Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 51(11): 5755-5773, 2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37070186

RESUMEN

In response to oxidative stress cells reprogram gene expression to enhance levels of antioxidant enzymes and promote survival. In Saccharomyces cerevisiae the polysome-interacting La-related proteins (LARPs) Slf1 and Sro9 aid adaptation of protein synthesis during stress by undetermined means. To gain insight in their mechanisms of action in stress responses, we determined LARP mRNA binding positions in stressed and unstressed cells. Both proteins bind within coding regions of stress-regulated antioxidant enzyme and other highly translated mRNAs in both optimal and stressed conditions. LARP interaction sites are framed and enriched with ribosome footprints suggesting ribosome-LARP-mRNA complexes are identified. Although stress-induced translation of antioxidant enzyme mRNAs is attenuated in slf1Δ, these mRNAs remain on polysomes. Focusing further on Slf1, we find it binds to both monosomes and disomes following RNase treatment. slf1Δ reduces disome enrichment during stress and alters programmed ribosome frameshifting rates. We propose that Slf1 is a ribosome-associated translational modulator that stabilises stalled/collided ribosomes, prevents ribosome frameshifting and so promotes translation of a set of highly-translated mRNAs that together facilitate cell survival and adaptation to stress.


Asunto(s)
Antioxidantes , Biosíntesis de Proteínas , Saccharomyces cerevisiae , Antioxidantes/metabolismo , Estrés Oxidativo/genética , Ribosomas/genética , Ribosomas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
2.
J Biol Chem ; 299(10): 105195, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37633333

RESUMEN

The regulation of translation provides a rapid and direct mechanism to modulate the cellular proteome. In eukaryotes, an established model for the recruitment of ribosomes to mRNA depends upon a set of conserved translation initiation factors. Nevertheless, how cells orchestrate and define the selection of individual mRNAs for translation, as opposed to other potential cytosolic fates, is poorly understood. We have previously found significant variation in the interaction between individual mRNAs and an array of translation initiation factors. Indeed, mRNAs can be separated into different classes based upon these interactions to provide a framework for understanding different modes of translation initiation. Here, we extend this approach to include new mRNA interaction profiles for additional proteins involved in shaping the cytoplasmic fate of mRNAs. This work defines a set of seven mRNA clusters, based on their interaction profiles with 12 factors involved in translation and/or RNA binding. The mRNA clusters share both physical and functional characteristics to provide a rationale for the interaction profiles. Moreover, a comparison with mRNA interaction profiles from a host of RNA binding proteins suggests that there are defined patterns in the interactions of functionally related mRNAs. Therefore, this work defines global cytoplasmic mRNA binding modules that likely coordinate the synthesis of functionally related proteins.

3.
Genes Dev ; 27(24): 2696-707, 2013 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-24352424

RESUMEN

Protein synthesis factor eIF2 delivers initiator tRNA to the ribosome. Two proteins regulate its G-protein cycle: eIF5 has both GTPase-accelerating protein (GAP) and GDP dissociation inhibitor (GDI) functions, and eIF2B is the guanine nucleotide exchange factor (GEF). In this study, we used protein-protein interaction and nucleotide exchange assays to monitor the kinetics of eIF2 release from the eIF2•GDP/eIF5 GDI complex and determine the effect of eIF2B on this release. We demonstrate that eIF2B has a second activity as a GDI displacement factor (GDF) that can recruit eIF2 from the eIF2•GDP/eIF5 GDI complex prior to GEF action. We found that GDF function is dependent on the eIF2Bε and eIF2Bγ subunits and identified a novel eIF2-eIF2Bγ interaction. Furthermore, GDF and GEF activities are shown to be independent. First, eIF2B GDF is insensitive to eIF2α phosphorylation, unlike GEF. Second, we found that eIF2Bγ mutations known to disrupt GCN4 translational control significantly impair GDF activity but not GEF function. Our data therefore define an additional step in the protein synthesis initiation pathway that is important for its proper control. We propose a new model to place eIF2B GDF function in the context of efficient eIF2 recycling and its regulation by eIF2 phosphorylation.


Asunto(s)
Factor 2B Eucariótico de Iniciación/metabolismo , Factores Eucarióticos de Iniciación/metabolismo , Guanosina Difosfato/metabolismo , Iniciación de la Cadena Peptídica Traduccional , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Factor 2B Eucariótico de Iniciación/genética , Factores Eucarióticos de Iniciación/genética , Guanina/metabolismo , Inhibidores de Disociación de Guanina Nucleótido/metabolismo , Mutación , Fosforilación , Proteínas de Saccharomyces cerevisiae/genética
4.
Yeast ; 36(1): 5-21, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30019452

RESUMEN

The budding yeast Saccharomyces cerevisiae must dynamically alter the composition of its proteome in order to respond to diverse stresses. The reprogramming of gene expression during stress typically involves initial global repression of protein synthesis, accompanied by the activation of stress-responsive mRNAs through both translational and transcriptional responses. The ability of specific mRNAs to counter the global translational repression is therefore crucial to the overall response to stress. Here we summarize the major repressive mechanisms and discuss mechanisms of translational activation in response to different stresses in S. cerevisiae. Taken together, a wide range of studies indicate that multiple elements act in concert to bring about appropriate translational responses. These include regulatory elements within mRNAs, altered mRNA interactions with RNA-binding proteins and the specialization of ribosomes that each contribute towards regulating protein expression to suit the changing environmental conditions.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Procesamiento Proteico-Postraduccional , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Estrés Fisiológico , Biosíntesis de Proteínas , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Ribosomas/genética
5.
Nucleic Acids Res ; 44(20): 9698-9709, 2016 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-27458202

RESUMEN

In protein synthesis translation factor eIF2 binds initiator tRNA to ribosomes and facilitates start codon selection. eIF2 GDP/GTP status is regulated by eIF5 (GAP and GDI functions) and eIF2B (GEF and GDF activities), while eIF2α phosphorylation in response to diverse signals is a major point of translational control. Here we characterize a growth suppressor mutation in eIF2ß that prevents eIF5 GDI and alters cellular responses to reduced eIF2B activity, including control of GCN4 translation. By monitoring the binding of fluorescent nucleotides and initiator tRNA to purified eIF2 we show that the eIF2ß mutation does not affect intrinsic eIF2 affinities for these ligands, neither does it interfere with eIF2 binding to 43S pre-initiation complex components. Instead we show that the eIF2ß mutation prevents eIF5 GDI stabilizing nucleotide binding to eIF2, thereby altering the off-rate of GDP from eIF2•GDP/eIF5 complexes. This enables cells to grow with reduced eIF2B GEF activity but impairs activation of GCN4 targets in response to amino acid starvation. These findings provide support for the importance of eIF5 GDI activity in vivo and demonstrate that eIF2ß acts in concert with eIF5 to prevent premature release of GDP from eIF2γ and thereby ensure tight control of protein synthesis initiation.


Asunto(s)
Factor 2B Eucariótico de Iniciación/metabolismo , Inhibidores de Disociación de Guanina Nucleótido/metabolismo , Biosíntesis de Proteínas , Proteínas Represoras/metabolismo , Secuencia de Aminoácidos , Secuencia Conservada , Factor 2B Eucariótico de Iniciación/química , Factor 2B Eucariótico de Iniciación/genética , Evolución Molecular , Inhibidores de Disociación de Guanina Nucleótido/química , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Modelos Moleculares , Mutación , Unión Proteica , Conformación Proteica , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Proteínas Represoras/química , Levaduras/efectos de los fármacos , Levaduras/genética , Levaduras/metabolismo
6.
PLoS Genet ; 11(1): e1004903, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25569619

RESUMEN

The mechanisms by which RNA-binding proteins control the translation of subsets of mRNAs are not yet clear. Slf1p and Sro9p are atypical-La motif containing proteins which are members of a superfamily of RNA-binding proteins conserved in eukaryotes. RIP-Seq analysis of these two yeast proteins identified overlapping and distinct sets of mRNA targets, including highly translated mRNAs such as those encoding ribosomal proteins. In paralell, transcriptome analysis of slf1Δ and sro9Δ mutant strains indicated altered gene expression in similar functional classes of mRNAs following loss of each factor. The loss of SLF1 had a greater impact on the transcriptome, and in particular, revealed changes in genes involved in the oxidative stress response. slf1Δ cells are more sensitive to oxidants and RIP-Seq analysis of oxidatively stressed cells enriched Slf1p targets encoding antioxidants and other proteins required for oxidant tolerance. To quantify these effects at the protein level, we used label-free mass spectrometry to compare the proteomes of wild-type and slf1Δ strains following oxidative stress. This analysis identified several proteins which are normally induced in response to hydrogen peroxide, but where this increase is attenuated in the slf1Δ mutant. Importantly, a significant number of the mRNAs encoding these targets were also identified as Slf1p-mRNA targets. We show that Slf1p remains associated with the few translating ribosomes following hydrogen peroxide stress and that Slf1p co-immunoprecipitates ribosomes and members of the eIF4E/eIF4G/Pab1p 'closed loop' complex suggesting that Slf1p interacts with actively translated mRNAs following stress. Finally, mutational analysis of SLF1 revealed a novel ribosome interacting domain in Slf1p, independent of its RNA binding La-motif. Together, our results indicate that Slf1p mediates a translational response to oxidative stress via mRNA-specific translational control.


Asunto(s)
Biosíntesis de Proteínas/genética , Proteínas de Unión al ARN/genética , Ribosomas/genética , Proteínas de Saccharomyces cerevisiae/genética , Regulación Fúngica de la Expresión Génica , Peróxido de Hidrógeno/metabolismo , Estrés Oxidativo/genética , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Proteínas de Unión al ARN/biosíntesis , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/biosíntesis , Análisis de Secuencia de ARN
7.
PLoS Genet ; 11(5): e1005233, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25973932

RESUMEN

Translation initiation factor eIF4E mediates mRNA selection for protein synthesis via the mRNA 5'cap. A family of binding proteins, termed the 4E-BPs, interact with eIF4E to hinder ribosome recruitment. Mechanisms underlying mRNA specificity for 4E-BP control remain poorly understood. Saccharomyces cerevisiae 4E-BPs, Caf20p and Eap1p, each regulate an overlapping set of mRNAs. We undertook global approaches to identify protein and RNA partners of both 4E-BPs by immunoprecipitation of tagged proteins combined with mass spectrometry or next-generation sequencing. Unexpectedly, mass spectrometry indicated that the 4E-BPs associate with many ribosomal proteins. 80S ribosome and polysome association was independently confirmed and was not dependent upon interaction with eIF4E, as mutated forms of both Caf20p and Eap1p with disrupted eIF4E-binding motifs retain ribosome interaction. Whole-cell proteomics revealed Caf20p mutations cause both up and down-regulation of proteins and that many changes were independent of the 4E-binding motif. Investigations into Caf20p mRNA targets by immunoprecipitation followed by RNA sequencing revealed a strong association between Caf20p and mRNAs involved in transcription and cell cycle processes, consistent with observed cell cycle phenotypes of mutant strains. A core set of over 500 Caf20p-interacting mRNAs comprised of both eIF4E-dependent (75%) and eIF4E-independent targets (25%), which differ in sequence attributes. eIF4E-independent mRNAs share a 3' UTR motif. Caf20p binds all tested motif-containing 3' UTRs. Caf20p and the 3'UTR combine to influence ERS1 mRNA polysome association consistent with Caf20p contributing to translational control. Finally ERS1 3'UTR confers Caf20-dependent repression of expression to a heterologous reporter gene. Taken together, these data reveal conserved features of eIF4E-dependent Caf20p mRNA targets and uncover a novel eIF4E-independent mode of Caf20p binding to mRNAs that extends the regulatory role of Caf20p in the mRNA-specific repression of protein synthesis beyond its interaction with eIF4E.


Asunto(s)
Represión Epigenética , Factor 4E Eucariótico de Iniciación/metabolismo , Regulación Fúngica de la Expresión Génica , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Factores de Transcripción/metabolismo , Regulación hacia Abajo , Factor 4E Eucariótico de Iniciación/genética , Factor 4G Eucariótico de Iniciación/genética , Factor 4G Eucariótico de Iniciación/metabolismo , Inmunoprecipitación , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Sistemas de Lectura Abierta , Unión Proteica , Biosíntesis de Proteínas , Proteómica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Análisis de Secuencia de ARN , Espectrometría de Masas en Tándem , Factores de Transcripción/genética
8.
Biochem J ; 473(6): e11-3, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26965386

RESUMEN

Using cells to manufacture protein-based therapeutics or biopharmaceuticals is a rapidly expanding industrial activity. Chinese hamster ovary (CHO) cells are the most frequently used mammalian host-expression system for the manufacture of biopharmaceuticals. Over the past ∼30 years academic and industrial researchers have studied cell expression characteristics with aims to improve product yield, quality, scalability and reproducibility. Although many steps in the gene expression and secretion pathways have been optimized, little attention has been paid to optimizing protein synthesis factors and regulators during this process. A new study in Biochemical Journal by Mead et al., provides a first systematic study of several protein synthesis factors and finds that the expression level of eIF4G1 correlates with the level of recombinant protein expressed in cultures. Optimizing levels and activities of protein synthesis factors may help to enhance recombinant protein expression of biopharmaceuticals.


Asunto(s)
Anticuerpos Monoclonales/biosíntesis , Ingeniería Celular/métodos , Factores Eucarióticos de Iniciación/biosíntesis , Expresión Génica , Animales
9.
Nature ; 465(7296): 378-81, 2010 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-20485439

RESUMEN

In protein synthesis initiation, the eukaryotic translation initiation factor (eIF) 2 (a G protein) functions in its GTP-bound state to deliver initiator methionyl-tRNA (tRNA(i)(Met)) to the small ribosomal subunit and is necessary for protein synthesis in all cells. Phosphorylation of eIF2 [eIF2(alphaP)] is critical for translational control in diverse settings including nutrient deprivation, viral infection and memory formation. eIF5 functions in start site selection as a GTPase accelerating protein (GAP) for the eIF2.GTP.tRNA(i)(Met) ternary complex within the ribosome-bound pre-initiation complex. Here we define new regulatory functions of eIF5 in the recycling of eIF2 from its inactive eIF2.GDP state between successive rounds of translation initiation. First we show that eIF5 stabilizes the binding of GDP to eIF2 and is therefore a bi-functional protein that acts as a GDP dissociation inhibitor (GDI). We find that this activity is independent of the GAP function and identify conserved residues within eIF5 that are necessary for this role. Second we show that eIF5 is a critical component of the eIF2(alphaP) regulatory complex that inhibits the activity of the guanine-nucleotide exchange factor (GEF) eIF2B. Together our studies define a new step in the translation initiation pathway, one that is critical for normal translational controls.


Asunto(s)
Factor 2 Eucariótico de Iniciación/metabolismo , Inhibidores de Disociación de Guanina Nucleótido/metabolismo , Iniciación de la Cadena Peptídica Traduccional , Factores de Iniciación de Péptidos/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Factor 2 Eucariótico de Iniciación/antagonistas & inhibidores , Factor 2 Eucariótico de Iniciación/química , Proteínas Activadoras de GTPasa/metabolismo , Inhibidores de Disociación de Guanina Nucleótido/química , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Factores de Iniciación de Péptidos/química , Fosforilación , Unión Proteica , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , ARN de Transferencia de Metionina/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
Nucleic Acids Res ; 42(2): 1026-41, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24163252

RESUMEN

In response to stress, the translation of many mRNAs in yeast can change in a fashion discordant with the general repression of translation. Here, we use machine learning to mine the properties of these mRNAs to determine specific translation control signals. We find a strong association between transcripts acutely translationally repressed under oxidative stress and those associated with the RNA-binding protein Puf3p, a known regulator of cellular mRNAs encoding proteins targeted to mitochondria. Under oxidative stress, a PUF3 deleted strain exhibits more robust growth than wild-type cells and the shift in translation from polysomes to monosomes is attenuated, suggesting puf3Δ cells perceive less stress. In agreement, the ratio of reduced:oxidized glutathione, a major antioxidant and indicator of cellular redox state, is increased in unstressed puf3Δ cells but remains lower under stress. In untreated conditions, Puf3p migrates with polysomes rather than ribosome-free fractions, but this is lost under stress. Finally, reverse transcriptase-polymerase chain reaction (RT-PCR) of Puf3p targets following affinity purification shows Puf3p-mRNA associations are maintained or increased under oxidative stress. Collectively, these results point to Puf3p acting as a translational repressor in a manner exceeding the global translational response, possibly by temporarily limiting synthesis of new mitochondrial proteins as cells adapt to the stress.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Estrés Oxidativo/genética , Biosíntesis de Proteínas , Proteínas de Unión al ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Eliminación de Gen , Glutatión/metabolismo , Oxidación-Reducción , Polirribosomas/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
11.
J Biol Chem ; 287(11): 8275-85, 2012 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-22238343

RESUMEN

In eukaryotic translation initiation, eIF2B is the guanine nucleotide exchange factor (GEF) required for reactivation of the G protein eIF2 between rounds of protein synthesis initiation. eIF2B is unusually complex with five subunits (α-ε) necessary for GEF activity and its control by phosphorylation of eIF2α. In addition, inherited mutations in eIF2B cause a fatal leukoencephalopathy. Here we describe experiments examining domains of eIF2Bγ and ε that both share sequence and predicted tertiary structure similarity with a family of phospho-hexose sugar nucleotide pyrophosphorylases. Firstly, using a genetic approach, we find no evidence to support a significant role for a potential nucleotide-binding region within the pyrophosphorylase-like domain (PLD) of eIF2Bε for nucleotide exchange. These findings are at odds with one mechanism for nucleotide exchange proposed previously. By using a series of constructs and a co-expression and precipitation strategy, we find that the eIF2Bε and -γ PLDs and a shared second domain predicted to form a left-handed ß helix are all critical for interprotein interactions between eIF2B subunits necessary for eIF2B complex formation. We have identified extensive interactions between the PLDs and left-handed ß helix domains that form the eIF2Bγε subcomplex and propose a model for domain interactions between eIF2B subunits.


Asunto(s)
Dominio Catalítico/fisiología , Factor 2B Eucariótico de Iniciación/metabolismo , Complejos Multienzimáticos/metabolismo , Iniciación de la Cadena Peptídica Traduccional/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Factor 2B Eucariótico de Iniciación/química , Factor 2B Eucariótico de Iniciación/genética , Humanos , Complejos Multienzimáticos/química , Complejos Multienzimáticos/genética , Mapeo Peptídico/métodos , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
12.
Nucleic Acids Res ; 39(19): 8314-28, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21745818

RESUMEN

The translation factor eIF5 is an important partner of eIF2, directly modulating its function in several critical steps. First, eIF5 binds eIF2/GTP/Met-tRNA(i)(Met) ternary complex (TC), promoting its recruitment to 40S ribosomal subunits. Secondly, its GTPase activating function promotes eIF2 dissociation for ribosomal subunit joining. Finally, eIF5 GDP dissociation inhibition (GDI) activity can antagonize eIF2 reactivation by competing with the eIF2 guanine exchange factor (GEF), eIF2B. The C-terminal domain (CTD) of eIF5, a W2-type HEAT domain, mediates its interaction with eIF2. Here, we characterize a related human protein containing MA3- and W2-type HEAT domains, previously termed BZW2 and renamed here as eIF5-mimic protein 1 (5MP1). Human 5MP1 interacts with eIF2 and eIF3 and inhibits general and gene-specific translation in mammalian systems. We further test whether 5MP1 is a mimic or competitor of the GEF catalytic subunit eIF2Bε or eIF5, using yeast as a model. Our results suggest that 5MP1 interacts with yeast eIF2 and promotes TC formation, but inhibits TC binding to the ribosome. Moreover, 5MP1 is not a GEF but a weak GDI for yeast eIF2. We propose that 5MP1 is a partial mimic and competitor of eIF5, interfering with the key steps by which eIF5 regulates eIF2 function.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Factor 2 Eucariótico de Iniciación/metabolismo , Factores Eucarióticos de Iniciación/metabolismo , Regulación de la Expresión Génica , Biosíntesis de Proteínas , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Animales , Línea Celular , Factor 2 Eucariótico de Iniciación/análisis , Factor 2B Eucariótico de Iniciación/metabolismo , Factor 3 de Iniciación Eucariótica/metabolismo , Guanosina Difosfato/metabolismo , Células HeLa , Humanos , Ratones , Imitación Molecular , Factores de Iniciación de Péptidos/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Unión al ARN/antagonistas & inhibidores , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factor 5A Eucariótico de Iniciación de Traducción
13.
J Virol ; 85(19): 9716-25, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21795329

RESUMEN

Eukaryotic translation initiation factor 2B (eIF2B) is a heteropentameric guanine nucleotide exchange factor that converts protein synthesis initiation factor 2 (eIF2) from a GDP-bound form to the active eIF2-GTP complex. Cellular stress can repress translation initiation by activating kinases capable of phosphorylating the alpha subunit of eIF2 (eIF2α), which sequesters eIF2B to prevent exchange activity. Previously, we demonstrated that tumor cells are sensitive to viral replication, possibly due to the occurrence of defects in eIF2B that overcome the inhibitory effects of eIF2α phosphorylation. To extend this analysis, we have investigated the importance of eIF2Bα function and report that this subunit can functionally substitute for its counterpart, GCN3, in yeast. In addition, a variant of mammalian eIF2Bα harboring a point mutation (T41A) was able overcome translational inhibition invoked by amino acid depravation, which activates Saccharomyces cerevisiae GCN2 to phosphorylate the yeast eIF2α homolog SUI2. Significantly, we also demonstrate that the loss of eIF2Bα, or the expression of the T41A variant in mammalian cells, is sufficient to neutralize the consequences of eIF2α phosphorylation and render normal cells susceptible to virus infection. Our data emphasize the importance of eIF2Bα in mediating the eIF2 kinase translation-inhibitory activity and may provide insight into the complex nature of viral oncolysis.


Asunto(s)
Factor 2B Eucariótico de Iniciación/metabolismo , Vesiculovirus/crecimiento & desarrollo , Replicación Viral , Sustitución de Aminoácidos/genética , Animales , Células Cultivadas , Factor 2B Eucariótico de Iniciación/deficiencia , Factor 2B Eucariótico de Iniciación/genética , Prueba de Complementación Genética , Humanos , Ratones , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutación Missense , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae
14.
Nucleic Acids Res ; 38(22): 8039-50, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20705650

RESUMEN

eIF4E-binding proteins (4E-BPs) regulate translation of mRNAs in eukaryotes. However the extent to which specific mRNA targets are regulated by 4E-BPs remains unknown. We performed translational profiling by microarray analysis of polysome and monosome associated mRNAs in wild-type and mutant cells to identify mRNAs in yeast regulated by the 4E-BPs Caf20p and Eap1p; the first-global comparison of 4E-BP target mRNAs. We find that yeast 4E-BPs modulate the translation of >1000 genes. Most target mRNAs differ between the 4E-BPs revealing mRNA specificity for translational control by each 4E-BP. This is supported by observations that eap1Δ and caf20Δ cells have different nitrogen source utilization defects, implying different mRNA targets. To account for the mRNA specificity shown by each 4E-BP, we found correlations between our data sets and previously determined targets of yeast mRNA-binding proteins. We used affinity chromatography experiments to uncover specific RNA-stabilized complexes formed between Caf20p and Puf4p/Puf5p and between Eap1p and Puf1p/Puf2p. Thus the combined action of each 4E-BP with specific 3'-UTR-binding proteins mediates mRNA-specific translational control in yeast, showing that this form of translational control is more widely employed than previously thought.


Asunto(s)
Factores Eucarióticos de Iniciación/fisiología , Regulación Fúngica de la Expresión Génica , Biosíntesis de Proteínas , Proteínas de Unión al ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/genética , Factores de Transcripción/fisiología , Aminoácidos/metabolismo , Ciclinas/genética , Factores Eucarióticos de Iniciación/genética , Eliminación de Gen , Nitrógeno/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Transcripción Genética
15.
Methods Mol Biol ; 2428: 89-99, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35171475

RESUMEN

The translation initiation factor eIF2 is critical for protein synthesis initiation, and its regulation is central to the integrated stress response (ISR). eIF2 is a G protein, and the activity is regulated by its GDP or GTP-binding status, such that only GTP-bound eIF2 has high affinity for initiator methionyl tRNA. In the ISR, regulatory signaling reduces the availability of eIF2-GTP and so downregulates protein synthesis initiation in cells. Fluorescence spectroscopy can be used as an analytical tool to study protein-ligand interactions in vitro. Here we describe methods to purify eIF2 and assays of its activity, employing analogs of GDP, GTP, and methionyl initiator tRNA ligands to accurately measure their binding affinities.


Asunto(s)
Factor 2 Procariótico de Iniciación , ARN de Transferencia de Metionina , Factor 2 Eucariótico de Iniciación/metabolismo , Nucleótidos de Guanina , Ligandos , Factor 2 Procariótico de Iniciación/metabolismo , Unión Proteica , ARN de Transferencia de Metionina/química , ARN de Transferencia de Metionina/metabolismo
16.
Elife ; 112022 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-35621265

RESUMEN

Regulation of translation is a fundamental facet of the cellular response to rapidly changing external conditions. Specific RNA-binding proteins (RBPs) co-ordinate the translational regulation of distinct mRNA cohorts during stress. To identify RBPs with previously under-appreciated roles in translational control, we used polysome profiling and mass spectrometry to identify and quantify proteins associated with translating ribosomes in unstressed yeast cells and during oxidative stress and amino acid starvation, which both induce the integrated stress response (ISR). Over 800 proteins were identified across polysome gradient fractions, including ribosomal proteins, translation factors, and many others without previously described translation-related roles, including numerous metabolic enzymes. We identified variations in patterns of PE in both unstressed and stressed cells and identified proteins enriched in heavy polysomes during stress. Genetic screening of polysome-enriched RBPs identified the cytosolic aspartate aminotransferase, Aat2, as a ribosome-associated protein whose deletion conferred growth sensitivity to oxidative stress. Loss of Aat2 caused aberrantly high activation of the ISR via enhanced eIF2α phosphorylation and GCN4 activation. Importantly, non-catalytic AAT2 mutants retained polysome association and did not show heightened stress sensitivity. Aat2 therefore has a separate ribosome-associated translational regulatory or 'moonlighting' function that modulates the ISR independent of its aspartate aminotransferase activity.


Asunto(s)
Ribosomas , Proteínas de Saccharomyces cerevisiae , Aspartato Aminotransferasas/genética , Aspartato Aminotransferasas/metabolismo , Estrés Oxidativo , Polirribosomas/metabolismo , Biosíntesis de Proteínas , Proteínas de Unión al ARN/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
17.
iScience ; 24(12): 103454, 2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34877508

RESUMEN

eIF2B is the guanine nucleotide exchange factor (GEF) required for cytoplasmic protein synthesis initiation in eukaryotes and its regulation within the integrated stress response (ISR). It activates its partner factor eIF2, thereby promoting translation initiation. Here we provide evidence through biochemical and genetic approaches that eIF2B can bind directly to GTP and this can enhance its rate of GEF activity toward eIF2-GDP in vitro. GTP binds to a subcomplex of the eIF2Bγ and ε subunits. The eIF2Bγ amino-terminal domain shares structural homology with hexose sugar phosphate pyrophosphorylase enzymes that bind specific nucleotides. A K66R mutation in eIF2Bγ is especially sensitive to guanine or GTP in a range of functional assays. Taken together, our data suggest eIF2Bγ may act as a sensor of purine nucleotide availability and thus modulate eIF2B activity and protein synthesis in response to fluctuations in cellular nucleotide levels.

18.
Sci Rep ; 11(1): 13467, 2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34188131

RESUMEN

By interacting with the mRNA 5' cap, the translation initiation factor eIF4E plays a critical role in selecting mRNAs for protein synthesis in eukaryotic cells. Caf20 is a member of the family of proteins found across eukaryotes termed 4E-BPs, which compete with eIF4G for interaction with eIF4E. Caf20 independently interacts with ribosomes. Thus, Caf20 modulates the mRNA selection process via poorly understood mechanisms. Here we performed unbiased mutagenesis across Caf20 to characterise which regions of Caf20 are important for interaction with eIF4E and with ribosomes. Caf20 binding to eIF4E is entirely dependent on a canonical motif shared with other 4E-BPs. However, binding to ribosomes is weakened by mutations throughout the protein, suggesting an extended binding interface that partially overlaps with the eIF4E-interaction region. By using chemical crosslinking, we identify a potential ribosome interaction region on the ribosome surface that spans both small and large subunits and is close to a known interaction site of eIF3. The function of ribosome binding by Caf20 remains unclear.


Asunto(s)
Factor 4E Eucariótico de Iniciación/química , ARN de Hongos/química , ARN Mensajero/química , Ribosomas/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Factores de Transcripción/química , Factor 4E Eucariótico de Iniciación/genética , Factor 4E Eucariótico de Iniciación/metabolismo , Mutación , ARN de Hongos/genética , ARN de Hongos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
19.
Nat Commun ; 12(1): 833, 2021 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-33547280

RESUMEN

The structure of proline prevents it from adopting an optimal position for rapid protein synthesis. Poly-proline-tract (PPT) associated ribosomal stalling is resolved by highly conserved eIF5A, the only protein to contain the amino acid hypusine. We show that de novo heterozygous EIF5A variants cause a disorder characterized by variable combinations of developmental delay, microcephaly, micrognathia and dysmorphism. Yeast growth assays, polysome profiling, total/hypusinated eIF5A levels and PPT-reporters studies reveal that the variants impair eIF5A function, reduce eIF5A-ribosome interactions and impair the synthesis of PPT-containing proteins. Supplementation with 1 mM spermidine partially corrects the yeast growth defects, improves the polysome profiles and restores expression of PPT reporters. In zebrafish, knockdown eif5a partly recapitulates the human phenotype that can be rescued with 1 µM spermidine supplementation. In summary, we uncover the role of eIF5A in human development and disease, demonstrate the mechanistic complexity of EIF5A-related disorder and raise possibilities for its treatment.


Asunto(s)
Discapacidades del Desarrollo/genética , Regulación del Desarrollo de la Expresión Génica , Microcefalia/genética , Micrognatismo/genética , Factores de Iniciación de Péptidos/genética , Proteínas de Unión al ARN/genética , Adolescente , Secuencia de Aminoácidos , Animales , Niño , Discapacidades del Desarrollo/metabolismo , Discapacidades del Desarrollo/patología , Embrión no Mamífero , Femenino , Humanos , Lisina/análogos & derivados , Lisina/genética , Lisina/metabolismo , Masculino , Microcefalia/metabolismo , Microcefalia/patología , Micrognatismo/metabolismo , Micrognatismo/patología , Factores de Iniciación de Péptidos/deficiencia , Péptidos/genética , Péptidos/metabolismo , Biosíntesis de Proteínas , Conformación Proteica , Isoformas de Proteínas/deficiencia , Isoformas de Proteínas/genética , Ribosomas/genética , Ribosomas/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Espermidina/farmacología , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Factor 5A Eucariótico de Iniciación de Traducción
20.
Mol Cell Biol ; 27(14): 5225-34, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17526738

RESUMEN

Diverse guanine nucleotide exchange factors (GEFs) regulate the activity of GTP binding proteins. One of the most complicated pairs is eukaryotic initiation factor 2B (eIF2B) and eIF2, which function during protein synthesis initiation in eukaryotes. We have mutated conserved surface residues within the eIF2B GEF domain, located at the eIF2Bepsilon C terminus. Extensive genetic and biochemical characterization established how these residues contribute to GEF activity. We find that the universally conserved residue E569 is critical for activity and that even a conservative E569D substitution is lethal in vivo. Several mutations within residues close to E569 have no discernible effect on growth or GCN4 expression, but an alanine substitution at the adjacent L568 is cold sensitive and deregulates GCN4 activity at 15 degrees C. The mutation of W699, found on a separate surface approximately 40 A from E569, is also lethal. Binding studies show that W699 is critical for interaction with eIF2beta, while L568 and E569 are not. In contrast, all three residues are critical for interaction with eIF2gamma. These data show that multiple contacts between eIF2gamma and eIF2Bepsilon mediate nucleotide exchange.


Asunto(s)
Dominio Catalítico , Factor 2B Eucariótico de Iniciación/química , Factor 2B Eucariótico de Iniciación/metabolismo , Nucleótidos de Guanina/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Catálisis/efectos de los fármacos , Frío , Proteínas de Unión al ADN/metabolismo , Modelos Biológicos , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Mutantes/metabolismo , Mutación/genética , Fenotipo , Unión Proteica/efectos de los fármacos , Estructura Secundaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sales (Química)/farmacología , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA