Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Anal Chem ; 96(26): 10765-10771, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38904303

RESUMEN

The nuclear pore complex (NPC) is a proteinaceous nanopore that solely and selectively regulates the molecular transport between the cytoplasm and nucleus of a eukaryotic cell. The ∼50 nm-diameter pore of the NPC perforates the double-membrane nuclear envelope to mediate both passive and facilitated molecular transport, thereby playing paramount biological and biomedical roles. Herein, we visualize single NPCs by scanning electrochemical microscopy (SECM). The high spatial resolution is accomplished by employing ∼25 nm-diameter ion-selective nanopipets to monitor the passive transport of tetrabutylammonium at individual NPCs. SECM images are quantitatively analyzed by employing the finite element method to confirm that this work represents the highest-resolution nanoscale SECM imaging of biological samples. Significantly, we apply the powerful imaging technique to address the long-debated origin of the central plug of the NPC. Nanoscale SECM imaging demonstrates that unplugged NPCs are more permeable to the small probe ion than are plugged NPCs. This result supports the hypothesis that the central plug is not an intrinsic transporter, but is an impermeable macromolecule, e.g., a ribonucleoprotein, trapped in the nanopore. Moreover, this result also supports the transport mechanism where the NPC is divided into the central pathway for RNA export and the peripheral pathway for protein import to efficiently mediate the bidirectional traffic.


Asunto(s)
Microscopía Electroquímica de Rastreo , Poro Nuclear , Poro Nuclear/metabolismo , Poro Nuclear/química , Compuestos de Amonio Cuaternario/química , Nanoporos
2.
Anal Bioanal Chem ; 415(18): 4289-4296, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36595035

RESUMEN

The etiology of neurodegenerative diseases is poorly understood; however, studies have shown that heavy metals, such as copper, play a critical role in neurotoxicity, thus, adversely affecting the development of these diseases. Because of the limitations associated with classical metal detection tools to obtain accurate speciation information of ultra-low concentrations of heavy metals in the brain, analysis is primarily performed in blood, urine, or postmortem tissues, limiting the translatability of acquired knowledge to living systems. Inadequate and less accurate data obtained with such techniques provide little or no information for developing efficient therapeutics that aid in slowing down the deterioration of brain cells. In this study, we developed a biocompatible, ultra-fast, low-cost, and robust surface-modified electrode with carbon fibers by electrodepositing dopamine via fast-scan cyclic voltammetry (FSCV) to detect Cu2+ in modified tris buffer. We studied the surface morphology of our newly introduced sensors using high-resolution images by atomic force microscopy under different deposition conditions. The limit of detection (LOD) of our surface-modified sensor was 0.01 µM (0.64 ppb), and the sensitivity was 11.28 nA/µM. The LOD and sensitivity are fifty and two times greater, respectively, compared to those of a bare electrode. The sensor's response is not affected by the presence of dopamine in the matrix. It also exhibited excellent stability to multiple subsequent injections and repeated measurements of Cu2+ over a month, thus showing its strength to be developed into an accurate, fast, robust electrochemical tool to monitor ultra-low concentrations of heavy metals in the brain in real time.


Asunto(s)
Cobre , Dopamina , Fibra de Carbono , Microelectrodos , Cobre/análisis , Dopamina/análisis , Galvanoplastia , Carbono , Técnicas Electroquímicas/métodos
3.
Anal Chem ; 94(20): 7149-7157, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35535749

RESUMEN

Virus detection at the point-of-care facility has become an alarming topic in the research community. The latest coronavirus pandemic has highlighted the limitations of current conventional virus detection methods. Compared to nonelectrochemical sensors, electrochemical sensors provide the ideal platform for rapid, cheap, fast, sensitive, and selective diagnosis of several viruses, particularly at point-of-care facilities. This article highlights the most promising studies reported over the past decade to detect a broad spectrum of viruses using voltammetry, amperometry, and electrochemical impedance spectroscopy.


Asunto(s)
Técnicas Biosensibles , Infecciones por Coronavirus , Virus , Técnicas Biosensibles/métodos , Infecciones por Coronavirus/diagnóstico , Técnicas Electroquímicas , Humanos , Pandemias , Sistemas de Atención de Punto
4.
Anal Chem ; 91(8): 5446-5454, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30907572

RESUMEN

The nuclear pore complex (NPC) solely mediates molecular transport between the nucleus and cytoplasm of a eukaryotic cell to play important biological and biomedical roles. However, it is not well-understood chemically how this biological nanopore selectively and efficiently transports various substances, including small molecules, proteins, and RNAs by using transport barriers that are rich in highly disordered repeats of hydrophobic phenylalanine and glycine intermingled with charged amino acids. Herein, we employ scanning electrochemical microscopy to image and measure the high permeability of NPCs to small redox molecules. The effective medium theory demonstrates that the measured permeability is controlled by diffusional translocation of probe molecules through water-filled nanopores without steric or electrostatic hindrance from hydrophobic or charged regions of transport barriers, respectively. However, the permeability of NPCs is reduced by a low millimolar concentration of Ca2+, which can interact with anionic regions of transport barriers to alter their spatial distributions within the nanopore. We employ atomic force microscopy to confirm that transport barriers of NPCs are dominantly recessed (∼80%) or entangled (∼20%) at the high Ca2+ level in contrast to authentic populations of entangled (∼50%), recessed (∼25%), and "plugged" (∼25%) conformations at a physiological Ca2+ level of submicromolar. We propose a model for synchronized Ca2+ effects on the conformation and permeability of NPCs, where transport barriers are viscosified to lower permeability. Significantly, this result supports a hypothesis that the functional structure of transport barriers is maintained not only by their hydrophobic regions, but also by charged regions.


Asunto(s)
Calcio/química , Complejos de Coordinación/química , Técnicas Electroquímicas , Poro Nuclear/química , Transporte Iónico , Conformación Molecular , Oxidación-Reducción , Tamaño de la Partícula , Propiedades de Superficie
5.
Anal Chem ; 90(20): 11746-11750, 2018 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-30251536

RESUMEN

Electrochemical measurements with unprecedentedly high sensitivity, selectivity, and kinetic resolution have been enabled by a pair of electrodes separated by a nanometer-wide gap. The fabrication of nanogap electrodes, however, requires extensive nanolithography or nanoscale electrode positioning, thereby preventing the full exploration of this powerful method in electrode design and application. Herein, we report the simple fabrication of double-carbon-fiber ultramicroelectrodes (UMEs) with nanometer-wide gaps not only to facilitate nanogap-based electrochemical measurements but also to gain high time resolution, signal-to-background ratio, and kinetic selectivity for dopamine against ascorbic acid. Specifically, ∼7 µm-diameter carbon fibers are inserted into a double-bore glass capillary, heat-pulled, and milled by focused ion-beam technology to yield ∼50 µm-long double-cylinder UMEs. The redox cycling of the Ru(NH3)63+/2+ couple across a nanogap between voltammetric generator and amperometric collector electrodes reaches quasi-steady states at fast scan rates of 100 V/s as demonstrated experimentally and even 1000 V/s as predicted theoretically. The transient background of the amperometric collector response is suppressed ∼100 times in comparison with that of the voltammetric generator response. Nanogap voltammograms based on the collector response against the cycled generator potential are quantitatively analyzed without background subtraction to reproducibly yield nanogap widths of ∼0.18 µm and a standard electron-transfer rate constant of 0.9 cm/s. Moreover, nanogap-mediated redox cycling can be initiated by dopamine oxidation at the generator electrode to largely improve the dopamine selectivity of the collector response against ascorbic acid, which is also oxidized at the generator electrode to immediately and irreversibly produce a redox-inactive species.


Asunto(s)
Fibra de Carbono/química , Técnicas Electroquímicas , Nanopartículas/química , Ácido Ascórbico/química , Dopamina/química , Microelectrodos , Microscopía Electrónica de Rastreo , Oxidación-Reducción
6.
Anal Chem ; 90(22): 13632-13639, 2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30350623

RESUMEN

Reversible and specific adsorption of redox-active molecules from the electrolyte solution to the electrode surface is an important process and is often diagnosed by cyclic voltammetry (CV). The entire voltammogram, however, is rarely analyzed quantitatively, thereby completely missing or incorrectly extracting inherent information about the adsorption isotherm. Herein, we report CV measurements of the adsorption isotherm for ferrocene derivatives on the basal plane of highly oriented pyrolytic graphite (HOPG) to quantitatively understand the thermodynamics of ferrocene-HOPG and ferrocene-ferrocene interactions at HOPG/water interfaces. Specifically, reversible CV of (ferrocenylmethyl)trimethylammonium, ferrocenemethanol, and 1,1'-ferrocenedimethanol is obtained at 0.05-10 V/s to confirm that only reduced forms of ferrocene derivatives are adsorbed on HOPG. Finite element analysis of the entire voltammogram yields the Frumkin isotherm to separately parametrize ferrocene-HOPG and ferrocene-ferrocene interactions. Adsorption of all ferrocene derivatives is driven by similarly weak ferrocene-HOPG interactions with free energy changes of approximately -20 kJ/mol. Adsorption of ferrocenemethanol is strengthened by intermolecular hydrogen bonding, which is quantitatively represented by a free energy change of -8 kJ/mol for surface saturation and is qualitatively characterized by a pair of sharp adsorption and desorption peaks following a pair of diffusional peaks. By contrast, adsorption of (ferrocenylmethyl)trimethylammonium and 1,1'-ferrocenedimethanol remains weak because of electrostatic repulsion and weak hydrogen bonding, respectively, which correspond to the respective free energy changes of +0.7 and -3 kJ/mol for surface saturation. The unfavorable or weakly favorable intermolecular interactions broaden or narrow a diffusional peak during the forward scan, respectively, without yielding a post peak.

7.
Anal Chem ; 90(20): 11917-11924, 2018 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-30152681

RESUMEN

There is great interest in rapidly monitoring metals of biological and environmental interest. Electrochemistry is traditionally a powerful tool for metal analysis but can be limited by its scope and low temporal resolution. The scope is limited by the potential window of the working electrode and rapid analysis is limited, in part, by the need for nucleation/growth for preconcentration. In prior work, we showed that a rapid equilibrium mediated preconcentration process facilitated fast scan cyclic voltammetry (FSCV) responses to Cu(II) and Pb(II) at carbon fiber microelectrodes (CFMs). In this manuscript, we apply this same principle to Ca(II), Al(III), Mg(II), and Zn(II), metal ions that are traditionally difficult to electroanalyze. We demonstrate FSCV reduction peaks for these four metals whose positions and amplitudes are dependent on scan rate. The adsorption profiles of these ions onto CFMs follow Langmuir's theory for monolayer coverage. We calculate the thermodynamic equilibrium constant of metal adsorption onto CFMs and find that these constants follow the same order as those previously reported by other groups on other activated carbon materials. Finally, a real-time complexation study is performed with ligands that have preference for divalent or multivalent ions to probe the selectivity of the real-time signal. We observe a linear relationship between formation constant ( kf) and % change in the FSCV signal and use this correlation to, for the first time, report the kf of an Al(III)-complex. This work demonstrates the versatility of FSCV as a method with capacity to extend the scope of rapid electroanalysis.

8.
J Electrochem Soc ; 165(12): G3026-G3032, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-31156270

RESUMEN

High temporal resolution of fast-scan cyclic voltammetry (FSCV) is widely appreciated in fundamental and applied electrochemistry to quantitatively investigate rapid dynamics of electron transfer and neurotransmission using ultramicroelectrodes (UMEs). Faster potential scan, however, linearly increases the background current, which must be subtracted for quantitative FSCV. Herein, we numerically simulate fast-scan nanogap voltammetry (FSNV) for quantitative detection of diffusing redox species under quasi-steady states without the need of background subtraction while maintaining high temporal resolution of transient FSCV. These advantages of FSNV originate from the use of a parallel pair of cylindrical UMEs with nanometer-wide separation in contrast to FSCV with single UMEs. In FSNV, diffusional redox cycling across the nanogap is driven voltammetrically at the generator electrode and monitored amperometrically at the collector electrode without the transient background. We reveal that the cylindrical collector electrode can reach quasi-steady states ~104 times faster than the generator electrode with identical sizes to allow for fast scan. Double-microcylinder and nanocylinder UMEs enable quasi-steady-state FSNV at hundreds volts per second as practiced for in-vivo FSCV and megavolts per second as achieved for ultra-FSCV, respectively. Rational design and simple fabrication of double-cylinder UMEs are proposed to broaden the application of nanogap voltammetry.

9.
Anal Chem ; 89(18): 9703-9711, 2017 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-28795565

RESUMEN

The mechanisms that control extracellular serotonin levels in vivo are not well-defined. This shortcoming makes it very challenging to diagnose and treat the many psychiatric disorders in which serotonin is implicated. Fast-scan cyclic voltammetry (FSCV) can measure rapid serotonin release and reuptake events but cannot report critically important ambient serotonin levels. In this Article, we use fast-scan controlled adsorption voltammetry (FSCAV), to measure serotonin's steady-state, extracellular chemistry. We characterize the "Jackson" voltammetric waveform for FSCAV and show highly stable, selective, and sensitive ambient serotonin measurements in vitro. In vivo, we report basal serotonin levels in the CA2 region of the hippocampus as 64.9 ± 2.3 nM (n = 15 mice, weighted average ± standard error). We electrochemically and pharmacologically verify the selectivity of the serotonin signal. Finally, we develop a statistical model that incorporates the uncertainty in in vivo measurements, in addition to electrode variability, to more critically analyze the time course of pharmacological data. Our novel method is a uniquely powerful analysis tool that can provide deeper insights into the mechanisms that control serotonin's extracellular levels.


Asunto(s)
Fibra de Carbono/química , Técnicas Electroquímicas , Serotonina/análisis , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Microelectrodos
10.
Anal Chem ; 88(15): 7603-8, 2016 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-27322355

RESUMEN

Aqueous metal behavior is strongly regulated by speciation, which in turn is highly dependent on complexation. Trace metal complexation is difficult to characterize in dynamically changing systems due to a lack of analytical methods that can rapidly report free-metal concentrations. In this paper, we perform proof-of-principle experiments that demonstrate the utility of fast-scan cyclic voltammetry (FSCV) for providing speciation information in real-time by characterizing dynamic Cu(II) binding. We study Cu(II) FSCV responses in 3-(N-morpholino)propanesulfonic acid (MOPS) buffer and characterize the hydrodynamic aspects of our experimental setup (continuously stirred tank reactor). We observe Cu(II) complexation in real-time using five ligands with differing formation constants of Cu(II) complexation. Finally, we utilize geochemical models to fit our real-time experimental Cu(II)-binding curves. Our proof-of-principle experiments show that FSCV is a powerful tool for studying real-time Cu(II) complexation, which is essential speciation information for better interpretation of Cu(II) behavior in dynamically changing systems, such as those encountered in biology or the environment.

11.
Analyst ; 141(21): 6025-6030, 2016 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-27517097

RESUMEN

Metal speciation controls the behavior of aqueous metal ions. Fundamental thermodynamic parameters, such as the formation constant (Kf) of metal-ligand equilibria, provide useful speciation information. Although this information can be determined by spectroscopic techniques with high accuracy, it comes at the expense of time and cost. In this work, we studied Cu2+ complexation with different ligands using an ultra-fast method, fast scan cyclic voltammetry (FSCV) at carbon-fiber microelectrodes (CFMs). We observed a correlation between the FSCV response and the previously reported Cu2+-ligand equilibrium constants. This relationship allowed us to model a predictive relationship between Kf and 16 model ligands. We hence present an essential proof of principle study that highlights FSCV's capability to prove speciation information in real time.

12.
Analyst ; 141(23): 6432-6437, 2016 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-27808288

RESUMEN

Speciation controls the chemical behavior of trace metals. Thus, there is great demand for rapid speciation analysis in a variety of fields. In this study, we describe the application of fast scan cyclic voltammetry (FSCV) and fast scan adsorption controlled voltammetry (FSCAV) to trace metal speciation analysis. We show that Cu2+ can be detected using FSCAV in different matrices. We find that matrices with different Cu2+ binding ability do not affect the equilibrium of Cu2+ adsorption onto CFMs, and thus are an excellent predictor for free Cu2+ ([Cu2+]free) in solution. We modelled a correlation between the FSCV response, [Cu2+]free and log Kf for 15 different Cu2+ complexes. Using our model, we rapidly predicted, and verified [Cu2+]free and Kf of a real groundwater sample spiked with Cu2+. We thus highlight the potential of fast voltammetry as a rapid trace metal speciation sensor.

13.
Analyst ; 139(18): 4673-80, 2014 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-25051455

RESUMEN

Rapid, in situ trace metal analysis is essential for understanding many biological and environmental processes. For example, trace metals are thought to act as chemical messengers in the brain. In the environment, some of the most damaging pollution occurs when metals are rapidly mobilized and transported during hydrologic events (storms). Electrochemistry is attractive for in situ analysis, primarily because electrodes are compact, cheap and portable. Electrochemical techniques, however, do not traditionally report trace metals in real-time. In this work, we investigated the fundamental mechanisms of a novel method, based on fast-scan cyclic voltammetry (FSCV), that reports trace metals with sub-second temporal resolution at carbon-fiber microelectrodes (CFMs). Electrochemical methods and geochemical models were employed to find that activated CFMs rapidly adsorb copper, a phenomenon that greatly advances the temporal capabilities of electrochemistry. We established the thermodynamics of surface copper adsorption and the electrochemical nature of copper deposition onto CFMs and hence identified a unique adsorption-controlled electrochemical mechanism for ultra-fast trace metal analysis. This knowledge can be exploited in the future to increase the sensitivity and selectivity of CFMs for fast voltammetry of trace metals in a variety of biological and environmental models.


Asunto(s)
Carbono/química , Cobre/análisis , Técnicas Electroquímicas/instrumentación , Adsorción , Fibra de Carbono , Cobre/aislamiento & purificación , Microelectrodos , Oxidación-Reducción
14.
Micromachines (Basel) ; 15(3)2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38542541

RESUMEN

Neurotoxic heavy metals, such as Cd2+, pose a significant global health concern due to their increased environmental contamination and subsequent detrimental health hazards they pose to human beings. These metal ions can breach the blood-brain barrierblood-brain barrier, leading to severe and often irreversible damage to the central nervous system and other vital organs. Therefore, developing a highly sensitive, robust, and rapid in vivo detection method for these hazardous heavy metal ions is of the utmost importance for early detection, thus initiating timely therapeutics. Detecting ultra-low levels of toxic metal ions in vivo and obtaining accurate speciation information remains a challenge with conventional analytical techniques. In this study, we fabricated a novel carbon carbon-fiber microelectrode (CFM)-based sensor that can detect Cd2+ ions using fast-scan cyclic voltammetry by electrodepositing gold nanoparticles (AuNP). We optimized electrochemical parameters that generate a unique cyclic voltammogram (CV) of Cd2+ at a temporal resolution of 100 ms with our novel sensor. All our experiments were performed in tris buffer that mimics the artificial cerebellum fluid. We established a calibration curve resulting in a limit of detection (LOD) of 0.01 µM with a corresponding sensitivity of 418.02 nA/ µM. The sensor's selectivity was evaluated in the presence of other metal ions, and it was noteworthy to observe that the sensor retained its ability to produce the distinctive Cd2+ CV, even when the concentration of other metal ions was 200 times higher than that of Cd2+. We also found that our sensor could detect free Cd2+ ions in the presence of complexing agents. Furthermore, we analyzed the solution chemistry of each of those Cd2+-ligand solutions using a geochemical model, PHREEQC. The concentrations of free Cd2+ ions determined through our electrochemical data align well with geochemical modeling data, thus validating the response of our novel sensor. Furthermore, we reassessed our sensor's LOD in tris buffer based on the concentration of free Cd2+ ions determined through PHREEQC analysis, revealing an LOD of 0.00132 µM. We also demonstrated the capability of our sensor to detect Cd2+ ions in artificial urine samples, showcasing its potential for application in actual biological samples. To the best of our knowledge, this is the first AuNP-modified, CFM-based Cd2+ sensor capable of detecting ultra-low concentrations of free Cd2+ ions in different complex matrices, including artificial urine at a temporal resolution of 100 ms, making it an excellent analytical tool for future real-time, in vivo detection, particularly in the brain.

15.
Micromachines (Basel) ; 15(6)2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38930703

RESUMEN

Arsenic contamination poses a significant public health risk worldwide, with chronic exposure leading to various health issues. Detecting and monitoring arsenic exposure accurately remains challenging, necessitating the development of sensitive detection methods. In this study, we introduce a novel approach using fast-scan cyclic voltammetry (FSCV) coupled with carbon-fiber microelectrodes (CFMs) for the electrochemical detection of As3+. Through an in-depth pH study using tris buffer, we optimized the electrochemical parameters for both acidic and basic media. Our sensor demonstrated high selectivity, distinguishing the As3+ signal from those of As5+ and other potential interferents under ambient conditions. We achieved a limit of detection (LOD) of 0.5 µM (37.46 ppb) and a sensitivity of 2.292 nA/µM for bare CFMs. Microscopic data confirmed the sensor's stability at lower, physiologically relevant concentrations. Additionally, using our previously reported double-bore CFMs, we simultaneously detected As3+-Cu2+ and As3+-Cd2+ in tris buffer, enhancing the LOD of As3+ to 0.2 µM (14.98 ppb). To our knowledge, this is the first study to use CFMs for the rapid and selective detection of As3+ via FSCV. Our sensor's ability to distinguish As3+ from As5+ in a physiologically relevant pH environment showcases its potential for future in vivo studies.

16.
Anal Chem ; 85(15): 7535-41, 2013 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-23799236

RESUMEN

Lead (Pb) pollution is an important environmental and public health concern. Rapid Pb transport during stormwater runoff significantly impairs surface water quality. The ability to characterize and model Pb transport during these events is critical to mitigating its impact on the environment. However, Pb analysis is limited by the lack of analytical methods that can afford rapid, sensitive measurements in situ. While electrochemical methods have previously shown promise for rapid Pb analysis, they are currently limited in two ways. First, because of Pb's limited solubility, test solutions that are representative of environmental systems are not typically employed in laboratory characterizations. Second, concerns about traditional Hg electrode toxicity, stability, and low temporal resolution have dampened opportunities for in situ analyses with traditional electrochemical methods. In this paper, we describe two novel methodological advances that bypass these limitations. Using geochemical models, we first create an environmentally relevant test solution that can be used for electrochemical method development and characterization. Second, we develop a fast-scan cyclic voltammetry (FSCV) method for Pb detection on Hg-free carbon fiber microelectrodes. We assess the method's sensitivity and stability, taking into account Pb speciation, and utilize it to characterize rapid Pb fluctuations in real environmental samples. We thus present a novel real-time electrochemical tool for Pb analysis in both model and authentic environmental solutions.


Asunto(s)
Electroquímica/métodos , Ambiente , Plomo/análisis , Plomo/química , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química , Agua/química , Factores de Tiempo
17.
RSC Adv ; 13(48): 33844-33851, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-38020012

RESUMEN

There is a great demand to broaden our understanding of the multifactorial complex etiology of neurodegenerative diseases to aid the development of more efficient therapeutics and slow down the progression of neuronal cell death. The role of co-transmission and the effect of environmental factors on such diseases have yet to be explored adequately, mainly due to the lack of a proper analytical tool that can perform simultaneous multi-analyte detection in real time with excellent analytical parameters. In this study, we report a simple fabrication protocol of a double-bore carbon-fiber microelectrode (CFM) capable of performing rapid simultaneous detection of neurotransmitters and Cu2+via fast-scan cyclic voltammetry (FSCV) in Tris buffer. After imaging our CFMs via optical microscopy and scanning electron microscopy to ensure the intact nature of the two electrodes in our electrode composite, we performed a detailed analysis of the performance characteristics of our double-bore CFM in five different analyte mixtures, Cu2+-5HT, Cu2+-DA, Cu2+-AA, 5-HT-DA, and 5-HT-AA in Tris buffer, by applying different analyte-specific FSCV waveforms simultaneously. Calibration curves for each analyte in each mixture were plotted while extracting the analytical parameters such as the limit of detection (LOD), linear range, and sensitivity. We also carried out a control experiment series for the same mixtures with single-bore CFMs by applying one waveform at a time to compare the capabilities of our double-bore CFMs. Interestingly, except for the Cu2+-DA solution, all other combinations showed improved LOD, linear ranges, and sensitivity when detecting simultaneously with double-bore CFMs compared to single-bore CFMs, an excellent finding for developing this sensor for future in vivo applications.

18.
Anal Chem ; 84(15): 6298-302, 2012 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-22856609

RESUMEN

Elevated concentrations of hazardous metals in aquatic systems are known to threaten human health. Mobility, bioavailability, and toxicity of metals are controlled by chemical speciation, a dynamic process. Understanding metal behavior is limited by the lack of analytical methods that can provide rapid, sensitive, in situ measurements. While electrochemistry shows promise, it is limited by its temporal resolution and the necessity for Hg modified electrodes. In this letter, we apply fast-scan deposition-stripping voltammetry at carbon-fiber microelectrodes for in situ measurements of Cu(II). We present a novel, Hg-free technique that can measure Cu(II) with ppb sensitivity at 100 ms temporal resolution.


Asunto(s)
Carbono/química , Cobre/análisis , Técnicas Electroquímicas , Mercurio/química , Fibra de Carbono , Iones/química , Microelectrodos
19.
Nanomaterials (Basel) ; 12(20)2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36296764

RESUMEN

Pore modulation via hydrothermal carbonization (HTC) needs investigation due to its crucial effect on surface that influences its multirole utilization of such ultraporous sorbents in applications of energy storage- hydrogen and capacitive- as well as for pollutant abatement- carbon capture and dye removal. Hence, loblolly pine was hydrothermally carbonized followed by KOH activation to synthesize superactivated hydrochars (SAH). The resulting SAHs had specific surface area (SSA) 1462-1703 m2/g, total pore (TPV) and micropore volume (MPV) of 0.62-0.78 cm3/g and 0.33-0.49 cm3/g, respectively. The SAHs exhibit excellent multifunctional performance with remarkably high atmospheric CO2 capture of 145.2 mg/g and high pressure cryogenic H2 storage of 54.9 mg/g. The fabricated supercapacitor displayed substantial specific capacitance value of maximum 47.2 Fg-1 at 1 A g-1 in 6 M KOH and highest MB dye removal of 719.4 mg/g. Higher HTC temperature resulted in increased surface porosity as higher SSA, TPV benefitted H2 storage and MB dye removal while superior MPV favored CO2 capture. Moderate HTC temperature ensured higher mesopore-to-macropore volume ratio favoring electrochemical performance. Isotherm modelling of the adsorbates was compared using models: Langmuir, Freundlich, Langmuir- Freundlich and Temkin.

20.
RSC Adv ; 12(2): 1077-1083, 2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-35425143

RESUMEN

Heavy metal contamination and its detrimental health effects are a growing concern globally. Several metal mitigation systems and regulatory approaches have been implemented to minimize the negative impacts on human health. However, none of these function at maximum efficiency, mainly due to the lack of accurate information about metal speciation. Therefore, there is a critical need to develop novel, cheap, efficient, and robust metal detecting sensors. In this study, we describe the application of a nanopipet based electrochemical sensor to detect aqueous Cd(ii) ions. The inner radius of our nanopipets is ∼300 nm, and the fundamental mechanism behind our sensor's response is ion transfer between two immiscible electrolyte solutions (ITIES). The absence of redox behavior makes ITIES an excellent, attractive electrochemical tool to study various ions in aqueous solutions. In this study, we used 1,10-phenanthroline as our ionophore in the organic phase (dichloroethane) to facilitate the transfer of Cd(ii) ions from the polar aqueous phase to the less polar organic phase. Unlike previous studies, we characterized our nanopipet in complicated matrices, including, but not limited to, tris buffer and artificial seawater. We performed quantitative assessments to determine our sensor's limit of detection, stability, sensitivity, and selectivity. We further show that our nanosensor can detect free Cd(ii) ions in the presence of strong complexing agents such as ethylenediaminetetraacetic acid, 2,3-dimercaptosuccinic acid, etc. We quantified the concentration of free Cd(ii) ions in a water sample collected from a local lagoon. Thus, we showcased the power of our nanopipets to act as a robust, accurate, and efficient speciation sensor to detect Cd(ii) ions in environmental samples.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA