Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 297(5): 101317, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34678313

RESUMEN

Cyclic-di-adenosine monophosphate (c-di-AMP) is an important nucleotide signaling molecule that plays a key role in osmotic regulation in bacteria. c-di-AMP is produced from two molecules of ATP by proteins containing a diadenylate cyclase (DAC) domain. In Bacillus subtilis, the main c-di-AMP cyclase, CdaA, is a membrane-linked cyclase with an N-terminal transmembrane domain followed by the cytoplasmic DAC domain. As both high and low levels of c-di-AMP have a negative impact on bacterial growth, the cellular levels of this signaling nucleotide are tightly regulated. Here we investigated how the activity of the B. subtilis CdaA is regulated by the phosphoglucomutase GlmM, which has been shown to interact with the c-di-AMP cyclase. Using the soluble B. subtilis CdaACD catalytic domain and purified full-length GlmM or the GlmMF369 variant lacking the C-terminal flexible domain 4, we show that the cyclase and phosphoglucomutase form a stable complex in vitro and that GlmM is a potent cyclase inhibitor. We determined the crystal structure of the individual B. subtilis CdaACD and GlmM homodimers and of the CdaACD:GlmMF369 complex. In the complex structure, a CdaACD dimer is bound to a GlmMF369 dimer in such a manner that GlmM blocks the oligomerization of CdaACD and formation of active head-to-head cyclase oligomers, thus suggesting a mechanism by which GlmM acts as a cyclase inhibitor. As the amino acids at the CdaACD:GlmM interphase are conserved, we propose that the observed mechanism of inhibition of CdaA by GlmM may also be conserved among Firmicutes.


Asunto(s)
Bacillus subtilis/enzimología , Proteínas Bacterianas/química , Complejos Multienzimáticos/química , Fosfoglucomutasa/química , Liasas de Fósforo-Oxígeno/química , Multimerización de Proteína , Bacillus subtilis/genética , Proteínas Bacterianas/genética , Cristalografía por Rayos X , Complejos Multienzimáticos/genética , Fosfoglucomutasa/genética , Liasas de Fósforo-Oxígeno/genética , Dominios Proteicos , Estructura Cuaternaria de Proteína
2.
Proc Natl Acad Sci U S A ; 113(34): E5034-43, 2016 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-27493217

RESUMEN

The outer membrane (OM) of gram-negative bacteria is an unusual asymmetric bilayer with an external monolayer of lipopolysaccharide (LPS) and an inner layer of phospholipids. The LPS layer is rigid and stabilized by divalent cation cross-links between phosphate groups on the core oligosaccharide regions. This means that the OM is robust and highly impermeable to toxins and antibiotics. During their biogenesis, OM proteins (OMPs), which function as transporters and receptors, must integrate into this ordered monolayer while preserving its impermeability. Here we reveal the specific interactions between the trimeric porins of Enterobacteriaceae and LPS. Isolated porins form complexes with variable numbers of LPS molecules, which are stabilized by calcium ions. In earlier studies, two high-affinity sites were predicted to contain groups of positively charged side chains. Mutation of these residues led to the loss of LPS binding and, in one site, also prevented trimerization of the porin, explaining the previously observed effect of LPS mutants on porin folding. The high-resolution X-ray crystal structure of a trimeric porin-LPS complex not only helps to explain the mutagenesis results but also reveals more complex, subtle porin-LPS interactions and a bridging calcium ion.


Asunto(s)
Sustitución de Aminoácidos , Calcio/química , Escherichia coli/química , Lipopolisacáridos/química , Porinas/química , Secuencias de Aminoácidos , Sitios de Unión , Calcio/metabolismo , Cationes Bivalentes , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Lipopolisacáridos/metabolismo , Modelos Moleculares , Mutación , Porinas/genética , Porinas/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Pliegue de Proteína , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Electricidad Estática
3.
J Phys Chem B ; 123(27): 5700-5708, 2019 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-31260306

RESUMEN

Protein-lipopolysaccharide (LPS) interactions play an important role in providing a stable outer membrane to Gram-negative bacteria. However, the LPS molecules are highly viscous, and sampling LPS motions is thus challenging on a microsecond time scale in simulations. To this end, we introduce a new protocol to randomly allow the LPS molecules to self-assemble around the protein and thereby reduce the starting bias in the simulations. Here we present all-atom molecular dynamics simulations of the OmpE36 porin in an outer membrane model which sum up to a simulation time of more than 20 µs and identify the geometrical properties of the first LPS shell and the role of calcium ions in LPS binding to the protein. The simulations reproduce LPS binding to the porin observed in a recently determined crystal structure but not as compact as in the crystal structure. In addition, the influence of the outer membrane environment on the protein dynamics was analyzed. Our findings highlight the role of divalent cations in stabilizing the binding between proteins and LPS molecules in the outer membrane of Gram-negative bacteria.


Asunto(s)
Bacterias Gramnegativas/química , Lipopolisacáridos/química , Simulación de Dinámica Molecular , Porinas/química , Sitios de Unión
4.
Structure ; 26(5): 708-721.e4, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29657131

RESUMEN

The outer membranes (OM) of many Gram-negative bacteria contain general porins, which form nonspecific, large-diameter channels for the diffusional uptake of small molecules required for cell growth and function. While the porins of Enterobacteriaceae (e.g., E. coli OmpF and OmpC) have been extensively characterized structurally and biochemically, much less is known about their counterparts in Vibrionaceae. Vibrio cholerae, the causative agent of cholera, has two major porins, OmpU and OmpT, for which no structural information is available despite their importance for the bacterium. Here we report high-resolution X-ray crystal structures of V. cholerae OmpU and OmpT complemented with molecular dynamics simulations. While similar overall to other general porins, the channels of OmpU and OmpT have unusual constrictions that create narrower barriers for small-molecule permeation and change the internal electric fields of the channels. Together with electrophysiological and in vitro transport data, our results illuminate small-molecule uptake within the Vibrionaceae.


Asunto(s)
Adhesinas Bacterianas/química , Proteínas Bacterianas/química , Porinas/química , Vibrio cholerae/metabolismo , Carbapenémicos/farmacología , Cristalografía por Rayos X , Ácido Desoxicólico/farmacología , Modelos Moleculares , Simulación de Dinámica Molecular , Conformación Proteica
5.
ACS Infect Dis ; 4(10): 1519-1528, 2018 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-30039960

RESUMEN

Understanding molecular properties of outer membrane channels of Gram-negative bacteria is of fundamental significance as they are the entry point of polar antibiotics into bacteria. Outer membrane proteomics revealed OccK8 (OprE) to be among the five most expressed substrate specific channels of the clinically important Pseudomonas aeruginosa. The high-resolution X-ray structure and electrophysiology highlighted a very narrow pore. However, experimental in vitro methods showed the transport of natural amino acids and antibiotics, among them ceftazidime. We used molecular dynamics simulations to reveal the importance of the physicochemical properties of ceftazidime in modulating the translocation through OccK8, proposing a structure-function relationship. As in general porins, the internal electric field favors the translocation of polar molecules by gainful energy compensation in the central constriction region. Importantly, the comparatively narrow OccK8 pore can undergo a substrate-induced expansion to accommodate relatively large-sized substrates.


Asunto(s)
Antibacterianos/metabolismo , Proteínas Bacterianas/metabolismo , Ceftazidima/metabolismo , Bacterias Gramnegativas/metabolismo , Porinas/metabolismo , Pseudomonas aeruginosa/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/clasificación , Permeabilidad de la Membrana Celular , Cristalografía por Rayos X , Liposomas/metabolismo , Potenciales de la Membrana , Simulación de Dinámica Molecular , Porinas/química , Porinas/clasificación , Estructura Secundaria de Proteína , Transporte de Proteínas , Electricidad Estática
6.
ACS Infect Dis ; 4(10): 1487-1498, 2018 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-29962203

RESUMEN

Small, hydrophilic molecules, including most important antibiotics in clinical use, cross the Gram-negative outer membrane through the water-filled channels provided by porins. We have determined the X-ray crystal structures of the principal general porins from three species of Enterobacteriaceae, namely Enterobacter aerogenes, Enterobacter cloacae, and Klebsiella pneumoniae, and determined their antibiotic permeabilities as well as those of the orthologues from Escherichia coli. Starting from the structure of the porins and molecules, we propose a physical mechanism underlying transport and condense it in a computationally efficient scoring function. The scoring function shows good agreement with in vitro penetration data and will enable the screening of virtual databases to identify molecules with optimal permeability through porins and help to guide the optimization of antibiotics with poor permeation.


Asunto(s)
Antibacterianos/metabolismo , Enterobacteriaceae/metabolismo , Porinas/química , Porinas/metabolismo , beta-Lactamas/metabolismo , Antibacterianos/química , Cationes/metabolismo , Permeabilidad de la Membrana Celular , Cristalografía por Rayos X , Difusión Facilitada , Glicina/metabolismo , Bibliotecas Digitales , Liposomas/metabolismo , Concentración Osmolar , Multimerización de Proteína , Electricidad Estática , beta-Lactamas/química
7.
Bioinformation ; 12(2): 32-35, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28104956

RESUMEN

Molecular Pathways Brain Database (MPDB), is a novel database for molecular information of the brain pathways and is an initiative to provide an organized platform for researchers in the field of neuro-informatics. The database currently has information from 1850 molecules for three different sensory pathways namely olfactory transduction, photo transduction and long-term potentiation. The usefulness of the database is demonstrated by an analysis of the olfactory transduction pathway which helps understand their olfactory specifity and further indicates that some of the molecules have evolved independently among these organisms as per the need of time and function. The database is available for free at http://pranag.physics.iisc.ernet.in/mpdb/.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA