Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
New Phytol ; 235(5): 1995-2007, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35611584

RESUMEN

Rhizobial lipochitooligosaccharidic Nod factors (NFs), specified by nod genes, are the primary determinants of host specificity in the legume-Rhizobia symbiosis. We examined the nodulation ability of Medicago truncatula cv Jemalong A17 and M. truncatula ssp. tricycla R108 with the Sinorhizobium meliloti nodF/nodL mutant, which produces modified NFs. We then applied genetic and functional approaches to study the genetic basis and mechanism of nodulation of R108 by this mutant. We show that the nodF/nodL mutant can nodulate R108 but not A17. Using genomics and reverse genetics, we identified a newly evolved, chimeric LysM receptor-like kinase gene in R108, LYK2bis, which is responsible for the phenotype and can allow A17 to gain nodulation with the nodF/nodL mutant. We found that LYK2bis is involved in nodulation by mutants producing nonO-acetylated NFs and interacts with the key receptor protein NFP. Many, but not all, natural S. meliloti and S. medicae strains tested require LYK2bis for efficient nodulation of R108. Our findings reveal that a newly evolved gene in R108, LYK2bis, extends nodulation specificity to mutants producing nonO-acetylated NFs and is important for nodulation by many natural Sinorhizobia. Evolution of this gene may present an adaptive advantage to allow nodulation by a greater variety of strains.


Asunto(s)
Medicago truncatula , Rhizobium , Sinorhizobium meliloti , Medicago truncatula/genética , Medicago truncatula/metabolismo , Fenotipo , Sinorhizobium meliloti/genética , Simbiosis/genética
2.
Plant J ; 102(6): 1249-1265, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31958173

RESUMEN

The model legume Medicago truncatula possesses a single outward Shaker K+ channel, whereas Arabidopsis thaliana possesses two channels of this type, named AtSKOR and AtGORK, with AtSKOR having been shown to play a major role in K+ secretion into the xylem sap in the root vasculature and with AtGORK being shown to mediate the efflux of K+ across the guard cell membrane, leading to stomatal closure. Here we show that the expression pattern of the single M. truncatula outward Shaker channel, which has been named MtGORK, includes the root vasculature, guard cells and root hairs. As shown by patch-clamp experiments on root hair protoplasts, besides the Shaker-type slowly activating outwardly rectifying K+ conductance encoded by MtGORK, a second K+ -permeable conductance, displaying fast activation and weak rectification, can be expressed by M. truncatula. A knock-out (KO) mutation resulting in an absence of MtGORK activity is shown to weakly reduce K+ translocation to shoots, and only in plants engaged in rhizobial symbiosis, but to strongly affect the control of stomatal aperture and transpirational water loss. In legumes, the early electrical signaling pathway triggered by Nod-factor perception is known to comprise a short transient depolarization of the root hair plasma membrane. In the absence of the functional expression of MtGORK, the rate of the membrane repolarization is found to be decreased by a factor of approximately two. This defect was without any consequence on infection thread development and nodule production in plants grown in vitro, but a decrease in nodule production was observed in plants grown in soil.


Asunto(s)
Medicago truncatula/metabolismo , Proteínas de Plantas/metabolismo , Canales de Potasio de la Superfamilia Shaker/metabolismo , Animales , Técnicas de Inactivación de Genes , Medicago truncatula/genética , Medicago truncatula/fisiología , Oocitos , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/fisiología , Raíces de Plantas/metabolismo , Brotes de la Planta/metabolismo , Transpiración de Plantas , Potasio/metabolismo , Canales de Potasio de la Superfamilia Shaker/genética , Canales de Potasio de la Superfamilia Shaker/fisiología , Xenopus
3.
Planta ; 243(1): 251-62, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26403286

RESUMEN

MAIN CONCLUSION: Our study demonstrated that the NAPDH oxidase gene MtRbohE is expressed in arbusculated cells and plays a role in arbuscule development. Plant NADPH oxidases, known as respiratory burst oxidase homologs (RBOH), belong to a multigenic family that plays an important role in the regulation of plant development and responses to biotic and abiotic stresses. In this study, we monitored the expression profiles of five Rboh genes (MtRbohA, MtRbohB, MtRbohE, MtRbohG, MtRbohF) in the roots of the model species Medicago truncatula upon colonization by arbuscular mycorrhizal fungi. A complementary cellular and molecular approach was used to monitor changes in mRNA abundance and localize transcripts in different cell types from mycorrhizal roots. Rboh transcript levels did not drastically change in total RNA extractions from whole mycorrhizal and non-mycorrhizal roots. Nevertheless, the analysis of laser microdissected cells and Agrobacterium rhizogenes-transformed roots expressing a GUS transcriptional fusion construct highlighted the MtRbohE expression in arbuscule-containing cells. Furthermore, the down regulation of MtRbohE by an RNAi approach generated an altered colonization pattern in the root cortex, when compared to control roots, with fewer arbuscules and multiple penetration attempts. Altogether our data indicate a transient up-regulation of MtRbohE expression in cortical cells colonized by arbuscules and suggest a role for MtRbohE in arbuscule accommodation within cortical cells.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Glomeromycota/fisiología , Medicago truncatula/enzimología , Micorrizas/fisiología , NADPH Oxidasas/genética , Genes Reporteros , Glomeromycota/citología , Captura por Microdisección con Láser , Medicago truncatula/citología , Medicago truncatula/genética , Medicago truncatula/microbiología , Micorrizas/citología , NADPH Oxidasas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Simbiosis , Regulación hacia Arriba
4.
EJNMMI Phys ; 11(1): 33, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38564100

RESUMEN

BACKGROUND: Developments in transarterial radioembolization led to the conception of new microspheres loaded with holmium-166 (166Ho). However, due to the complexity of the scatter components in 166Ho single photon emission computed tomography (SPECT), questions about image quality and dosimetry are emerging. The aims of this work are to investigate the scatter components and correction methods to propose a suitable solution, and to evaluate the impact on image quality and dosimetry including Monte-Carlo (MC) simulations, phantom, and patient data. METHODS: Dual energy window (DEW) and triple energy window (TEW) methods were investigated for scatter correction purposes and compared using Contrast Recovery Coefficients (CRC) and Contrast to Noise Ratios (CNR). First, MC simulations were carried out to assess all the scatter components in the energy windows used, also to confirm the choice of the parameter needed for the DEW method. Then, MC simulations of acquisitions of a Jaszczak phantom were conducted with conditions mimicking an ideal scatter correction. These simulated projections can be reconstructed and compared with real acquisitions corrected by both methods and then reconstructed. Finally, both methods were applied on patient data and their impact on personalized dosimetry was evaluated. RESULTS: MC simulations confirmed the use of k = 1 for the DEW method. These simulations also confirmed the complexity of scatter components in the main energy window used with a high energy gamma rays component of about half of the total counts detected, together with a negligible X rays component and a negligible presence of fluorescence. CRC and CNR analyses, realized on simulated scatter-free projections of the phantom and on scatter corrected acquisitions of the same phantom, suggested an increased efficiency of the TEW method, even at the price of higher level of noise. Finally, these methods, applied on patient data, showed significant differences in terms of non-tumoral liver absorbed dose, non-tumoral liver fraction under 50 Gy, tumor absorbed dose, and tumor fraction above 150 Gy. CONCLUSIONS: This study demonstrated the impact of scatter correction on personalized dosimetry on patient data. The use of a TEW method is proposed for scatter correction in 166Ho SPECT imaging.

5.
New Phytol ; 199(1): 188-202, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23506613

RESUMEN

Arbuscular mycorrhizal (AM) symbiosis is stimulated by phosphorus (P) limitation and contributes to P and nitrogen (N) acquisition. However, the effects of combined P and N limitation on AM formation are largely unknown. Medicago truncatula plants were cultivated in the presence or absence of Rhizophagus irregularis (formerly Glomus intraradices) in P-limited (LP), N-limited (LN) or combined P- and N-limited (LPN) conditions, and compared with plants grown in sufficient P and N. The highest AM formation was observed in LPN, linked to systemic signaling by the plant nutrient status. Plant free phosphate concentrations were higher in LPN than in LP, as a result of cross-talk between P and N. Transcriptome analyses suggest that LPN induces the activation of NADPH oxidases in roots, concomitant with an altered profile of plant defense genes and a coordinate increase in the expression of genes involved in the methylerythritol phosphate and isoprenoid-derived pathways, including strigolactone synthesis genes. Taken together, these results suggest that low P and N fertilization systemically induces a physiological state of plants favorable for AM symbiosis despite their higher P status. Our findings highlight the importance of the plant nutrient status in controlling plant-fungus interaction.


Asunto(s)
Medicago truncatula/metabolismo , Medicago truncatula/microbiología , Micorrizas/fisiología , Nitrógeno/metabolismo , Fosfatos/metabolismo , Simbiosis/fisiología , Eritritol/análogos & derivados , Eritritol/genética , Eritritol/metabolismo , Regulación de la Expresión Génica de las Plantas , Glomeromycota/fisiología , Medicago truncatula/genética , Proteínas de Transporte de Fosfato/genética , Proteínas de Transporte de Fosfato/metabolismo , Fósforo/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Transducción de Señal/genética , Estrés Fisiológico , Fosfatos de Azúcar/genética , Fosfatos de Azúcar/metabolismo , Terpenos/metabolismo , Transcriptoma
6.
New Phytol ; 198(1): 179-189, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23347006

RESUMEN

Reactive oxygen species (ROS), particularly hydrogen peroxide (H(2)O(2)), play an important role in signalling in various cellular processes. The involvement of H(2)O(2) in the Medicago truncatula-Sinorhizobium meliloti symbiotic interaction raises questions about its effect on gene expression. A transcriptome analysis was performed on inoculated roots of M. truncatula in which ROS production was inhibited with diphenylene iodonium (DPI). In total, 301 genes potentially regulated by ROS content were identified 2 d after inoculation. These genes included MtSpk1, which encodes a putative protein kinase and is induced by exogenous H(2)O(2) treatment. MtSpk1 gene expression was also induced by nodulation factor treatment. MtSpk1 transcription was observed in infected root hair cells, nodule primordia and the infection zone of mature nodules. Analysis with a fluorescent protein probe specific for H(2)O(2) showed that MtSpk1 expression and H(2)O(2) were similarly distributed in the nodule infection zone. Finally, the establishment of symbiosis was impaired by MtSpk1 downregulation with an artificial micro-RNA. Several genes regulated by H(2)O(2) during the establishment of rhizobial symbiosis were identified. The involvement of MtSpk1 in the establishment of the symbiosis is proposed.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas/genética , Peróxido de Hidrógeno/farmacología , Medicago truncatula/genética , Medicago truncatula/microbiología , Sinorhizobium meliloti/fisiología , Simbiosis/genética , Lipopolisacáridos/farmacología , Medicago truncatula/efectos de los fármacos , Medicago truncatula/enzimología , MicroARNs/genética , MicroARNs/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Compuestos Onio/farmacología , Fenotipo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Reproducibilidad de los Resultados , Nódulos de las Raíces de las Plantas/citología , Nódulos de las Raíces de las Plantas/efectos de los fármacos , Nódulos de las Raíces de las Plantas/genética , Nódulos de las Raíces de las Plantas/microbiología , Sinorhizobium meliloti/efectos de los fármacos , Sinorhizobium meliloti/genética , Simbiosis/efectos de los fármacos , Transcripción Genética/efectos de los fármacos
7.
J Exp Bot ; 64(18): 5651-60, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24151304

RESUMEN

Leguminous biological nitrogen fixation (BNF) is very sensitive to environmental fluctuations. It is still contentious how BNF is regulated under stress conditions. The local or systemic control of BNF and the role played by reactive oxygen species (ROS) in such regulation have still not been elucidated completely. Cadmium, which belongs to the so-called heavy metals, is one of the most toxic substances released into the environment. The mechanisms involved in Cd toxicity are still not completely understood but the overproduction of ROS is one of its characteristic symptoms. In this work, we used a split-root system approach to study nodule BNF and the antioxidant machinery's response to the application of a mild Cd treatment on one side of a nodulated Medicago truncatula root system. Cd induced the majority of nodule antioxidants without generating any oxidative damage. Cd treatment also provoked BNF inhibition exclusively in nodules directly exposed to Cd, without provoking any effect on plant shoot biomass or chlorophyll content. The overall data suggest that the decline in BNF was not due to a generalized breakdown of the plant but to control exerted through leghaemoglobin/oxygen availability, affecting nitrogenase function.


Asunto(s)
Cadmio/toxicidad , Leghemoglobina/metabolismo , Medicago truncatula/efectos de los fármacos , Fijación del Nitrógeno/efectos de los fármacos , Nódulos de las Raíces de las Plantas/efectos de los fármacos , Antioxidantes/metabolismo , Cadmio/metabolismo , Medicago truncatula/metabolismo , Componentes Aéreos de las Plantas/efectos de los fármacos , Nódulos de las Raíces de las Plantas/metabolismo , Simbiosis/efectos de los fármacos
8.
Nanomaterials (Basel) ; 13(2)2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36678092

RESUMEN

This paper reviews a procedure that allows for extracting primary photoelectron or Auger electron emissions from homogeneous isotropic samples. It is based on a quantitative dielectric description of the energy losses of swift electrons travelling nearby surfaces in presence of stationary positive charges. The theory behind the modeling of the electron energy losses, implemented in a freely available QUEELS-XPS software package, takes into account intrinsic and extrinsic effects affecting the electron transport. The procedure allows for interpretation of shake-up and multiplet structures on a quantitative basis. We outline the basic theory behind it and illustrate its capabilities with several case examples. Thus, we report on the angular dependence of the intrinsic and extrinsic Al 2s photoelectron emission from aluminum, the shake-up structure of the Ag 3d, Cu 2p, and Ce 3d photoelectron emission from silver, CuO and CeO2, respectively, and the quantification of the two-hole final states contributing to the L3M45M45 Auger electron emission of copper. These examples illustrate the procedure, that can be applied to any homogeneous isotropic material.

9.
Plant Sci ; 332: 111696, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37019339

RESUMEN

The establishment of the Legume-Rhizobia symbiosis is generally dependent on the production of rhizobial lipochitooligosaccharidic Nod factors (NFs) and their perception by plant Lysin Motif Receptor-Like Kinases (LysM-RLKs). In this study, we characterized a cluster of LysM-RLK genes implicated in strain-specific recognition in two highly divergent and widely-studied Medicago truncatula genotypes, A17 and R108. We then used reverse genetic approaches and biochemical analyses to study the function of selected genes in the clusters and the ability of their encoded proteins to bind NFs. Our study has revealed that the LYK cluster exhibits a high degree of variability among M. truncatula genotypes, which in A17 and R108 includes recent recombination events within the cluster and a transposon insertion in A17. The essential role of LYK3 in nodulation in A17 is not conserved in R108 despite similar sequences and good nodulation expression profiles. Although, LYK2, LYK5 and LYK5bis are not essential for nodulation of the two genotypes, some evidence points to accessory roles in nodulation, but not through high-affinity NF binding. This work shows that recent evolution in the LYK cluster provides a source of variation for nodulation, and potential robustness of signaling through genetic redundancy.


Asunto(s)
Medicago truncatula , Medicago truncatula/genética , Medicago truncatula/metabolismo , Familia de Multigenes , Simbiosis/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
10.
New Phytol ; 189(2): 580-92, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21155825

RESUMEN

The plant plasma membrane-localized NADPH oxidases, known as respiratory burst oxidase homologues (RBOHs), appear to play crucial roles in plant growth and development. They are involved in important processes, such as root hair growth, plant defence reactions and abscisic acid signalling. Using sequence similarity searches, we identified seven putative RBOH-encoding genes in the Medicago truncatula genome. A phylogenetic reconstruction showed that Rboh gene duplications occurred in legume species. We analysed the expression of these MtRboh genes in different M. truncatula tissues: one of them, MtRbohA, was significantly up-regulated in Sinorhizobium meliloti-induced symbiotic nodules. MtRbohA expression appeared to be restricted to the nitrogen-fixing zone of the functional nodule. Moreover, using S. meliloti bacA and nifH mutants unable to form efficient nodules, a strong link between nodule nitrogen fixation and MtRbohA up-regulation was shown. MtRbohA expression was largely enhanced under hypoxic conditions. Specific RNA interference for MtRbohA provoked a decrease in the nodule nitrogen fixation activity and the modulation of genes encoding the microsymbiont nitrogenase. These results suggest that hypoxia, prevailing in the nodule-fixing zone, may drive the stimulation of MtRbohA expression, which would, in turn, lead to the regulation of nodule functioning.


Asunto(s)
Medicago truncatula/enzimología , NADPH Oxidasas/metabolismo , Nódulos de las Raíces de las Plantas/enzimología , Simbiosis/fisiología , Perfilación de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Medicago truncatula/citología , Medicago truncatula/genética , Medicago truncatula/microbiología , Anotación de Secuencia Molecular , NADPH Oxidasas/genética , Fijación del Nitrógeno/genética , Fenotipo , Filogenia , Transporte de Proteínas , Interferencia de ARN , Nódulos de las Raíces de las Plantas/genética , Nódulos de las Raíces de las Plantas/crecimiento & desarrollo , Nódulos de las Raíces de las Plantas/microbiología , Sinorhizobium meliloti/fisiología
11.
J Exp Bot ; 62(3): 939-48, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21071678

RESUMEN

AtNoa1/Rif1 (formerly referred to as AtNos1) has been shown to modulate nitric oxide (NO) content in Arabidopsis. As NO generation in the legume-rhizobium symbiosis has been shown, the involvement of an AtNoa1/Rif1 orthologue from Medicago truncatula (MtNoa1/Rif1) during its symbiotic interaction with Sinorhizobium meliloti has been studied. The expression of MtNoa1/Rif1 appeared to occur mainly in nodule vascular bundles and the meristematic zone. Using an RNA interference strategy, transgenic roots exhibiting a significantly decreased level of MtNoa1/Rif1 expression were analysed. NO production was assessed using a fluorescent probe, and the symbiotic capacities of the composite plants upon infection with Sinorhizobium meliloti were determined. The decrease in MtNoa1/Rif1 expression level resulted in a decrease in NO production in roots, but not in symbiotic nodules, indicating a different regulation of NO synthesis in these organs. However, it significantly lowered the nodule number and the nitrogen fixation capacity of the functional nodules. Although having no influence on NO production in nodules, MtNOA1/RIF1 significantly affected the establishment and the functioning of the symbiotic interaction. The impairment of plastid functioning may explain this phenotype.


Asunto(s)
Medicago truncatula/enzimología , Óxido Nítrico Sintasa/metabolismo , Óxido Nítrico/metabolismo , Proteínas de Plantas/metabolismo , Nódulos de las Raíces de las Plantas/crecimiento & desarrollo , Sinorhizobium meliloti/fisiología , Regulación de la Expresión Génica de las Plantas , Medicago truncatula/genética , Medicago truncatula/microbiología , Medicago truncatula/fisiología , Óxido Nítrico Sintasa/genética , Fijación del Nitrógeno , Proteínas de Plantas/genética , Nódulos de las Raíces de las Plantas/enzimología , Nódulos de las Raíces de las Plantas/microbiología , Nódulos de las Raíces de las Plantas/fisiología , Simbiosis
12.
Phys Med ; 84: 205-213, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33771442

RESUMEN

PURPOSE/OBJECTIVE: The objective of this study was to verify the accuracy of treatment plans of stereotactic body radiation therapy (SBRT) and to verify the feasibility of the use of Monte Carlo (MC) as quality control (QC) on a daily basis. MATERIAL/METHODS: Using EGSnrc, a MC model of Agility™ linear accelerator was created. Various measurements (Percentage depth dose (PDD), Profiles and Output factors) were done for different fields sizes from 1x1 up to 40x40 (cm2). An iterative model optimization was performed to achieve adequate parameters of MC simulation. 40 SBRT patient's dosimetry plans were calculated by Monaco™ 3.1.1. CT images, RT-STRUCT and RT-PLAN files from Monaco™ being used as input for Moderato MC code. Finally, dose volume histogram (DVH) and paired t-tests for each contour were used for dosimetry comparison of the Monaco™ and MC. RESULTS: Validation of MC model was successful, as <2% difference comparing to measurements for all field's sizes. The main energy of electron source incident on the target was 5.8 MeV, and the full width at half maximum (FWHM) of Gaussian electron source were 0.09 and 0.2 (cm) in X and Y directions, respectively. For 40 treatment plan comparisons, the minimum absolute difference of mean dose of planning treatment planning (PTV) was 0.1% while the maximum was 6.3%. The minimum absolute difference of Max dose of PTV was 0.2% while the maximum was 8.1%. CONCLUSION: SBRT treatment plans of Monaco agreed with MC results. It possible to use MC for treatment plans verifications as independent QC tool.


Asunto(s)
Radiocirugia , Humanos , Método de Montecarlo , Control de Calidad , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador
13.
Plant Physiol ; 151(3): 1186-96, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19587096

RESUMEN

Under nitrogen-limiting conditions, legumes interact with symbiotic rhizobia to produce nitrogen-fixing root nodules. We have previously shown that glutathione and homoglutathione [(h)GSH] deficiencies impaired Medicago truncatula symbiosis efficiency, showing the importance of the low M(r) thiols during the nodulation process in the model legume M. truncatula. In this study, the plant transcriptomic response to Sinorhizobium meliloti infection under (h)GSH depletion was investigated using cDNA-amplified fragment length polymorphism analysis. Among 6,149 expression tags monitored, 181 genes displayed significant differential expression between inoculated control and inoculated (h)GSH depleted roots. Quantitative reverse transcription polymerase chain reaction analysis confirmed the changes in mRNA levels. This transcriptomic analysis shows a down-regulation of genes involved in meristem formation and a modulation of the expression of stress-related genes in (h)GSH-depleted plants. Promoter-beta-glucuronidase histochemical analysis showed that the putative MtPIP2 aquaporin might be up-regulated during nodule meristem formation and that this up-regulation is inhibited under (h)GSH depletion. (h)GSH depletion enhances the expression of salicylic acid (SA)-regulated genes after S. meliloti infection and the expression of SA-regulated genes after exogenous SA treatment. Modification of water transport and SA signaling pathway observed under (h)GSH deficiency contribute to explain how (h)GSH depletion alters the proper development of the symbiotic interaction.


Asunto(s)
Glutatión/análogos & derivados , Medicago truncatula/crecimiento & desarrollo , Nodulación de la Raíz de la Planta , Sinorhizobium meliloti/fisiología , Simbiosis , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Glutatión/deficiencia , Glutatión/metabolismo , Medicago truncatula/genética , Medicago truncatula/metabolismo , ARN Mensajero/metabolismo , ARN de Planta/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
14.
J Integr Plant Biol ; 52(2): 195-204, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20377681

RESUMEN

Reactive Oxygen Species (ROS) are continuously produced as a result of aerobic metabolism or in response to biotic and abiotic stresses. ROS are not only toxic by-products of aerobic metabolism, but are also signalling molecules involved in several developmental processes in all organisms. Previous studies have clearly shown that an oxidative burst often takes place at the site of attempted invasion during the early stages of most plant-pathogen interactions. Moreover, a second ROS production can be observed during certain types of plant-pathogen interactions, which triggers hypersensitive cell death (HR). This second ROS wave seems absent during symbiotic interactions. This difference between these two responses is thought to play an important signalling role leading to the establishment of plant defense. In order to cope with the deleterious effects of ROS, plants are fitted with a large panel of enzymatic and non-enzymatic antioxidant mechanisms. Thus, increasing numbers of publications report the characterisation of ROS producing and scavenging systems from plants and from microorganisms during interactions. In this review, we present the current knowledge on the ROS signals and their role during plant-microorganism interactions.


Asunto(s)
Interacciones Huésped-Patógeno/fisiología , Plantas/metabolismo , Plantas/microbiología , Especies Reactivas de Oxígeno/metabolismo
15.
Phys Med ; 57: 207-214, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30738527

RESUMEN

PURPOSE: This paper studies the feasibility of using Monte Carlo (MC) for treatment planning of intraoperative electron radiation therapy (IOERT) procedure to get 3D dose by using patient's CT images. METHODS: The IOERT treatment planning was performed using the following successive steps: I) The Mobetron 1000® machine was modelled with the EGSnrc MC codes. II) The MC model was validated with measurements of percentage depth doses and profiles for three energies (12, 9, 6) MeV. III) CT images were imported as DICOM files. IV) Contouring of the planning target volume (PTV) and the organs at risk was done by the radiation oncologist. V) The medical physicist with the radiation oncologist, had chosen the same parameters of IOERT procedures like energy, applicator (type, size) and using or not bolus. VI) Finally, dose calculation and analysis of 3D maps was carried out. RESULTS: The tuning process of the MC model provides good results, as the maximum value of the root mean square deviation (RMSD) was less than 3% between the MC simulated PDDs and the measured PDDs. The contouring and dose analysis review were easy to conduct for the classical treatment planning system. The radiation oncologist had many tools for dose analysis such as DVH and color wash for all the slides. Summation of the 3D dose of IOERT with other radiotherapy plans is possible and helpful for total dose estimation. Archiving and documentation is as good as treatment planning system (TPS). CONCLUSIONS: The method displayed in this paper provides a step forward for IOERT Dosimetry and allows to obtain accurate dosimetry of treated volumes.


Asunto(s)
Electrones/uso terapéutico , Método de Montecarlo , Radiometría/métodos , Radioterapia , Periodo Intraoperatorio , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Tomografía Computarizada por Rayos X
16.
Front Plant Sci ; 10: 1496, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31850013

RESUMEN

The interaction between legumes and bacteria of rhizobia type results in a beneficial symbiotic relationship characterized by the formation of new root organs, called nodules. Within these nodules the bacteria, released in plant cells, differentiate into bacteroids and fix atmospheric nitrogen through the nitrogenase activity. This mutualistic interaction has evolved sophisticated signaling networks to allow rhizobia entry, colonization, bacteroid differentiation and persistence in nodules. Nodule cysteine rich (NCR) peptides, reactive oxygen species (ROS), reactive nitrogen species (RNS), and toxin-antitoxin (TA) modules produced by the host plants or bacterial microsymbionts have a major role in the control of the symbiotic interaction. These molecules described as weapons in pathogenic interactions have evolved to participate to the intracellular bacteroid accommodation by escaping control of plant innate immunity and adapt the functioning of the nitrogen-fixation to environmental signalling cues.

17.
Phys Med ; 51: 1-6, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30278980

RESUMEN

PURPOSE: In IOERT breast treatments, a shielding disk is frequently used to protect the underlying healthy structures. The disk is usually composed of two materials, a low-Z material intended to be oriented towards the beam and a high-Z material. As tissues are repositioned around the shield before treatment, the disk is no longer visible and its correct alignment with respect to the beam is guaranteed. This paper studies the dosimetric characteristics of four possible clinical positioning scenarios of the shielding disk. A new alignment method for the shielding disk in the beam is introduced. Finally, it suggests a new design for the shielding disk. METHODS: As the first step, the IOERT machine "Mobetron 1000" was modeled by using Monte Carlo simulation, tuning the MC model until an excellent match with the measured PDDs and profiles was achieved. Four possible shielding disk positioning scenarios were considered, determining the dosimetric impact. Furthermore, in our center, to prevent beam misalignment, we have developed a shielding disk equipped with guiding rods. Having ascertained a correct alignment between the disk and the beam, we can propose a new internal design of the shielding disk that can improve the dose distribution with a better coverage of the treated area. RESULTS: All MC simulations were performed with a 12 MeV beam, the maximum energy of Mobetron 1000 and a 5.5 cm diameter flat tip applicator, this applicator being the most clinically used. The simulations were compared with measurements performed in a water phantom and showed good results within 2.2% of root mean square difference (RMSD). The misplacement positions of the shielding disk have dosimetric impacts in the treatment volume and a small translation could have a significant influence on healthy tissues. The D-scenario is the worst which could happens when the shielding disk is flipped upside down, giving up to 144% dose instead of 90% at the surface of the Pb/Al shielding disk. A new shielding design used, together with our alignment tool, is able to give a more homogeneous dose in the target area. CONCLUSIONS: The accuracy of shielding disk position can still be problematic in IOERT dosimetry. Any method that can ascertain the good alignment between the shielding disk and the beam is beneficial for the dose distribution and is a prerequisite for an optimized shield internal design that could improve the coverage of the treated area and the protection of healthy tissues.


Asunto(s)
Electrones/uso terapéutico , Método de Montecarlo , Protección Radiológica/instrumentación , Periodo Intraoperatorio , Fenómenos Mecánicos
18.
PLoS One ; 12(12): e0190284, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29281721

RESUMEN

Climate change is increasingly impacting the water deficit over the world. Because of drought and the high pressure of the rising human population, water is becoming a scarce and expensive commodity, especially in developing countries. The identification of crops presenting a higher acclimation to drought stress is thus an important objective in agriculture. The present investigation aimed to assess the adaptation of three Vicia faba genotypes, Aguadulce (AD), Luz d'Otonio (LO) and Reina Mora (RM) to water deficit. Multiple physiological and biochemical parameters were used to analyse the response of the three genotypes to two soil water contents (80% and 40% of field capacity). A significant lower decrease in shoot, root and nodule dry weight was observed for AD compared to LO and RM. The better growth performance of AD was correlated to higher carbon and nitrogen content than in LO and RM under water deficit. Leaf parameters such as relative water content, mass area, efficiency of photosystem II and chlorophyll and carotenoid content were significantly less affected in AD than in LO and RM. Significantly higher accumulation of proline was correlated to the higher performance of AD compared to LO and RM. Additionally, the better growth of AD genotype was related to an important mobilisation of antioxidant enzyme activities such as ascorbate peroxidase and catalase. Taken together, these results allow us to suggest that AD is a water deficit tolerant genotype compared to LO and RM. Our multiple physiological and biochemical analyses show that nitrogen content, leaf proline accumulation, reduced leaf hydrogen peroxide accumulation and leaf antioxidant enzymatic activities (ascorbate peroxidase, guaiacol peroxidase, catalase and polyphenol oxidase) are potential biological markers useful to screen for water deficit resistant Vicia faba genotypes.


Asunto(s)
Adaptación Fisiológica , Fijación del Nitrógeno , Vicia faba/fisiología , Agua , Genotipo , Oxidación-Reducción , Fotosíntesis , Vicia faba/genética , Vicia faba/crecimiento & desarrollo , Vicia faba/metabolismo
19.
Mol Plant Microbe Interact ; 19(9): 970-5, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16941901

RESUMEN

Nitric oxide (NO) has recently gained interest as a major signaling molecule during plant development and response to environmental cues. Its role is particularly crucial for plant-pathogen interactions, during which it participates in the control of plant defense response and resistance. Indication for the presence of NO during symbiotic interactions has also been reported. Here, we defined when and where NO is produced during Medicago truncatula-Sinorhizobium meliloti symbiosis. Using the NO-specific fluorescent probe 4,5-diaminofluorescein diacetate, NO production was detected by confocal microscopy in functional nodules. NO production was localized in the bacteroid-containing cells of the nodule fixation zone. The infection of Medicago roots with bacterial strains impaired in nitrogenase or nitrite reductase activities lead to the formation of nodules with an unaffected NO level, indicating that neither nitrogen fixation nor denitrification pathways are required for NO production. On the other hand, the NO synthase inhibitor N-methyl-L-arginine impaired NO detection, suggesting that a NO synthase may participate to NO production in nodules. These data indicate that a NO production occurs in functional nodules. The location of such a production in fully metabolically active cells raises the hypothesis of a new function for NO during this interaction unrelated to defense and cell-death activation.


Asunto(s)
Medicago truncatula/metabolismo , Óxido Nítrico/biosíntesis , Raíces de Plantas/metabolismo , Sinorhizobium meliloti/crecimiento & desarrollo , Simbiosis/fisiología , Inhibidores Enzimáticos/farmacología , Fluoresceína/química , Regulación Bacteriana de la Expresión Génica/genética , Medicago truncatula/microbiología , Microscopía Confocal , Mutación/genética , Óxido Nítrico/química , Óxido Nítrico Sintasa/antagonistas & inhibidores , Óxido Nítrico Sintasa/metabolismo , Raíces de Plantas/microbiología , Sinorhizobium meliloti/genética , omega-N-Metilarginina/farmacología
20.
Front Plant Sci ; 7: 454, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27092165

RESUMEN

The symbiotic interaction between legumes and nitrogen-fixing rhizobium bacteria leads to the formation of a new organ, the nodule. Early steps of the interaction are characterized by the production of bacterial Nod factors, the reorientation of root-hair tip growth, the formation of an infection thread (IT) in the root hair, and the induction of cell division in inner cortical cells of the root, leading to a nodule primordium formation. Reactive oxygen species (ROS) and nitric oxide (NO) have been detected in early steps of the interaction. ROS/NO are determinant signals to arbitrate the specificity of this mutualistic association and modifications in their content impair the development of the symbiotic association. The decrease of ROS level prevents root hair curling and ITs formation, and that of NO conducts to delayed nodule formation. In root hairs, NADPH oxidases were shown to produce ROS which could be involved in the hair tip growth process. The use of enzyme inhibitors suggests that nitrate reductase and NO synthase-like enzymes are the main route for NO production during the early steps of the interaction. Transcriptomic analyses point to the involvement of ROS and NO in the success of the infection process, the induction of early nodulin gene expression, and the repression of plant defense, thereby favoring the establishment of the symbiosis. The occurrence of an interplay between ROS and NO was further supported by the finding of both S-sulfenylated and S-nitrosylated proteins during early symbiotic interaction, linking ROS/NO production to a redox-based regulation of the symbiotic process.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA