RESUMEN
In December 2019, the first cases of infection with a novel coronavirus, SARS-CoV-2, were diagnosed. Currently, there is no effective antiviral treatment for COVID-19. To address this emerging problem, we focused on the SARS-CoV-2 main protease that constitutes one of the most attractive antiviral drug targets. We have synthesized a combinatorial library of fluorogenic substrates with glutamine in the P1 position. We used it to determine the substrate preferences of the SARS-CoV and SARS-CoV-2 main proteases. On the basis of these findings, we designed and synthesized a potent SARS-CoV-2 inhibitor (Ac-Abu-DTyr-Leu-Gln-VS, half-maximal effective concentration of 3.7 µM) and two activity-based probes, for one of which we determined the crystal structure of its complex with the SARS-CoV-2 Mpro. We visualized active SARS-CoV-2 Mpro in nasopharyngeal epithelial cells of patients suffering from COVID-19 infection. The results of our work provide a structural framework for the design of inhibitors as antiviral agents and/or diagnostic tests.
Asunto(s)
Antivirales/química , COVID-19/diagnóstico por imagen , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Células Epiteliales/virología , Inhibidores de Proteasas/química , SARS-CoV-2/efectos de los fármacos , Antivirales/farmacología , COVID-19/patología , COVID-19/virología , Dominio Catalítico , Técnicas Químicas Combinatorias , Proteasas 3C de Coronavirus/química , Proteasas 3C de Coronavirus/genética , Proteasas 3C de Coronavirus/metabolismo , Cristalografía por Rayos X , Diseño de Fármacos , Células Epiteliales/ultraestructura , Colorantes Fluorescentes/química , Expresión Génica , Glutamina/química , Humanos , Modelos Moleculares , Nasofaringe/virología , Inhibidores de Proteasas/farmacología , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/efectos de los fármacos , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/enzimología , SARS-CoV-2/enzimología , Especificidad por SustratoRESUMEN
The aim of this study was to assess the potential implication of microRNA on tuberous sclerosis (TSC) pathogenesis by performing microRNA profiling on cell lines silencing TSC1 or TSC2 genes using qPCR panels, before and after incubation with rapamycin. Significant differences in expression were observed between samples before and after rapamycin treatment in nineteen miRNAs in TSC1, five miRNAs in TSC2 and seven miRNAs in controls. Of miRNAs dysregulated before rapamycin treatment, three normalized after treatment in the TSC1 group (miR-21-3p, miR-433-3p, let-7g-3p) and one normalized in the TSC2 group (miR-1224-3p). Of the miRNAs dysregulated before rapamycin treatment in the TSC1 and TSC2 groups, two did not normalize after treatment (miR-33a-3p, miR-29a-3p). The results of the possible targets indicated that there are four common genes with seed regions susceptible to regulation by those miRNAs: ZBTB20, PHACTR2, PLXNC1 and ATP1B4. Our data show no changes in mRNA expression of these targets after rapamycin treatment. In conclusion, results of our study indicate the involvement of miRNA dysregulation in the pathogenesis of TSC. Some of the miRNA might be used as markers of treatment efficacy and autonomic miRNA as a target for future therapy.
Asunto(s)
MicroARNs , Esclerosis Tuberosa , Humanos , Línea Celular , MicroARNs/genética , Inhibidores mTOR , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/genética , Esclerosis Tuberosa/tratamiento farmacológico , Esclerosis Tuberosa/genéticaRESUMEN
BACKGROUND: Wolfram syndrome (WFS) is a rare autosomal recessive syndrome in which diabetes mellitus and neurodegenerative disorders occur as a result of Wolframin deficiency and increased ER stress. In addition, WFS1 deficiency leads to calcium homeostasis disturbances and can change mitochondrial dynamics. The aim of this study was to evaluate protein levels and changes in gene transcription on human WFS cell model under experimental ER stress. METHODS: We performed transcriptomic and proteomic analysis on WFS human cell model-skin fibroblasts reprogrammed into induced pluripotent stem (iPS) cells and then into neural stem cells (NSC) with subsequent ER stress induction using tunicamycin (TM). Results were cross-referenced with publicly available RNA sequencing data in hippocampi and hypothalami of mice with WFS1 deficiency. RESULTS: Proteomic analysis identified specific signal pathways that differ in NSC WFS cells from healthy ones. Next, detailed analysis of the proteins involved in the mitochondrial function showed the down-regulation of subunits of the respiratory chain complexes in NSC WFS cells, as well as the up-regulation of proteins involved in Krebs cycle and glycolysis when compared to the control cells. Based on pathway enrichment analysis we concluded that in samples from mice hippocampi the mitochondrial protein import machinery and OXPHOS were significantly down-regulated. CONCLUSIONS: Our results show the functional and morphological secondary mitochondrial damage in patients with WFS. Video Abstract.
Asunto(s)
Síndrome de WolframRESUMEN
The aim of this study was to evaluate the effect of everolimus, a mammalian target of rapamycin (mTOR) inhibitor, on red blood cell parameters in the context of iron homeostasis in patients with tuberous sclerosis complex (TSC) and evaluate its effect on cell size in vitro. Everolimus has a significant impact on red blood cell parameters in patients with TSC. The most common alteration was microcytosis. The mean MCV value decreased by 9.2%, 12%, and 11.8% after 3, 6, and 12 months of everolimus treatment. The iron level declined during the first 3 months, and human soluble transferrin receptor concentration increased during 6 months of therapy. The size of K562 cells decreased when cultured in the presence of 5 µM everolimus by approximately 8%. The addition of hemin to the cell culture with 5 µM everolimus did not prevent any decrease in cell size. The stage of erythroid maturation did not affect the response to everolimus. Our results showed that the mTOR inhibitor everolimus caused red blood cell microcytosis in vivo and in vitro. This effect is not clearly related to a deficit of iron and erythroid maturation. This observation confirms that mTOR signaling plays a complex role in the control of cell size.
Asunto(s)
Tamaño de la Célula/efectos de los fármacos , Eritrocitos/efectos de los fármacos , Eritrocitos/patología , Inhibidores de Proteínas Quinasas/farmacología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Adolescente , Biomarcadores , Diferenciación Celular/efectos de los fármacos , Línea Celular , Niño , Preescolar , Índices de Eritrocitos , Eritrocitos/metabolismo , Everolimus/administración & dosificación , Everolimus/efectos adversos , Everolimus/farmacología , Citometría de Flujo , Humanos , Hierro/metabolismo , Células K562 , Inhibidores de Proteínas Quinasas/administración & dosificación , Inhibidores de Proteínas Quinasas/efectos adversosRESUMEN
The aim of this study was to determine the serum profiles of miRNAs in patients with tuberous sclerosis (TSC) upon sirolimus treatment and compare them with those previously treated with everolimus in a similarly designed experiment. Serum microRNA profiling was performed in ten TSC patients before sirolimus therapy and again after 3-6 months using qPCR panels (Exiqon). Of 752 tested miRNAs, 28 showed significant differences in expression between TSC patients before and after sirolimus treatment. Of these, 11 miRNAs were dysregulated in the same directions as in the sirolimus groupcompared with the previously described everolimus group, miR-142-3p, miR-29c-3p, miR-150-5p, miR-425-5p, miR-376a-3p, miR-376a-3p, miR-532-3p, and miR-136-5p were upregulated, while miR-15b-3p, miR-100-5p, and miR-185-5p were downregulated. The most significant changes of expression, with fold changes exceeding 1.25 for both treatments, were noted for miR-136-5p, miR-376a-3p, and miR-150-5p. The results of a pathway analysis of the possible target genes for these miRNAs indicated the involvement of the Ras and MAPK signaling pathway. Upregulation of miR-136, miR-376a-3p, and miR-150-5p was noted in TSC patients treated with mTOR inhibitors, indicating a role in the downregulation of the mTOR pathway. Further studies are needed to determine the relationship between upregulated microRNAs and treatment efficacy.
RESUMEN
Alström syndrome (ALMS) and Bardet-Biedl syndrome (BBS) are rare genetic diseases with a number of common clinical features ranging from early-childhood obesity and retinal degeneration. ALMS and BBS belong to the ciliopathies, which are known to have the expression products of genes, encoding them as cilia-localized proteins in multiple target organs. The aim of this study was to perform transcriptomic and proteomic analysis on cellular models of ALMS and BBS syndromes to identify common and distinct pathological mechanisms present in both syndromes. For this purpose, epithelial cells were isolated from the urine of patients and healthy subjects, which were then cultured and reprogrammed into induced pluripotent stem (iPS) cells. The pathways of genes associated with the metabolism of lipids and glycosaminoglycan and the transport of small molecules were found to be concomitantly downregulated in both diseases, while transcripts related to signal transduction, the immune system, cell cycle control and DNA replication and repair were upregulated. Furthermore, protein pathways associated with autophagy, apoptosis, cilium assembly and Gli1 protein were upregulated in both ciliopathies. These results provide new insights into the common and divergent pathogenic pathways between two similar genetic syndromes, particularly in relation to primary cilium function and abnormalities in cell differentiation.
Asunto(s)
Síndrome de Alstrom , Síndrome de Bardet-Biedl , Ciliopatías , Obesidad Infantil , Niño , Humanos , Síndrome de Bardet-Biedl/genética , Transcriptoma/genética , Proteómica , Obesidad Infantil/complicaciones , Síndrome de Alstrom/genética , Proteínas/genéticaRESUMEN
Severe congenital neutropenia (SCN) is a rare hematological condition with heterogenous genetic background. Neutrophil elastase (NE) encoded by ELANE gene is mutated in over half of the SCN cases. The role of NE defects in myelocytes maturation arrest in bone marrow is widely investigated; however, the mechanism underlying this phenomenon has still remained unclear. In this review, we sum up the studies exploring mechanisms of neutrophil deficiency, biological role of NE in neutrophil and the effects of ELANE mutation and neutropenia pathogenesis. We also explain the hypotheses presented so far and summarize options of neutropenia therapy.
Asunto(s)
Síndromes Congénitos de Insuficiencia de la Médula Ósea/diagnóstico , Síndromes Congénitos de Insuficiencia de la Médula Ósea/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Elastasa de Leucocito/deficiencia , Neutropenia/congénito , Neutrófilos/enzimología , Regulación de la Expresión Génica , Humanos , Elastasa de Leucocito/química , Elastasa de Leucocito/genética , Elastasa de Leucocito/metabolismo , Mutación , Neutropenia/diagnóstico , Neutropenia/genética , Procesamiento Proteico-Postraduccional , Transporte de Proteínas , Transducción de Señal , Relación Estructura-ActividadRESUMEN
Resistance to L-asparaginase (L-asp) is a major contributor to poor treatment outcomes of several subtypes of childhood B cell precursor acute lymphoblastic leukemia (BCP-ALL). Asparagine synthetase (ASNS), legumain (LGMN) and cathepsin B (CTSB) serve a key role in L-asp resistance. The association between genetic subtypes of BCP-ALL and the expression of ASNS, LGMN and CTSB may elucidate the mechanisms of treatment failure. Bone marrow samples of 52 children newly diagnosed with BCP-ALL were screened for major genetic abnormalities and ASNS, LGMN and CTSB gene expression levels. The cohort was further divided into groups corresponding to the key genetic aberrations occurring in BCP-ALL: Breakpoint cluster region and Abelson murine leukemia viral oncogene homolog 1 fusion; hyperdiploidy, hypodiploidy, ETS variant 6 and runt-related transcription factor 1 fusion and other BCP-ALL with no primary genetic aberration identified. A subgroup analysis based on the differences in copy number variations demonstrated a significant increase of ASNS, LGMN and CTSB median expression in other BCP-ALL cases with paired box 5 (PAX5) deletion (P=0.0117; P=0.0036; P<0.0001, respectively) compared with those with wild-type PAX5. Patients with high ASNS expression exhibited longer relapse-free survival (RFS) compared with those with low ASNS levels (P=0.0315; HR, 0.19; 95% CI, 0.04-0.86); the 5-year RFS for patients in the high ASNS expression group was 90.15% (95% CI, 87.90-92.40%). Despite the impact on ASNS, LGMN and CTSB expression, PAX5 deletion did not influence RFS in the other BCP-ALL group (P=0.6839). Therefore, the results of the present study revealed high levels of ASNS, LGMN and CTSB expression in the other BCP-ALL group with concomitant PAX5 deletion and no subsequent deterioration in 5-year RFS. High ASNS expression level, as a single factor, was strongly associated with an improved outcome.
RESUMEN
The link between ERK1/2 activity and cisplatin cytotoxicity, in association with the cell cycle, in ovarian cancer cell lines resistant (A2780cis; SK-OV-3) and sensitive (A2780) to cisplatin was determined. We observed that cisplatin, at a low concentration enhanced the activation of ERK1/2 in A2780 cells and increased their accumulation in the S phase, resulting in low cytotoxicity. A high concentration of drug induced dephosphorylation and degradation of ERK1/2 and was extremely toxic, accumulating most of to these cells in the sub-G1 phase. The PD98059, pharmacological inhibitor of ERK1/2 activation, increased the cytotoxicity of cisplatin applied at a low concentration to A2780 cells (decreased ERK1/2 activity), causing shift of cell accumulation from the S to G1 phase. Surprisingly, PD98059 enhanced cell viability when a chemotherapeutic was used at high concentration, intensifying phosphorylation level of ERK1/2 and reversing cell cycle arrest in sub-G1 to promote the G1 and S phases. A2780cis cells demonstrated resistance to cisplatin with high ERK1/2 activity and accumulation of cells in the G1 and S phases. PD98059 sensitized resistant cells to drug toxicity during the first 24 hours of treatment, with blocked ERK1/2 phosphorylation and prevented progression from the G1 to S phase. SK-OV-3 resistant cells characterized with extremely high basal phosphorylation of ERK1/2, which wasn't changed after exposure to cisplatin. Administration of PD98059 didn't change the cytotoxicity of cisplatin in these cells. In conclusion, ERK1/2, activated by cisplatin, participates in the cell cycle progression from the G1 to S phase, enhancing cells' survival and drug resistance.