separation. However, chromatographic methods and its combination with other separation techniques are now beginning to be used as promising set-ups for VH protein identification. This review attempts to offer an overview of the techniques currently used with VH, exploring its methodological demands, exposing its advantages, and helping the reader to plan future experiences. Moreover, this review shows the relevance of VH proteomic analysis as a tool for the study of the mechanisms underlying some ocular diseases and for the development of new therapeutic approaches.


Asunto(s)
Proteínas del Ojo/análisis , Proteómica/métodos , Cuerpo Vítreo/química , Cromatografía Líquida de Alta Presión , Electroforesis en Gel Bidimensional , Humanos
16.
Molecules ; 19(8): 12461-85, 2014 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-25153865

RESUMEN

The selection of natural and chemical compounds for potential applications in new pharmaceutical formulations constitutes a time-consuming procedure in drug screening. To overcome this issue, new devices called biosensors, have already demonstrated their versatility and capacity for routine clinical diagnosis. Designed to perform analytical analysis for the detection of a particular analyte, biosensors based on the coupling of proteins to amperometric and optical devices have shown the appropriate selectivity, sensibility and accuracy. During the last years, the exponential demand for pharmacokinetic studies in the early phases of drug development, along with the need of lower molecular weight detection, have led to new biosensor structure materials with innovative immobilization strategies. The result has been the development of smaller, more reproducible biosensors with lower detection limits, and with a drastic reduction in the required sample volumes. Therefore in order to describe the main achievements in biosensor fields, the present review has the main aim of summarizing the essential strategies used to generate these specific devices, that can provide, under physiological conditions, a credible molecule profile and assess specific pharmacokinetic parameters.


Asunto(s)
Técnicas Biosensibles , Evaluación Preclínica de Medicamentos/métodos , Proteínas Inmovilizadas/química , Animales , Humanos , Límite de Detección , Nanocompuestos/química
17.
Methods Mol Biol ; 2652: 21-33, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37093468

RESUMEN

Cervical cancer has been extensively associated with human papillomavirus (HPV) due to the expression of oncoproteins such as E6. This protein can interfere with p53 tumor suppressor activity, blocking apoptosis of abnormal cells. The functional inhibition of E6 protein is a promising therapeutic strategy for HPV-induced cancers. Conducting biointeraction and characterization studies between E6 protein and potential anti-HPV drugs is necessary to obtain large quantities of high-purity and soluble E6 protein. The recombinant production of E6 protein is particularly challenging because it tends to aggregate. One way to circumvent this problem is to use a dual MBP-His6 tag that can facilitate the expression, proper folding, and solubility of the E6 protein. This chapter outlines effective methods for expressing and obtaining E6 protein with a dual affinity tag by combining different chromatographic methods.


Asunto(s)
Proteínas Oncogénicas Virales , Neoplasias del Cuello Uterino , Femenino , Humanos , Proteínas Recombinantes de Fusión/metabolismo , Escherichia coli/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Oncogénicas Virales/metabolismo
18.
Methods Mol Biol ; 2652: 35-54, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37093469

RESUMEN

Membrane proteins (MPs) play vital roles across various cellular functions, biological processes, physiological signaling pathways, and human-related disorders. Considering the clinical relevance of MPs and their application as therapeutic targets, it is crucial to explore highly effective production platforms and purification approaches to ultimately obtain a high-resolution structure of the target. Therefore, it would be possible to gather detailed knowledge on their mechanism of action which will be the basis for the rational design of novel and stronger drugs. Unfortunately, when compared to their soluble counterparts, 3D structures of MPs are really scarce (<2%), mainly due to poorly natural abundance, challenges associated with protein solubility and stability, and difficulties in producing bioactive and properly structural folded targets. These drawbacks could significantly impair the use of MPs as therapeutic targeting and demand efforts to develop tailor-made strategies for their appropriate handling. Therefore, this chapter is focused on describing a detailed and high-throughput procedure for the biosynthesis of MPs using Komagataella pastoris cell cultures as expression system in a mini-bioreactor platform. Additionally, insights on a purification strategy that combines immobilized-metal affinity and ion-exchange chromatography are described to further obtain the target protein with a significant degree of purity.


Asunto(s)
Proteínas de la Membrana , Saccharomycetales , Humanos , Proteínas de la Membrana/metabolismo , Pichia/metabolismo , Reactores Biológicos , Proteínas Recombinantes/metabolismo
19.
Pharmaceutics ; 15(3)2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36986797

RESUMEN

Quercetin is a natural flavonoid with high anticancer activity, especially for related-HPV cancers such as cervical cancer. However, quercetin exhibits a reduced aqueous solubility and stability, resulting in a low bioavailability that limits its therapeutic use. In this study, chitosan/sulfonyl-ether-ß-cyclodextrin (SBE-ß-CD)-conjugated delivery systems have been explored in order to increase quercetin loading capacity, carriage, solubility and consequently bioavailability in cervical cancer cells. SBE-ß-CD/quercetin inclusion complexes were tested as well as chitosan/SBE-ß-CD/quercetin-conjugated delivery systems, using two types of chitosan differing in molecular weight. Regarding characterization studies, HMW chitosan/SBE-ß-CD/quercetin formulations have demonstrated the best results, which are obtaining nanoparticle sizes of 272.07 ± 2.87 nm, a polydispersity index (PdI) of 0.287 ± 0.011, a zeta potential of +38.0 ± 1.34 mV and an encapsulation efficiency of approximately 99.9%. In vitro release studies were also performed for 5 kDa chitosan formulations, indicating a quercetin release of 9.6% and 57.53% at pH 7.4 and 5.8, respectively. IC50 values on HeLa cells indicated an increased cytotoxic effect with HMW chitosan/SBE-ß-CD/quercetin delivery systems (43.55 µM), suggesting a remarkable improvement of quercetin bioavailability.

20.
Biochim Biophys Acta Mol Cell Res ; 1870(7): 119522, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37315586

RESUMEN

Prostate cancer (PCa) continues to be one of the most common cancers in men worldwide. The six transmembrane epithelial antigen of the prostate 1 (STEAP1) protein is overexpressed in several types of human tumors, particularly in PCa. Our research group has demonstrated that STEAP1 overexpression is associated with PCa progression and aggressiveness. Therefore, understanding the cellular and molecular mechanisms triggered by STEAP1 overexpression will provide important insights to delineate new strategies for PCa treatment. In the present work, a proteomic strategy was used to characterize the intracellular signaling pathways and the molecular targets downstream of STEAP1 in PCa cells. A label-free approach was applied using an Orbitrap LC-MS/MS system to characterize the proteome of STEAP1-knockdown PCa cells. More than 6700 proteins were identified, of which a total of 526 proteins were found differentially expressed in scramble siRNA versus STEAP1 siRNA (234 proteins up-regulated and 292 proteins down-regulated). Bioinformatics analysis allowed us to explore the mechanism through which STEAP1 exerts influence on PCa, revealing that endocytosis, RNA transport, apoptosis, aminoacyl-tRNA biosynthesis, and metabolic pathways are the main biological processes where STEAP1 is involved. By immunoblotting, it was confirmed that STEAP1 silencing induced the up-regulation of cathepsin B, intersectin-1, and syntaxin 4, and the down-regulation of HRas, PIK3C2A, and DIS3. These findings suggested that blocking STEAP1 might be a suitable strategy to activate apoptosis and endocytosis, and diminish cellular metabolism and intercellular communication, leading to inhibition of PCa progression.


Asunto(s)
Próstata , Neoplasias de la Próstata , Masculino , Humanos , Próstata/metabolismo , Proteómica , Cromatografía Liquida , Espectrometría de Masas en Tándem , Neoplasias de la Próstata/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Antígenos de Neoplasias/metabolismo , Oxidorreductasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA