Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Opt Express ; 32(7): 12852-12881, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38571096

RESUMEN

Linear optical quantum computing (LOQC) offers a quantum computation paradigm based on well-established and robust technology and flexible environmental conditions following DiVincenzo's criteria. Within this framework, integrated photonics can be utilized to achieve gate-based quantum computing, defining qubits by path-encoding, quantum gates through the use of Mach-Zehnder interferometers (MZIs), and measurements through single-photon detectors. In particular, universal two-qubit gates can be achieved by suitable structures of MZIs together with post-selection or heralding. The most resource-efficient choice is given by the post-selected Controlled-Z (CZ) gate. However, this implementation is characterized by a design which has a non-regular structure and cannot be cascaded. This limits the implementation of large-scale LOQC. Starting from these issues, we suggest an approach to move toward a universal and scalable LOQC on the integrated photonic platform. First of all, choosing the post-selected CZ as a universal two-qubit gate, we extend the path-encoded dual-rail qubit to a triplet of waveguides, composed of an auxiliary waveguide and the pair of waveguides corresponding to the qubit basis states. Additionally, we introduce a swap photonic network that maps the regularly-labeled structure of the new path-encoded qubits to the structure needed for the post-selected CZ. We also discuss the optical swap gate that allows the connection of non-nearest neighbor path-encoded qubits. In this way, we can deterministically exchange the locations of the qubits and execute controlled quantum gates between any path-encoded qubits. Next, by truncating the auxiliary waveguides after any post-selected CZ, we find that it is possible to cascade this optical gate when it acts on different pairs that share only one qubit. Finally, we show the Bell state and the Greenberger-Horne-Zeilinger (GHZ) state generation circuits implementing the regular structure, the cascading procedure of post-selected CZ and the optical swap.

2.
Opt Express ; 32(6): 9081-9094, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38571149

RESUMEN

Integrated photonics has emerged as one of the most promising platforms for quantum applications. The performances of quantum photonic integrated circuits (QPIC) necessitate a demanding optimization to achieve enhanced properties and tailored characteristics with more stringent requirements with respect to their classical counterparts. In this study, we report on the simulation, fabrication, and characterization of a series of fundamental components for photons manipulation in QPIC based on silicon nitride. These include crossing waveguides, multimode-interferometer-based integrated beam splitters (MMIs), asymmetric integrated Mach-Zehnder interferometers (MZIs) based on MMIs, and micro-ring resonators. Our investigation revolves primarily around the visible to near-infrared spectral region, as these integrated structures are meticulously designed and tailored for optimal operation within this wavelength range. By advancing the development of these elementary building blocks, we aim to pave the way for significant improvements in QPIC in a spectral region only little explored so far.

3.
Opt Express ; 32(9): 15177-15198, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38859176

RESUMEN

Physical systems with topological properties are robust against disorder. However, implementing them in integrated photonic devices is challenging because of the various fabrication imperfections and/or limitations that affect the spectral response of their building blocks. One such feature is strong backscattering due to the surface wall roughness of the waveguides, which can flip the propagating modes to counterpropagating modes and destroy the desired topological behavior. Here, we report a study on modeling, designing and testing an integrated photonic structure based on a sequence of two taiji microresonators coupled with a middle link microresonator (a taiji-CROW device, where CROW stands for coupled resonator optical waveguides). Our study provides design constraints to preserve the ideal operation of the structure by quantifying a minimum ratio between the coupling coefficients and the backscattering coefficients. This ratio is valuable to avoid surface roughness problems in designing topological integrated photonic devices based on arrays of microresonators.

4.
Opt Express ; 32(8): 13419-13437, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38859313

RESUMEN

Silicon microring resonators serve as critical components in integrated photonic neural network implementations, owing to their compact footprint, compatibility with CMOS technology, and passive nonlinear dynamics. Recent advancements have leveraged their filtering properties as weighting functions, and their nonlinear dynamics as activation functions with spiking capabilities. In this work, we investigate experimentally the linear and nonlinear dynamics of microring resonators for time delay reservoir computing, by introducing an external optical feedback loop. After effectively mitigating the impact of environmental noise on the fiber-based feedback phase dependencies, we evaluate the computational capacity of this system by assessing its performance across various benchmark tasks at a bit rate of few Mbps. We show that the additional memory provided by the optical feedback is necessary to achieve error-free operation in delayed-boolean tasks that require up to 3 bits of memory. In this case the microring was operated in the linear regime and the photodetection was the nonlinear activation function. We also show that the Santa Fe and Mackey Glass prediction tasks are solved when the microring nonlinearities are activated. Notably, our study reveals competitive outcomes even when employing only 7 virtual nodes within our photonic reservoir. Our findings illustrate the silicon microring's versatile performance in the presence of optical feedback, highlighting its ability to be tailored for various computing applications.

5.
Neurophotonics ; 11(1): 014415, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38545127

RESUMEN

The Frontiers in Neurophotonics Symposium is a biennial event that brings together neurobiologists and physicists/engineers who share interest in the development of leading-edge photonics-based approaches to understand and manipulate the nervous system, from its individual molecular components to complex networks in the intact brain. In this Community paper, we highlight several topics that have been featured at the symposium that took place in October 2022 in Québec City, Canada.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA