Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nature ; 563(7730): 249-253, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30401835

RESUMEN

N6-methyladenosine (m6A), the most prevalent internal RNA modification on mammalian messenger RNAs, regulates the fates and functions of modified transcripts through m6A-specific binding proteins1-5. In the nervous system, m6A is abundant and modulates various neural functions6-11. Whereas m6A marks groups of mRNAs for coordinated degradation in various physiological processes12-15, the relevance of m6A for mRNA translation in vivo remains largely unknown. Here we show that, through its binding protein YTHDF1, m6A promotes protein translation of target transcripts in response to neuronal stimuli in the adult mouse hippocampus, thereby facilitating learning and memory. Mice with genetic deletion of Ythdf1 show learning and memory defects as well as impaired hippocampal synaptic transmission and long-term potentiation. Re-expression of YTHDF1 in the hippocampus of adult Ythdf1-knockout mice rescues the behavioural and synaptic defects, whereas hippocampus-specific acute knockdown of Ythdf1 or Mettl3, which encodes the catalytic component of the m6A methyltransferase complex, recapitulates the hippocampal deficiency. Transcriptome-wide mapping of YTHDF1-binding sites and m6A sites on hippocampal mRNAs identified key neuronal genes. Nascent protein labelling and tether reporter assays in hippocampal neurons showed that YTHDF1 enhances protein synthesis in a neuronal-stimulus-dependent manner. In summary, YTHDF1 facilitates translation of m6A-methylated neuronal mRNAs in response to neuronal stimulation, and this process contributes to learning and memory.


Asunto(s)
Adenina/análogos & derivados , Hipocampo/citología , Hipocampo/fisiología , Memoria/fisiología , Neuronas/metabolismo , Proteínas de Unión al ARN/metabolismo , Adenina/metabolismo , Animales , Sitios de Unión , Femenino , Masculino , Metiltransferasas/deficiencia , Metiltransferasas/genética , Metiltransferasas/metabolismo , Ratones , Ratones Noqueados , Plasticidad Neuronal , Biosíntesis de Proteínas , ARN Mensajero/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Aprendizaje Espacial/fisiología , Transmisión Sináptica
2.
Biochem Biophys Res Commun ; 519(1): 46-52, 2019 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-31481235

RESUMEN

The human retina-specific ATP binding cassette transporter, ABCA4, plays a significant role in the visual cycle. Mutations in the ABCA4 gene result in a broad spectrum of severe, blinding, retinal degenerative diseases, including Stargardt macular dystrophy, fundus flavimaculatus, autosomal recessive (ar)-retinitis pigmentosa, and ar-cone-rod dystrophy. Genetic testing frequently yields novel variants of unknown significance, making accurate prognosis and therapeutic approaches difficult. Recently, we have reported a novel variant of ABCA4 corresponding to a four-nucleotide deletion which led to a premature stop codon and loss of the last 161 amino acids, including the highly-conserved VFVNFA motif. Despite the presence of this motif among other ABCA proteins, knowledge of the functional significance of this sequence remains limited. In this study, we have conducted structural and functional analyses of recombinant ABCA4 polypeptides with altered VFVNFA motifs to evaluate the importance of this sequence. Further investigation of ABCA4 subdomain interactions, using Fluorescence Resonance Energy Transfer, demonstrated a loss of interaction between nucleotide binding domains in the absence of the VFVNFA motif.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/metabolismo , Secuencia Conservada , Enfermedades Genéticas Congénitas/genética , Retina/metabolismo , Trastornos de la Visión/genética , Adenosina Trifosfato/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Humanos , Hidrólisis , Cinética , Especificidad de Órganos , Dominios Proteicos , Relación Estructura-Actividad
3.
Biochim Biophys Acta Gen Subj ; 1861(9): 2165-2174, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28630006

RESUMEN

DnaA protein is the initiator of genomic DNA replication in prokaryotes. It binds to specific DNA sequences in the origin of DNA replication and unwinds small AT-rich sequences downstream for the assembly of the replisome. The mechanism of activation of DnaA that enables it to bind and organize the origin DNA and leads to replication initiation remains unclear. In this study, we have developed double-labeled fluorescent DnaA probes to analyze conformational states of DnaA protein upon binding DNA, nucleotide, and Soj sporulation protein using Fluorescence Resonance Energy Transfer (FRET). Our studies demonstrate that DnaA protein undergoes large conformational changes upon binding to substrates and there are multiple distinct conformational states that enable it to initiate DNA replication. DnaA protein adopted a relaxed conformation by expanding ~15Å upon binding ATP and DNA to form the ATP·DnaA·DNA complex. Hydrolysis of bound ATP to ADP led to a contraction of DnaA within the complex. The relaxed conformation of DnaA is likely required for the formation of the multi-protein ATP·DnaA·DNA complex. In the initiation of sporulation, Soj binding to DnaA prevented relaxation of its conformation. Soj·ADP appeared to block the activation of DnaA, suggesting a mechanism for Soj·ADP in switching initiation of DNA replication to sporulation. Our studies demonstrate that multiple conformational states of DnaA protein regulate its binding to DNA in the initiation of DNA replication.


Asunto(s)
Proteínas Bacterianas/química , Replicación del ADN , Proteínas de Unión al ADN/química , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/fisiología , ADN/metabolismo , Proteínas de Unión al ADN/fisiología , Transferencia Resonante de Energía de Fluorescencia , Modelos Moleculares , Estructura Terciaria de Proteína
4.
Mol Cell Neurosci ; 68: 131-42, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26164566

RESUMEN

The floor plate (FP), a ventral midline structure of the developing neural tube, has differential neurogenic capabilities along the anterior-posterior axis. The midbrain FP, unlike the hindbrain and spinal cord floor plate, is highly neurogenic and produces midbrain dopaminergic (mDA) neurons. Canonical Wnt/beta-catenin signaling, at least in part, is thought to account for the difference in neurogenic capability. Removal of beta-catenin results in mDA progenitor specification defects as well as a profound reduction of neurogenesis. To examine the effects of excessive Wnt/beta-catenin signaling on mDA specification and neurogenesis, we have analyzed a model wherein beta-catenin is conditionally stabilized in the Shh+domain. Here, we show that the Foxa2+/Lmx1a+ domain is extended rostrally in mutant embryos, suggesting that canonical Wnt/beta-catenin signaling can drive FP expansion along the rostrocaudal axis. Although excess canonical Wnt/beta-catenin signaling generally promotes neurogenesis at midbrain levels, less tyrosine hydroxylase (Th)+, mDA neurons are generated, particularly impacting the Substantia Nigra pars compacta. This is likely because of improper progenitor specification. Excess canonical Wnt/beta-catenin signaling causes downregulation of net Lmx1b, Shh and Foxa2 levels in mDA progenitors. Moreover, these progenitors assume a mixed identity to that of Lmx1a+/Lmx1b+/Nkx6-1+/Neurog1+ progenitors. We also show by lineage tracing analysis that normally, Neurog1+ progenitors predominantly give rise to Pou4f1+ neurons, but not Th+ neurons. Accordingly, in the mutant embryos, Neurog1+ progenitors at the midline generate ectopic Pou4f1+ neurons at the expense of Th+ mDA neurons. Our study suggests that an optimal dose of Wnt/beta-catenin signaling is critical for proper establishment of the mDA progenitor character. Our findings will impact embryonic stem cell protocols that utilize Wnt pathway reagents to derive mDA neuron models and therapeutics for Parkinson's disease.


Asunto(s)
Dopamina/metabolismo , Células Madre Embrionarias/fisiología , Regulación del Desarrollo de la Expresión Génica/genética , Mesencéfalo/citología , Neurogénesis/genética , Vía de Señalización Wnt/fisiología , beta Catenina/metabolismo , Factores de Edad , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Tipificación del Cuerpo/genética , Embrión de Mamíferos , Femenino , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Masculino , Mesencéfalo/embriología , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , ARN no Traducido/genética , ARN no Traducido/metabolismo , Tirosina 3-Monooxigenasa/metabolismo , Vía de Señalización Wnt/genética , beta Catenina/genética
5.
Metabolites ; 14(6)2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38921435

RESUMEN

Chronic kidney disease (CKD) impacts 14% of adults in the United States, and African American (AA) individuals are disproportionately affected, with more than 3 times higher risk of kidney failure as compared to White individuals. This study evaluated the effects of base-producing fruit and vegetables (FVs) on cardiorenal outcomes in AA persons with CKD and hypertension (HTN) in a low socioeconomic area. The "Cardiorenal Protective Diet" prospective randomized trial evaluated the effects of a 6-week, community-based FV intervention compared to a waitlist control (WL) in 91 AA adults (age = 58.3 ± 10.1 years, 66% female, 48% income ≤ USD 25K). Biometric and metabolomic variables were collected at baseline and 6 weeks post-intervention. The change in health outcomes for both groups was statistically insignificant (p > 0.05), though small reductions in albumin to creatinine ratio, body mass index, total cholesterol, and systolic blood pressure were observed in the FV group. Metabolomic profiling identified key markers (p < 0.05), including C3, C5, 1-Met-His, kynurenine, PC ae 38:5, and choline, indicating kidney function decline in the WL group. Overall, delivering a directed cardiorenal protective diet intervention improved cardiorenal outcomes in AA adults with CKD and HTN. Additionally, metabolomic profiling may serve as a prognostic technique for the early identification of biomarkers as indicators for worsening CKD and increased CVD risk.

6.
MethodsX ; 5: 419-430, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30013941

RESUMEN

Fluorescence Resonance Energy Transfer (FRET) is a well-known methodology for detection and quantitation of structural changes of proteins in solution. FRET requires site-specific protein labeling with two fluorophores, one of which functions as an energy donor and the other one as an energy acceptor. However, the site-specific labeling of protein is often complex and difficult, particularly when inserting two fluorophores in specific sites. We have examined several protein labeling approaches with a varying degree of success. Described here is a dual labeling strategy that worked reproducibly in a number of protein targets and we believe will be applicable to a variety of proteins, which have few or no native cysteine (Cys) residues. We have successfully double-labeled DnaA protein of Bacillus anthracis, which lacks intrinsic Cys residues. A cysteine residue was inserted at the N-terminus by in vitro mutagenesis and a Cys-Cys-Phe-Gly-Cys-Cys (CCPGCC) sequence at the C-terminus by PCR. This protein was labeled site-specifically with a fluorescein derivative, FlAsH, at the CCPGCC sequence followed by Alexa568 maleimide at the N-terminus Cys residue. Structural changes of the protein with nucleotide, DNA and an inhibitor protein binding were determined by FRET analysis of the double-labeled protein. This comprehensive novel methodology for site-specific protein labeling with different fluorophores is applicable for understanding different in vitro proteomic structural studies. Here, we describe a verified technique used for FRET spectral analysis and quantitative evaluation of structural changes using fluorophore labeled DnaA protein constructs as an example.

7.
Neuron ; 99(2): 283-292.e5, 2018 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-30056831

RESUMEN

N6-methyladenosine (m6A) regulates mRNA metabolism and translation, serving as an important source of post-transcriptional regulation. To date, the functional consequences of m6A deficiency within the adult brain have not been determined. To achieve m6A deficiency, we deleted Mettl14, an essential component of the m6A methyltransferase complex, in two related yet discrete mouse neuronal populations: striatonigral and striatopallidal. Mettl14 deletion reduced striatal m6A levels without altering cell numbers or morphology. Transcriptome-wide profiling of m6A-modified mRNAs in Mettl14-deleted striatum revealed downregulation of similar striatal mRNAs encoding neuron- and synapse-specific proteins in both neuronal types, but striatonigral and striatopallidal identity genes were uniquely downregulated in each respective manipulation. Upregulated mRNA species encoded non-neuron-specific proteins. These changes increased neuronal excitability, reduced spike frequency adaptation, and profoundly impaired striatal-mediated behaviors. Using viral-mediated, neuron-specific striatal Mettl14 deletion in adult mice, we further confirmed the significance of m6A in maintaining normal striatal function in the adult mouse.


Asunto(s)
Cuerpo Estriado/fisiología , Epigénesis Genética/fisiología , Perfilación de la Expresión Génica/métodos , Aprendizaje/fisiología , Metiltransferasas/deficiencia , Animales , Femenino , Masculino , Aprendizaje por Laberinto/fisiología , Metiltransferasas/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Técnicas de Cultivo de Órganos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA