Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Genetics ; 223(4)2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-36652461

RESUMEN

Transcription factors (TFs) play a key role in development and in cellular responses to the environment by activating or repressing the transcription of target genes in precise spatial and temporal patterns. In order to develop a catalog of target genes of Drosophila melanogaster TFs, the modERN consortium systematically knocked down the expression of TFs using RNAi in whole embryos followed by RNA-seq. We generated data for 45 TFs which have 18 different DNA-binding domains and are expressed in 15 of the 16 organ systems. The range of inactivation of the targeted TFs by RNAi ranged from log2fold change -3.52 to +0.49. The TFs also showed remarkable heterogeneity in the numbers of candidate target genes identified, with some generating thousands of candidates and others only tens. We present detailed analysis from five experiments, including those for three TFs that have been the focus of previous functional studies (ERR, sens, and zfh2) and two previously uncharacterized TFs (sens-2 and CG32006), as well as short vignettes for selected additional experiments to illustrate the utility of this resource. The RNA-seq datasets are available through the ENCODE DCC (http://encodeproject.org) and the Sequence Read Archive (SRA). TF and target gene expression patterns can be found here: https://insitu.fruitfly.org. These studies provide data that facilitate scientific inquiries into the functions of individual TFs in key developmental, metabolic, defensive, and homeostatic regulatory pathways, as well as provide a broader perspective on how individual TFs work together in local networks during embryogenesis.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Interferencia de ARN , Factores de Transcripción/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Proteínas de Unión al ADN/genética
2.
Science ; 370(6519)2020 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-33214251

RESUMEN

Hadzipasic et al (Reports, 21 February 2020, p. 912) used ancestral sequence reconstruction to identify historical sequence substitutions that putatively caused Aurora kinases to evolve allosteric regulation. We show that their results arise from using an implausible phylogeny and sparse sequence sampling. Addressing either problem reverses their inferences: Allostery and the amino acids that confer it were not gained during the diversification of eukaryotes but were lost in a subgroup of Fungi.


Asunto(s)
Aurora Quinasas , Regulación Alostérica , Secuencia de Aminoácidos , Aurora Quinasas/metabolismo , Filogenia
3.
Genetics ; 208(3): 937-949, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29284660

RESUMEN

To develop a catalog of regulatory sites in two major model organisms, Drosophila melanogaster and Caenorhabditis elegans, the modERN (model organism Encyclopedia of Regulatory Networks) consortium has systematically assayed the binding sites of transcription factors (TFs). Combined with data produced by our predecessor, modENCODE (Model Organism ENCyclopedia Of DNA Elements), we now have data for 262 TFs identifying 1.23 M sites in the fly genome and 217 TFs identifying 0.67 M sites in the worm genome. Because sites from different TFs are often overlapping and tightly clustered, they fall into 91,011 and 59,150 regions in the fly and worm, respectively, and these binding sites span as little as 8.7 and 5.8 Mb in the two organisms. Clusters with large numbers of sites (so-called high occupancy target, or HOT regions) predominantly associate with broadly expressed genes, whereas clusters containing sites from just a few factors are associated with genes expressed in tissue-specific patterns. All of the strains expressing GFP-tagged TFs are available at the stock centers, and the chromatin immunoprecipitation sequencing data are available through the ENCODE Data Coordinating Center and also through a simple interface (http://epic.gs.washington.edu/modERN/) that facilitates rapid accessibility of processed data sets. These data will facilitate a vast number of scientific inquiries into the function of individual TFs in key developmental, metabolic, and defense and homeostatic regulatory pathways, as well as provide a broader perspective on how individual TFs work together in local networks and globally across the life spans of these two key model organisms.


Asunto(s)
Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Bases de Datos Genéticas , Drosophila/genética , Drosophila/metabolismo , Estudio de Asociación del Genoma Completo , Factores de Transcripción/metabolismo , Animales , Sitios de Unión , Inmunoprecipitación de Cromatina , Estudio de Asociación del Genoma Completo/métodos , Modelos Biológicos , Motivos de Nucleótidos , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA