Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(13): 3394-3409.e20, 2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-34077752

RESUMEN

The human fetal immune system begins to develop early during gestation; however, factors responsible for fetal immune-priming remain elusive. We explored potential exposure to microbial agents in utero and their contribution toward activation of memory T cells in fetal tissues. We profiled microbes across fetal organs using 16S rRNA gene sequencing and detected low but consistent microbial signal in fetal gut, skin, placenta, and lungs in the 2nd trimester of gestation. We identified several live bacterial strains including Staphylococcus and Lactobacillus in fetal tissues, which induced in vitro activation of memory T cells in fetal mesenteric lymph node, supporting the role of microbial exposure in fetal immune-priming. Finally, using SEM and RNA-ISH, we visualized discrete localization of bacteria-like structures and eubacterial-RNA within 14th weeks fetal gut lumen. These findings indicate selective presence of live microbes in fetal organs during the 2nd trimester of gestation and have broader implications toward the establishment of immune competency and priming before birth.


Asunto(s)
Bacterias/metabolismo , Desarrollo Embrionario , Feto/citología , Feto/microbiología , Leucocitos/citología , Adulto , Bacterias/genética , Bacterias/ultraestructura , Proliferación Celular , Células Dendríticas/metabolismo , Femenino , Feto/ultraestructura , Tracto Gastrointestinal/embriología , Tracto Gastrointestinal/ultraestructura , Humanos , Memoria Inmunológica , Activación de Linfocitos/inmunología , Viabilidad Microbiana , Embarazo , Segundo Trimestre del Embarazo , ARN Bacteriano/genética , ARN Ribosómico 16S/genética , Reproducibilidad de los Resultados , Linfocitos T/citología
2.
Cell ; 167(4): 1111-1124.e13, 2016 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-27814508

RESUMEN

Differences in susceptibility to immune-mediated diseases are determined by variability in immune responses. In three studies within the Human Functional Genomics Project, we assessed the effect of environmental and non-genetic host factors of the genetic make-up of the host and of the intestinal microbiome on the cytokine responses in humans. We analyzed the association of these factors with circulating mediators and with six cytokines after stimulation with 19 bacterial, fungal, viral, and non-microbial metabolic stimuli in 534 healthy subjects. In this first study, we show a strong impact of non-genetic host factors (e.g., age and gender) on cytokine production and circulating mediators. Additionally, annual seasonality is found to be an important environmental factor influencing cytokine production. Alpha-1-antitrypsin concentrations partially mediate the seasonality of cytokine responses, whereas the effect of vitamin D levels is limited. The complete dataset has been made publicly available as a comprehensive resource for future studies. PAPERCLIP.


Asunto(s)
Citocinas/genética , Citocinas/inmunología , Interacción Gen-Ambiente , Adolescente , Adulto , Anciano , Envejecimiento , Animales , Artritis/inmunología , Sangre/inmunología , Índice de Masa Corporal , Femenino , Proyecto Genoma Humano , Humanos , Infecciones/inmunología , Infecciones/microbiología , Infecciones/virología , Inflamación/inmunología , Inflamación/microbiología , Leucocitos Mononucleares/inmunología , Macrófagos/inmunología , Masculino , Ratones , Persona de Mediana Edad , Estaciones del Año , Caracteres Sexuales
3.
Cell ; 163(6): 1388-99, 2015 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-26627736

RESUMEN

Gene essentiality is typically determined by assessing the viability of the corresponding mutant cells, but this definition fails to account for the ability of cells to adaptively evolve to genetic perturbations. Here, we performed a stringent screen to assess the degree to which Saccharomyces cerevisiae cells can survive the deletion of ~1,000 individual "essential" genes and found that ~9% of these genetic perturbations could in fact be overcome by adaptive evolution. Our analyses uncovered a genome-wide gradient of gene essentiality, with certain essential cellular functions being more "evolvable" than others. Ploidy changes were prevalent among the evolved mutant strains, and aneuploidy of a specific chromosome was adaptive for a class of evolvable nucleoporin mutants. These data justify a quantitative redefinition of gene essentiality that incorporates both viability and evolvability of the corresponding mutant cells and will enable selection of therapeutic targets associated with lower risk of emergence of drug resistance.


Asunto(s)
Evolución Biológica , Genes Esenciales , Saccharomyces cerevisiae/genética , Eliminación de Gen , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae/clasificación , Saccharomyces cerevisiae/citología , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Esporas Fúngicas/metabolismo
4.
Nat Rev Genet ; 19(1): 34-49, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29033457

RESUMEN

Gene essentiality is a founding concept of genetics with important implications in both fundamental and applied research. Multiple screens have been performed over the years in bacteria, yeasts, animals and more recently in human cells to identify essential genes. A mounting body of evidence suggests that gene essentiality, rather than being a static and binary property, is both context dependent and evolvable in all kingdoms of life. This concept of a non-absolute nature of gene essentiality changes our fundamental understanding of essential biological processes and could directly affect future treatment strategies for cancer and infectious diseases.


Asunto(s)
Genes Esenciales , Animales , Secuencia Conservada , Sistemas de Liberación de Medicamentos , Resistencia a Medicamentos/genética , Evolución Molecular , Edición Génica , Redes Reguladoras de Genes , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Ingeniería Metabólica , Modelos Genéticos , Biología Sintética
5.
Drug Resist Updat ; 71: 100993, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37639774

RESUMEN

AIMS: Drivers of the drug tolerant proliferative persister (DTPP) state have not been well investigated. Histone H3 lysine-4 trimethylation (H3K4me3), an active histone mark, might enable slow cycling drug tolerant persisters (DTP) to regain proliferative capacity. This study aimed to determine H3K4me3 transcriptionally active sites identifying a key regulator of DTPPs. METHODS: Deploying a model of adaptive cancer drug tolerance, H3K4me3 ChIP-Seq data of DTPPs guided identification of top transcription factor binding motifs. These suggested involvement of O-linked N-acetylglucosamine transferase (OGT), which was confirmed by metabolomics analysis and biochemical assays. OGT impact on DTPPs and adaptive resistance was explored in vitro and in vivo. RESULTS: H3K4me3 remodeling was widespread in CPG island regions and DNA binding motifs associated with O-GlcNAc marked chromatin. Accordingly, we observed an upregulation of OGT, O-GlcNAc and its binding partner TET1 in chronically treated cancer cells. Inhibition of OGT led to loss of H3K4me3 and downregulation of genes contributing to drug resistance. Genetic ablation of OGT prevented acquired drug resistance in in vivo models. Upstream of OGT, we identified AMPK as an actionable target. AMPK activation by acetyl salicylic acid downregulated OGT with similar effects on delaying acquired resistance. CONCLUSION: Our findings uncover a fundamental mechanism of adaptive drug resistance that governs cancer cell reprogramming towards acquired drug resistance, a process that can be exploited to improve response duration and patient outcomes.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Histonas , Humanos , Histonas/genética , Regulación hacia Abajo , Oxigenasas de Función Mixta , Proteínas Proto-Oncogénicas
6.
Cell ; 135(5): 879-93, 2008 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-19041751

RESUMEN

The ability to evolve is a fundamental feature of biological systems, but the mechanisms underlying this capacity and the evolutionary dynamics of conserved core processes remain elusive. We show that yeast cells deleted of MYO1, encoding the only myosin II normally required for cytokinesis, rapidly evolved divergent pathways to restore growth and cytokinesis. The evolved cytokinesis phenotypes correlated with specific changes in the transcriptome. Polyploidy and aneuploidy were common genetic alterations in the best evolved strains, and aneuploidy could account for gene expression changes due directly to altered chromosome stoichiometry as well as to downstream effects. The phenotypic effect of aneuploidy could be recapitulated with increased copy numbers of specific regulatory genes in myo1Delta cells. These results demonstrate the evolvability of even a well-conserved process and suggest that changes in chromosome stoichiometry provide a source of heritable variation driving the emergence of adaptive phenotypes when the cell division machinery is strongly perturbed.


Asunto(s)
Aneuploidia , Evolución Molecular Dirigida , Cadenas Pesadas de Miosina/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Citocinesis , Eliminación de Gen , Genoma Fúngico , Poliploidía
7.
PLoS Genet ; 15(5): e1008137, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31091232

RESUMEN

When the fungus Candida albicans proliferates in the oropharyngeal cavity during experimental oropharyngeal candidiasis (OPC), it undergoes large-scale genome changes at a much higher frequency than when it grows in vitro. Previously, we identified a specific whole chromosome amplification, trisomy of Chr6 (Chr6x3), that was highly overrepresented among strains recovered from the tongues of mice with OPC. To determine the functional significance of this trisomy, we assessed the virulence of two Chr6 trisomic strains and a Chr5 trisomic strain in the mouse model of OPC. We also analyzed the expression of virulence-associated traits in vitro. All three trisomic strains exhibited characteristics of a commensal during OPC in mice. They achieved the same oral fungal burden as the diploid progenitor strain but caused significantly less weight loss and elicited a significantly lower inflammatory host response. In vitro, all three trisomic strains had reduced capacity to adhere to and invade oral epithelial cells and increased susceptibility to neutrophil killing. Whole genome sequencing of pre- and post-infection isolates found that the trisomies were usually maintained. Most post-infection isolates also contained de novo point mutations, but these were not conserved. While in vitro growth assays did not reveal phenotypes specific to de novo point mutations, they did reveal novel phenotypes specific to each lineage. These data reveal that during OPC, clones that are trisomic for Chr5 or Chr6 are selected and they facilitate a commensal-like phenotype.


Asunto(s)
Candida albicans/genética , Candidiasis Bucal/genética , Orofaringe/microbiología , Animales , Candida albicans/metabolismo , Candidiasis/genética , Modelos Animales de Enfermedad , Células Epiteliales , Masculino , Ratones , Ratones Endogámicos BALB C , Neutrófilos , Fenotipo , Trisomía/genética , Virulencia
8.
Mol Biol Evol ; 36(8): 1768-1782, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31028698

RESUMEN

Aneuploidy is common both in tumor cells responding to chemotherapeutic agents and in fungal cells adapting to antifungal drugs. Because aneuploidy simultaneously affects many genes, it has the potential to confer multiple phenotypes to the same cells. Here, we analyzed the mechanisms by which Candida albicans, the most prevalent human fungal pathogen, acquires the ability to survive both chemotherapeutic agents and antifungal drugs. Strikingly, adaptation to both types of drugs was accompanied by the acquisition of specific whole-chromosome aneuploidies, with some aneuploid karyotypes recovered independently and repeatedly from very different drug conditions. Specifically, strains selected for survival in hydroxyurea, an anticancer drug, acquired cross-adaptation to caspofungin, a first-line antifungal drug, and both acquired traits were attributable to trisomy of the same chromosome: loss of trisomy was accompanied by loss of adaptation to both drugs. Mechanistically, aneuploidy simultaneously altered the copy number of most genes on chromosome 2, yet survival in hydroxyurea or caspofungin required different genes and stress response pathways. Similarly, chromosome 5 monosomy conferred increased tolerance to both fluconazole and to caspofungin, antifungals with different mechanisms of action. Thus, the potential for cross-adaptation is not a feature of aneuploidy per se; rather, it is dependent on specific genes harbored on given aneuploid chromosomes. Furthermore, pre-exposure to hydroxyurea increased the frequency of appearance of caspofungin survivors, and hydroxyurea-adapted C. albicans cells were refractory to antifungal drug treatment in a mouse model of systemic candidiasis. This highlights the potential clinical consequences for the management of cancer chemotherapy patients at risk of fungal infections.


Asunto(s)
Aneuploidia , Antifúngicos , Antineoplásicos , Candida albicans/genética , Caspofungina , Farmacorresistencia Fúngica/genética , Hidroxiurea , Adaptación Biológica , Animales , Calcineurina , Cromosomas Fúngicos , Ratones
9.
J Hepatol ; 67(3): 490-500, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28483682

RESUMEN

BACKGROUND & AIMS: Liver inflammation is key in the progression of chronic viral hepatitis to cirrhosis and hepatocellular carcinoma. The magnitude of viral replication and the specific anti-viral immune responses should govern the degree of inflammation, but a direct correlation is not consistently found in chronic viral hepatitis patients. We aim to better define the mechanisms that contribute to chronic liver inflammation. METHODS: Intrahepatic CD14+ myeloid cells from healthy donors (n=19) and patients with viral-related liver cirrhosis (HBV, HBV/HDV or HCV; n=15) were subjected to detailed phenotypic, molecular and functional characterisation. RESULTS: Unsupervised analysis of multi-parametric data showed that liver disease was associated with the intrahepatic expansion of activated myeloid cells mainly composed of pro-inflammatory CD14+HLA-DRhiCD206+ cells, which spontaneously produced TNFα and GM-CSF. These cells only showed heightened pro-inflammatory responses to bacterial TLR agonists and were more refractory to endotoxin-induced tolerance. A liver-specific enrichment of CD14+HLA-DRhiCD206+ cells was also detected in a humanised mouse model of liver inflammation. This accumulation was abrogated following oral antibiotic treatment, suggesting a direct involvement of translocated gut-derived microbial products in liver injury. CONCLUSIONS: Viral-related chronic liver inflammation is driven by the interplay between non-endotoxin-tolerant pro-inflammatory CD14+HLA-DRhiCD206+ myeloid cells and translocated bacterial products. Deciphering this mechanism paves the way for the development of therapeutic strategies specifically targeting CD206+ myeloid cells in viral-related liver disease patients. Lay summary: Viral-related chronic liver disease is driven by intrahepatic pro-inflammatory myeloid cells accumulating in a gut-derived bacterial product-dependent manner. Our findings support the use of oral antibiotics to ameliorate liver inflammation in these patients.


Asunto(s)
Hepatitis Viral Humana/etiología , Lectinas Tipo C/fisiología , Macrófagos/inmunología , Lectinas de Unión a Manosa/fisiología , Receptores de Superficie Celular/fisiología , Animales , Antibacterianos/uso terapéutico , Microbioma Gastrointestinal , Antígenos HLA-DR/análisis , Hepatitis Viral Humana/tratamiento farmacológico , Humanos , Receptores de Lipopolisacáridos/análisis , Receptor de Manosa , Ratones , Células Mieloides/fisiología , Factor de Necrosis Tumoral alfa/biosíntesis
10.
Nature ; 468(7321): 321-5, 2010 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-20962780

RESUMEN

Aneuploidy, referring here to genome contents characterized by abnormal numbers of chromosomes, has been associated with developmental defects, cancer and adaptive evolution in experimental organisms. However, it remains unresolved how aneuploidy impacts gene expression and whether aneuploidy could directly bring about phenotypic variation and improved fitness over that of euploid counterparts. Here we show, using quantitative mass spectrometry-based proteomics and phenotypic profiling, that levels of protein expression in aneuploid yeast strains largely scale with chromosome copy numbers, following the same trend as that observed for the transcriptome, and that aneuploidy confers diverse phenotypes. We designed a novel scheme to generate, through random meiotic segregation, 38 stable and fully isogenic aneuploid yeast strains with distinct karyotypes and genome contents between 1N and 3N without involving any genetic selection. Through quantitative growth assays under various conditions or in the presence of a panel of chemotherapeutic or antifungal drugs, we found that some aneuploid strains grew significantly better than euploid control strains under conditions suboptimal for the latter. These results provide strong evidence that aneuploidy directly affects gene expression at both the transcriptome and proteome levels and can generate significant phenotypic variation that could bring about fitness gains under diverse conditions. Our findings suggest that the fitness ranking between euploid and aneuploid cells is dependent on context and karyotype, providing the basis for the notion that aneuploidy can directly underlie phenotypic evolution and cellular adaptation.


Asunto(s)
Aneuploidia , Fenotipo , Proteoma/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Antifúngicos/farmacología , División Celular/efectos de los fármacos , Cromosomas Fúngicos/efectos de los fármacos , Cromosomas Fúngicos/genética , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Aptitud Genética/efectos de los fármacos , Aptitud Genética/genética , Cariotipificación , Meiosis/efectos de los fármacos , Meiosis/genética , Poliploidía , Proteoma/efectos de los fármacos , Proteómica , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/efectos de los fármacos , Estrés Fisiológico , Transcripción Genética/efectos de los fármacos , Transcripción Genética/genética
11.
Eukaryot Cell ; 14(10): 1054-61, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26297702

RESUMEN

Candida albicans is the leading cause of fungal infections; but it is also a member of the human microbiome, an ecosystem of thousands of microbial species potentially influencing the outcome of host-fungal interactions. Accordingly, antibacterial therapy raises the risk of candidiasis, yet the underlying mechanism is currently not fully understood. We hypothesize the existence of bacterial metabolites that normally control C. albicans growth and of fungal resistance mechanisms against these metabolites. Among the most abundant microbiota-derived metabolites found on human mucosal surfaces are weak organic acids (WOAs), such as acetic, propionic, butyric, and lactic acid. Here, we used quantitative growth assays to investigate the dose-dependent fungistatic properties of WOAs on C. albicans growth and found inhibition of growth to occur at physiologically relevant concentrations and pH values. This effect was conserved across distantly related fungal species both inside and outside the CTG clade. We next screened a library of transcription factor mutants and identified several genes required for the resistance of C. albicans to one or more WOAs. A single gene, MIG1, previously known for its role in glucose repression, conferred resistance against all four acids tested. Consistent with glucose being an upstream activator of Mig1p, the presence of this carbon source was required for WOA resistance in wild-type C. albicans. Conversely, a MIG1-complemented strain completely restored the glucose-dependent resistance against WOAs. We conclude that Mig1p plays a central role in orchestrating a transcriptional program to fight against the fungistatic effect of this class of highly abundant metabolites produced by the gastrointestinal tract microbiota.


Asunto(s)
Ácido Acético/farmacología , Antifúngicos/farmacología , Ácido Butírico/farmacología , Candida albicans/crecimiento & desarrollo , Proteínas Fúngicas/metabolismo , Ácido Láctico/farmacología , Propionatos/farmacología , Proteínas Represoras/metabolismo , Candida albicans/efectos de los fármacos , Candida albicans/genética , Candidiasis/microbiología , Farmacorresistencia Fúngica/genética , Proteínas Fúngicas/genética , Pruebas de Sensibilidad Microbiana , Proteínas Represoras/genética
12.
Semin Cell Dev Biol ; 24(4): 332-8, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23403271

RESUMEN

In spite of the existence of multiple cellular mechanisms that ensure genome stability, thanks to the advent of quantitative genomic assays in the last decade, an unforeseen level of plasticity in cellular genomes has begun to emerge in many different fields of cell biology. Eukaryotic cells not only have a remarkable ability to change their karyotypes in response to various perturbations, but also these karyotypic changes impact cellular fitness and in some circumstances enable evolutionary adaptation. In this review, we focus on recent findings in non-pathogenic yeasts indicating that karyotypic changes generate selectable phenotypic variation and alter genomic instability. Based on these findings, we propose that in highly stressful and thus strongly selective environments karyotypic changes could act both as a driver and as a catalyzer of cellular adaptation, i.e. karyotypic changes drive large phenotypic leaps and at the same time catalyze the accumulation of even more genotypic and karyotypic changes.


Asunto(s)
Evolución Biológica , Levaduras/genética , Aneuploidia , Inestabilidad Genómica , Cariotipificación , Poliploidía
13.
PLoS Genet ; 8(5): e1002719, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22615582

RESUMEN

Recent studies in cancer cells and budding yeast demonstrated that aneuploidy, the state of having abnormal chromosome numbers, correlates with elevated chromosome instability (CIN), i.e. the propensity of gaining and losing chromosomes at a high frequency. Here we have investigated ploidy- and chromosome-specific determinants underlying aneuploidy-induced CIN by observing karyotype dynamics in fully isogenic aneuploid yeast strains with ploidies between 1N and 2N obtained through a random meiotic process. The aneuploid strains exhibited various levels of whole-chromosome instability (i.e. chromosome gains and losses). CIN correlates with cellular ploidy in an unexpected way: cells with a chromosomal content close to the haploid state are significantly more stable than cells displaying an apparent ploidy between 1.5 and 2N. We propose that the capacity for accurate chromosome segregation by the mitotic system does not scale continuously with an increasing number of chromosomes, but may occur via discrete steps each time a full set of chromosomes is added to the genome. On top of such general ploidy-related effect, CIN is also associated with the presence of specific aneuploid chromosomes as well as dosage imbalance between specific chromosome pairs. Our findings potentially help reconcile the divide between gene-centric versus genome-centric theories in cancer evolution.


Asunto(s)
Aneuploidia , Inestabilidad Cromosómica/genética , Cariotipo , Saccharomyces cerevisiae/genética , Segregación Cromosómica , Cromosomas Fúngicos , Genoma Fúngico , Meiosis/genética , Neoplasias/genética
14.
PLoS Pathog ; 8(1): e1002485, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22253597

RESUMEN

Like many organisms the fungal pathogen Candida albicans senses changes in the environmental CO(2) concentration. This response involves two major proteins: adenylyl cyclase and carbonic anhydrase (CA). Here, we demonstrate that CA expression is tightly controlled by the availability of CO(2) and identify the bZIP transcription factor Rca1p as the first CO(2) regulator of CA expression in yeast. We show that Rca1p upregulates CA expression during contact with mammalian phagocytes and demonstrate that serine 124 is critical for Rca1p signaling, which occurs independently of adenylyl cyclase. ChIP-chip analysis and the identification of Rca1p orthologs in the model yeast Saccharomyces cerevisiae (Cst6p) point to the broad significance of this novel pathway in fungi. By using advanced microscopy we visualize for the first time the impact of CO(2) build-up on gene expression in entire fungal populations with an exceptional level of detail. Our results present the bZIP protein Rca1p as the first fungal regulator of carbonic anhydrase, and reveal the existence of an adenylyl cyclase independent CO(2) sensing pathway in yeast. Rca1p appears to regulate cellular metabolism in response to CO(2) availability in environments as diverse as the phagosome, yeast communities or liquid culture.


Asunto(s)
Adenosina Trifosfatasas/fisiología , Dióxido de Carbono/metabolismo , Metaloendopeptidasas/fisiología , Proteínas Mitocondriales/fisiología , Percepción de Quorum/genética , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/fisiología , Biota , Inmunoprecipitación de Cromatina , Ambiente , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Metaloendopeptidasas/genética , Metaloendopeptidasas/metabolismo , Técnicas Microbiológicas , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Modelos Biológicos , Análisis de Secuencia por Matrices de Oligonucleótidos , Organismos Modificados Genéticamente , Fagosomas/genética , Fagosomas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología , Levaduras/genética , Levaduras/metabolismo , Levaduras/fisiología
15.
Mol Cell Proteomics ; 9(2): 271-84, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19955083

RESUMEN

To identify new molecular targets of rapamycin, an anticancer and immunosuppressive drug, we analyzed temporal changes in yeast over 6 h in response to rapamycin at the transcriptome and proteome levels and integrated the expression patterns with functional profiling. We show that the integration of transcriptomics, proteomics, and functional data sets provides novel insights into the molecular mechanisms of rapamycin action. We first observed a temporal delay in the correlation of mRNA and protein expression where mRNA expression at 1 and 2 h correlated best with protein expression changes after 6 h of rapamycin treatment. This was especially the case for the inhibition of ribosome biogenesis and induction of heat shock and autophagy essential to promote the cellular sensitivity to rapamycin. However, increased levels of vacuolar protease could enhance resistance to rapamycin. Of the 85 proteins identified as statistically significantly changing in abundance, most of the proteins that decreased in abundance were correlated with a decrease in mRNA expression. However, of the 56 proteins increasing in abundance, 26 were not correlated with an increase in mRNA expression. These protein changes were correlated with unchanged or down-regulated mRNA expression. These proteins, involved in mitochondrial genome maintenance, endocytosis, or drug export, represent new candidates effecting rapamycin action whose expression might be post-transcriptionally or post-translationally regulated. We identified GGC1, a mitochondrial GTP/GDP carrier, as a new component of the rapamycin/target of rapamycin (TOR) signaling pathway. We determined that the protein product of GGC1 was stabilized in the presence of rapamycin, and the deletion of the GGC1 enhanced growth fitness in the presence of rapamycin. A dynamic mRNA expression analysis of Deltaggc1 and wild-type cells treated with rapamycin revealed a key role for Ggc1p in the regulation of ribosome biogenesis and cell cycle progression under TOR control.


Asunto(s)
Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Sirolimus/farmacología , Eliminación de Gen , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Estabilidad Proteica/efectos de los fármacos , Proteómica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/crecimiento & desarrollo , Factores de Tiempo
16.
Front Cell Infect Microbiol ; 11: 743735, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34881192

RESUMEN

Serial passaging of the human fungal pathogen Candida albicans in the gastrointestinal tract of antibiotics-treated mice selects for virulence-attenuated strains. These gut-evolved strains protect the host from infection by a wide range of pathogens via trained immunity. Here, we further investigated the molecular and cellular mechanisms underlying this innate immune memory. Both Dectin-1 (the main receptor for ß-glucan; a well-described immune training molecule in the fungal cell wall) and Nod2 (a receptor described to mediate BCG-induced trained immunity), were redundant for the protection induced by gut-evolved C. albicans against a virulent C. albicans strain, suggesting that gut-evolved C. albicans strains induce trained immunity via other pathways. Cytometry by time of flight (CyTOF) analysis of mouse splenocytes revealed that immunization with gut-evolved C. albicans resulted in an expansion of neutrophils and a reduction in natural killer (NK) cells, but no significant numeric changes in monocytes, macrophages or dendritic cell populations. Systemic depletion of phagocytes or neutrophils, but not of macrophages or NK cells, reduced protection mediated by gut-evolved C. albicans. Splenocytes and bone marrow cells of mice immunized with gut-evolved C. albicans demonstrated metabolic changes. In particular, splenic neutrophils displayed significantly elevated glycolytic and respiratory activity in comparison to those from mock-immunized mice. Although further investigation is required for fully deciphering the trained immunity mechanism induced by gut-evolved C. albicans strains, this data is consistent with the existence of several mechanisms of trained immunity, triggered by different training stimuli and involving different immune molecules and cell types.


Asunto(s)
Candida albicans , beta-Glucanos , Animales , Pared Celular , Macrófagos , Ratones , Neutrófilos
17.
J Exp Med ; 200(3): 287-95, 2004 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-15289500

RESUMEN

Dendritic cells (DCs) play a predominant role in activation of natural killer (NK) cells that exert their functions against pathogen-infected and tumor cells. Here, we used a murine model to investigate the molecular mechanisms responsible for this process. Two soluble molecules produced by bacterially activated myeloid DCs are required for optimal priming of NK cells. Type I interferons (IFNs) promote the cytotoxic functions of NK cells. IL-2 is necessary both in vitro and in vivo for the efficient production of IFNgamma, which has an important antimetastatic and antibacterial function. These findings provide new information about the mechanisms that mediate DC-NK cell interactions and define a novel and fundamental role for IL-2 in innate immunity.


Asunto(s)
Células Dendríticas/fisiología , Interleucina-2/fisiología , Células Asesinas Naturales/inmunología , Activación de Linfocitos , Animales , Comunicación Celular , Citotoxicidad Inmunológica , Interferón gamma/biosíntesis , Interleucina-12/fisiología , Interleucina-18/fisiología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL
18.
Mol Cell Proteomics ; 7(4): 631-44, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18029349

RESUMEN

If the large collection of microarray-specific statistical tools was applicable to the analysis of quantitative shotgun proteomics datasets, it would certainly foster an important advancement of proteomics research. Here we analyze two large multidimensional protein identification technology datasets, one containing eight replicates of the soluble fraction of a yeast whole-cell lysate and one containing nine replicates of a human immunoprecipitate, to test whether normalized spectral abundance factor (NSAF) values share substantially similar statistical properties with transcript abundance values from Affymetrix GeneChip data. First we show similar dynamic range and distribution properties of these two types of numeric values. Next we show that the standard deviation (S.D.) of a protein's NSAF values was dependent on the average NSAF value of the protein itself, following a power law. This relationship can be modeled by a power law global error model (PLGEM), initially developed to describe the variance-versus-mean dependence that exists in GeneChip data. PLGEM parameters obtained from NSAF datasets proved to be surprisingly similar to the typical parameters observed in GeneChip datasets. The most important common feature identified by this approach was that, although in absolute terms the S.D. of replicated abundance values increases as a function of increasing average abundance, the coefficient of variation, a relative measure of variability, becomes progressively smaller under the same conditions. We next show that PLGEM parameters were reasonably stable to decreasing numbers of replicates. We finally illustrate one possible application of PLGEM in the identification of differentially abundant proteins that might potentially outperform standard statistical tests. In summary, we believe that this body of work lays the foundation for the application of microarray-specific tools in the analysis of NSAF datasets.


Asunto(s)
Perfilación de la Expresión Génica/estadística & datos numéricos , Análisis de Secuencia por Matrices de Oligonucleótidos/estadística & datos numéricos , Proteínas/metabolismo , Proteómica/estadística & datos numéricos , Interpretación Estadística de Datos , Humanos , Inmunoprecipitación , Proteínas/análisis , Proteínas/genética , Proteoma/análisis , Proteoma/genética , Proteoma/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/análisis , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
19.
Wiley Interdiscip Rev Syst Biol Med ; 11(1): e1438, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30255552

RESUMEN

Mammalian barrier surfaces are densely populated by symbiont fungi in much the same way the former are colonized by symbiont bacteria. The fungal microbiota, otherwise known as the mycobiota, is increasingly recognized as a critical player in the maintenance of health and homeostasis of the host. Here we discuss the impact of the mycobiota on host physiology and disease, the factors influencing mycobiota composition, and the current technologies used for identifying symbiont fungal species. Understanding the tripartite interactions among the host, mycobiota, and other members of the microbiota, will help to guide the development of novel prevention and therapeutic strategies for a variety of human diseases. This article is categorized under: Physiology > Mammalian Physiology in Health and Disease Laboratory Methods and Technologies > Genetic/Genomic Methods Models of Systems Properties and Processes > Organismal Models.


Asunto(s)
Bacterias , Hongos , Micobioma/fisiología , Animales , Bacterias/clasificación , Bacterias/crecimiento & desarrollo , Hongos/clasificación , Hongos/crecimiento & desarrollo , Humanos
20.
Artículo en Inglés | MEDLINE | ID: mdl-31681635

RESUMEN

Candida albicans is a ubiquitous fungal symbiont that resides on diverse human barrier surfaces. Both mammalian and fungal cells can convert arachidonic acid into the lipid mediator, prostaglandin E2 (PGE2), but the physiological significance of fungus-derived PGE2 remains elusive. Here we report that a C. albicans mutant deficient in PGE2 production suffered a loss of competitive fitness in the murine gastrointestinal (GI) tract and that PGE2 supplementation mitigated this fitness defect. Impaired fungal PGE2 production affected neither the in vitro fitness of C. albicans nor hyphal morphogenesis and virulence in either systemic or mucosal infection models. Instead, fungal production of PGE2 was associated with enhanced fungal survival within phagocytes. Consequently, ablation of colonic phagocytes abrogated the intra-GI fitness boost conferred by fungal PGE2. These observations suggest that C. albicans has evolved the capacity to produce PGE2 from arachidonic acid, a host-derived precursor, to promote its own colonization of the host gut. Analogous mechanisms might undergird host-microbe interactions of other symbiont fungi.


Asunto(s)
Dinoprostona/metabolismo , Hongos/fisiología , Interacciones Huésped-Patógeno , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Simbiosis , Animales , Candida albicans/fisiología , Macrófagos/metabolismo , Ratones , Ratones Noqueados , Mutación , Fagocitos/metabolismo , Virulencia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA