Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Phys Rev Lett ; 125(14): 145301, 2020 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-33064510

RESUMEN

Pressure- and temperature-dependent Raman scattering in GeSe, SnSe, and GeTe for pressures beyond 50 GPa and for temperatures ranging from 78 to 800 K allow us to identify structural and electronic phase transitions, similarities between GeSe and SnSe, and differences with GeTe. Calculations help to deduce the propensity of GeTe for defect formation and the doping that results from it, which gives rise to strong Raman damping beyond anomalous anharmonicity. These properties are related to the underlying chemical bonding and consistent with a recent classification of bonding in several chalcogenide materials that puts GeTe in a separate class of "incipient" metals.

2.
Phys Rev Lett ; 122(7): 075901, 2019 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-30848620

RESUMEN

Since 2014 the layered semiconductor SnSe in the high-temperature Cmcm phase is known to be the most efficient intrinsic thermoelectric material. Making use of first-principles calculations we show that its vibrational and thermal transport properties are determined by huge nonperturbative anharmonic effects. We show that the transition from the Cmcm phase to the low-symmetry Pnma is a second-order phase transition driven by the collapse of a zone border phonon, whose frequency vanishes at the transition temperature. Our calculations show that the spectral function of the in-plane vibrational modes are strongly anomalous with shoulders and double-peak structures. We calculate the lattice thermal conductivity obtaining good agreement with experiments only when nonperturbative anharmonic scattering is included. Our results suggest that the good thermoelectric efficiency of SnSe is strongly affected by the nonperturbative anharmonicity.

3.
Phys Rev Lett ; 122(14): 145701, 2019 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-31050486

RESUMEN

Pressure-induced phase transitions in GeTe, a prototype phase change material, have been studied to date with diffraction which is not sensitive to anharmonicity-induced dynamical effects. GeTe is also prone to surface oxidation which may compromise surface sensitive measurements. These factors could be responsible for the lack of clarity about the phases and transitions intervening in the phase diagram of GeTe. We have used high-pressure Raman scattering and ab initio pseudopotential density functional calculations to unambiguously establish the high-pressure phase diagram and identify three phases up to 57 GPa, a low-pressure rhombohedral phase, an intermediate pressure cubic phase, and a high-pressure orthorhombic phase. We detect substantial broadening and softening of Raman modes at low pressure and identify the transition regions and possible intermediate phases.

4.
Phys Rev Lett ; 120(7): 075901, 2018 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-29542969

RESUMEN

Bismuth is one of the rare materials in which second sound has been experimentally observed. Our exact calculations of thermal transport with the Boltzmann equation predict the occurrence of this Poiseuille phonon flow between ≈1.5 and ≈3.5 K, in a sample size of 3.86 and 9.06 mm, consistent with the experimental observations. Hydrodynamic heat flow characteristics are given for any temperature: heat wave propagation length, drift velocity, and Knudsen number. We discuss a gedanken experiment allowing us to assess the presence of a hydrodynamic regime in any bulk material.

5.
Phys Chem Chem Phys ; 19(8): 6246-6256, 2017 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-28195284

RESUMEN

A combined experimental-theoretical study on the temperature dependence of the X-ray absorption near-edge structure (XANES) and nuclear magnetic resonance (NMR) spectra of periclase (MgO), spinel (MgAl2O4), corundum (α-Al2O3), berlinite (α-AlPO4), stishovite and α-quartz (SiO2) is reported. Predictive calculations are presented when experimental data are not available. For these light-element oxides, both experimental techniques detect systematic effects related to quantum thermal vibrations which are well reproduced by density-functional theory simulations. In calculations, thermal fluctuations of the nuclei are included by considering nonequilibrium configurations according to finite-temperature quantum statistics at the quasiharmonic level. The influence of nuclear quantum fluctuations on XANES and NMR spectroscopies is particularly sensitive to the coordination number of the probed cation. Furthermore, the relative importance of nuclear dynamics and thermal expansion is quantified over a large range of temperatures.

6.
Phys Chem Chem Phys ; 17(31): 20382-90, 2015 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-26193818

RESUMEN

We report a density-functional theory (DFT)-based study of the interface of bulk water with a prototypical oxide surface, MgO(001), and focus our study on the often-overlooked surface electric field. In particular, we observe that the bare MgO(001) surface, although charge-neutral and defectless, has an intense electric field on the Å scale. The MgO(001) surface covered with 1 water monolayer (1 ML) is investigated via a supercell accounting for the experimentally-observed (2 × 3) reconstruction, stable at ambient temperature, and in which two out of six water molecules are dissociated. This 1 ML-hydrated surface is also found to have a high, albeit short-ranged, normal component of the field. Finally, the oxide/water interface is studied via room-temperature ab initio molecular dynamics (AIMD) using 34 H2O molecules between two MgO(001) surfaces. To our best knowledge this is the first AIMD study of the MgO(001)/liquid water interface in which all atoms are treated using DFT and including several layers above the first adsorbed layer. We observe that the surface electric field, averaged over the AIMD trajectories, is still very strong on the fully-wet surface, peaking at about 3 V Å(-1). Even in the presence of bulk-like water, the structure of the first layer in contact with the surface remains similar to the (2 × 3)-reconstructed ice ad-layer on MgO(001). Moreover, we observe proton exchange within the first layer, and between the first and second layers - indeed, the O-O distances close to the surface are found to be distributed towards shorter distances, a property which has been shown to directly promote proton transfer.


Asunto(s)
Electricidad , Óxido de Magnesio/química , Simulación de Dinámica Molecular , Teoría Cuántica , Agua/química , Conformación Molecular , Protones , Propiedades de Superficie , Temperatura
7.
Nano Lett ; 14(11): 6109-14, 2014 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-25343716

RESUMEN

We characterize the thermal conductivity of graphite, monolayer graphene, graphane, fluorographane, and bilayer graphene, solving exactly the Boltzmann transport equation for phonons, with phonon-phonon collision rates obtained from density functional perturbation theory. For graphite, the results are found to be in excellent agreement with experiments; notably, the thermal conductivity is 1 order of magnitude larger than what found by solving the Boltzmann equation in the single mode approximation, commonly used to describe heat transport. For graphene, we point out that a meaningful value of intrinsic thermal conductivity at room temperature can be obtained only for sample sizes of the order of 1 mm, something not considered previously. This unusual requirement is because collective phonon excitations, and not single phonons, are the main heat carriers in these materials; these excitations are characterized by mean free paths of the order of hundreds of micrometers. As a result, even Fourier's law becomes questionable in typical sample sizes, because its statistical nature makes it applicable only in the thermodynamic limit to systems larger than a few mean free paths. Finally, we discuss the effects of isotopic disorder, strain, and chemical functionalization on thermal performance. Only chemical functionalization is found to play an important role, decreasing the conductivity by a factor of 2 in hydrogenated graphene, and by 1 order of magnitude in fluorogenated graphene.

8.
J Phys Condens Matter ; 35(39)2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37279720

RESUMEN

We present a robust reciprocal-space implementation of the temperature-dependent effective potential method, our implementation can scale easily to large cell and long sampling time. It is interoperable with standardab-initiomolecular dynamics and with Langevin dynamics. We prove that both sampling methods can be efficient and accurate if a thermostat is used to control temperature and dynamics parameters are used to optimize the sampling efficiency. By way of example, we apply it to study anharmonic phonon renormalization in weakly and strongly anharmonic materials, reproducing the temperature effect on phonon frequencies, crossing of phase transition, and stabilization of high-temperature phases.

9.
J Phys Condens Matter ; 32(16): 165902, 2020 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-31658458

RESUMEN

Wannier90 is an open-source computer program for calculating maximally-localised Wannier functions (MLWFs) from a set of Bloch states. It is interfaced to many widely used electronic-structure codes thanks to its independence from the basis sets representing these Bloch states. In the past few years the development of Wannier90 has transitioned to a community-driven model; this has resulted in a number of new developments that have been recently released in Wannier90 v3.0. In this article we describe these new functionalities, that include the implementation of new features for wannierisation and disentanglement (symmetry-adapted Wannier functions, selectively-localised Wannier functions, selected columns of the density matrix) and the ability to calculate new properties (shift currents and Berry-curvature dipole, and a new interface to many-body perturbation theory); performance improvements, including parallelisation of the core code; enhancements in functionality (support for spinor-valued Wannier functions, more accurate methods to interpolate quantities in the Brillouin zone); improved usability (improved plotting routines, integration with high-throughput automation frameworks), as well as the implementation of modern software engineering practices (unit testing, continuous integration, and automatic source-code documentation). These new features, capabilities, and code development model aim to further sustain and expand the community uptake and range of applicability, that nowadays spans complex and accurate dielectric, electronic, magnetic, optical, topological and transport properties of materials.

10.
J Chem Theory Comput ; 13(7): 3340-3347, 2017 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-28621954

RESUMEN

Many properties of aqueous cations depend on their coordination state. However, the lack of long-range order and the dynamic character of aqueous solutions make it difficult to obtain information beyond average coordination parameters. A thorough understanding of the molecular-scale environment of aqueous cations usually requires a combination of experimental and theoretical approaches. In the case of Zn2+, significant discrepancies occur among theoretical investigations based on first-principles molecular dynamics (FPMD) or free-energy calculations, although experimental data consistently point to a dominant hexaaquo-zinc complex (Zn[H2O]6)2+ in pure water. In the present study, the aqueous speciation of zinc is theoretically investigated by combining FPMD simulations and free-energy calculations based on metadynamics and umbrella-sampling strategies. The simulations are carried out within the density functional theory (DFT) framework using for the exchange-correlation functional either a standard generalized gradient approximation (GGA) or a nonlocal functional (vdw-DF2) which includes van der Waals interactions. The theoretical environment of Zn is confronted to experiment by comparing calculated and measured X-ray absorption spectra. It is shown that the inclusion of van der Waals interactions is crucial for the correct modeling of zinc aqueous speciation, whereas GGA incorrectly favors tetraaquo- (Zn[H2O]4)2+ and pentaaquo-zinc (Zn[H2O]5)2+ complexes, results obtained with the vdW-DF2 functional show that the hexaaquo-zinc complex is more stable than the tetraaquo and pentaaquo-zinc complexes by 13 and by 4 kJ mol-1, respectively. These results highlight the critical importance of even subtle interactions for the correct balance of different coordination states in aqueous solutions. However, for a given coordination state, GGA leads to a reasonable description of the geometry of the aqueous complex.

11.
Science ; 351(6280): aad3000, 2016 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-27013736

RESUMEN

The widespread popularity of density functional theory has given rise to an extensive range of dedicated codes for predicting molecular and crystalline properties. However, each code implements the formalism in a different way, raising questions about the reproducibility of such predictions. We report the results of a community-wide effort that compared 15 solid-state codes, using 40 different potentials or basis set types, to assess the quality of the Perdew-Burke-Ernzerhof equations of state for 71 elemental crystals. We conclude that predictions from recent codes and pseudopotentials agree very well, with pairwise differences that are comparable to those between different high-precision experiments. Older methods, however, have less precise agreement. Our benchmark provides a framework for users and developers to document the precision of new applications and methodological improvements.

12.
Nat Commun ; 6: 6400, 2015 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-25744932

RESUMEN

The conduction of heat in two dimensions displays a wealth of fascinating phenomena of key relevance to the scientific understanding and technological applications of graphene and related materials. Here, we use density-functional perturbation theory and an exact, variational solution of the Boltzmann transport equation to study fully from first-principles phonon transport and heat conductivity in graphene, boron nitride, molybdenum disulphide and the functionalized derivatives graphane and fluorographene. In all these materials, and at variance with typical three-dimensional solids, normal processes keep dominating over Umklapp scattering well-above cryogenic conditions, extending to room temperature and more. As a result, novel regimes emerge, with Poiseuille and Ziman hydrodynamics, hitherto typically confined to ultra-low temperatures, characterizing transport at ordinary conditions. Most remarkably, several of these two-dimensional materials admit wave-like heat diffusion, with second sound present at room temperature and above in graphene, boron nitride and graphane.

13.
J Phys Condens Matter ; 21(39): 395502, 2009 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-21832390

RESUMEN

QUANTUM ESPRESSO is an integrated suite of computer codes for electronic-structure calculations and materials modeling, based on density-functional theory, plane waves, and pseudopotentials (norm-conserving, ultrasoft, and projector-augmented wave). The acronym ESPRESSO stands for opEn Source Package for Research in Electronic Structure, Simulation, and Optimization. It is freely available to researchers around the world under the terms of the GNU General Public License. QUANTUM ESPRESSO builds upon newly-restructured electronic-structure codes that have been developed and tested by some of the original authors of novel electronic-structure algorithms and applied in the last twenty years by some of the leading materials modeling groups worldwide. Innovation and efficiency are still its main focus, with special attention paid to massively parallel architectures, and a great effort being devoted to user friendliness. QUANTUM ESPRESSO is evolving towards a distribution of independent and interoperable codes in the spirit of an open-source project, where researchers active in the field of electronic-structure calculations are encouraged to participate in the project by contributing their own codes or by implementing their own ideas into existing codes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA