Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 328
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(10): 2176-2192.e22, 2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-37137307

RESUMEN

The ClpC1:ClpP1P2 protease is a core component of the proteostasis system in mycobacteria. To improve the efficacy of antitubercular agents targeting the Clp protease, we characterized the mechanism of the antibiotics cyclomarin A and ecumicin. Quantitative proteomics revealed that the antibiotics cause massive proteome imbalances, including upregulation of two unannotated yet conserved stress response factors, ClpC2 and ClpC3. These proteins likely protect the Clp protease from excessive amounts of misfolded proteins or from cyclomarin A, which we show to mimic damaged proteins. To overcome the Clp security system, we developed a BacPROTAC that induces degradation of ClpC1 together with its ClpC2 caretaker. The dual Clp degrader, built from linked cyclomarin A heads, was highly efficient in killing pathogenic Mycobacterium tuberculosis, with >100-fold increased potency over the parent antibiotic. Together, our data reveal Clp scavenger proteins as important proteostasis safeguards and highlight the potential of BacPROTACs as future antibiotics.


Asunto(s)
Antituberculosos , Mycobacterium tuberculosis , Antituberculosos/farmacología , Proteínas Bacterianas/metabolismo , Endopeptidasa Clp/metabolismo , Proteínas de Choque Térmico/metabolismo , Mycobacterium tuberculosis/efectos de los fármacos , Proteostasis
2.
Proc Natl Acad Sci U S A ; 120(17): e2219418120, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37071682

RESUMEN

Significant recent advances in structural biology, particularly in the field of cryoelectron microscopy, have dramatically expanded our ability to create structural models of proteins and protein complexes. However, many proteins remain refractory to these approaches because of their low abundance, low stability, or-in the case of complexes-simply not having yet been analyzed. Here, we demonstrate the power of using cross-linking mass spectrometry (XL-MS) for the high-throughput experimental assessment of the structures of proteins and protein complexes. This included those produced by high-resolution but in vitro experimental data, as well as in silico predictions based on amino acid sequence alone. We present the largest XL-MS dataset to date, describing 28,910 unique residue pairs captured across 4,084 unique human proteins and 2,110 unique protein-protein interactions. We show that models of proteins and their complexes predicted by AlphaFold2, and inspired and corroborated by the XL-MS data, offer opportunities to deeply mine the structural proteome and interactome and reveal mechanisms underlying protein structure and function.


Asunto(s)
Biología Molecular , Proteómica , Humanos , Microscopía por Crioelectrón , Proteómica/métodos , Espectrometría de Masas/métodos , Biología Molecular/métodos , Proteoma/química , Reactivos de Enlaces Cruzados/química
3.
Proc Natl Acad Sci U S A ; 120(26): e2303292120, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37339194

RESUMEN

The ongoing COVID-19 pandemic has had great societal and health consequences. Despite the availability of vaccines, infection rates remain high due to immune evasive Omicron sublineages. Broad-spectrum antivirals are needed to safeguard against emerging variants and future pandemics. We used messenger RNA (mRNA) display under a reprogrammed genetic code to find a spike-targeting macrocyclic peptide that inhibits SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) Wuhan strain infection and pseudoviruses containing spike proteins of SARS-CoV-2 variants or related sarbecoviruses. Structural and bioinformatic analyses reveal a conserved binding pocket between the receptor-binding domain, N-terminal domain, and S2 region, distal to the angiotensin-converting enzyme 2 receptor-interaction site. Our data reveal a hitherto unexplored site of vulnerability in sarbecoviruses that peptides and potentially other drug-like molecules can target.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Pandemias/prevención & control , Péptidos/farmacología
4.
J Biol Chem ; 300(1): 105519, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38042488

RESUMEN

Corticosteroid-binding globulin (CBG) delivers anti-inflammatory cortisol to inflamed tissues through proteolysis of an exposed reactive center loop (RCL) by neutrophil elastase (NE). We previously demonstrated that RCL-localized Asn347-linked N-glycans impact NE proteolysis, but a comprehensive structure-function characterization of the RCL glycosylation is still required to better understand CBG glycobiology. Herein, we first performed RCL-centric glycoprofiling of serum-derived CBG to elucidate the Asn347-glycans and then used molecular dynamics simulations to study their impact on NE proteolysis. Importantly, we also identified O-glycosylation (di/sialyl T) across four RCL sites (Thr338/Thr342/Thr345/Ser350) of serum CBG close to the NE-targeted Val344-Thr345 cleavage site. A restricted N- and O-glycan co-occurrence pattern on the RCL involving exclusively Asn347 and Thr338 glycosylation was experimentally observed and supported in silico by modeling of a CBG-GalNAc-transferase (GalNAc-T) complex with various RCL glycans. GalNAc-T2 and GalNAc-T3 abundantly expressed by liver and gall bladder, respectively, showed in vitro a capacity to transfer GalNAc (Tn) to multiple RCL sites suggesting their involvement in RCL O-glycosylation. Recombinant CBG was then used to determine roles of RCL O-glycosylation through longitudinal NE-centric proteolysis experiments, which demonstrated that both sialoglycans (disialyl T) and asialoglycans (T) decorating Thr345 inhibit NE proteolysis. Synthetic RCL O-glycopeptides expanded on these findings by showing that Thr345-Tn and Thr342-Tn confer strong and moderate protection against NE cleavage, respectively. Molecular dynamics substantiated that short Thr345-linked O-glycans abrogate NE interactions. In conclusion, we report on biologically relevant CBG RCL glycosylation events, which improve our understanding of mechanisms governing cortisol delivery to inflamed tissues.


Asunto(s)
Elastasa de Leucocito , Transcortina , Glicosilación , Hidrocortisona/metabolismo , Elastasa de Leucocito/metabolismo , Polisacáridos , Proteolisis , Transcortina/genética , Transcortina/química , Transcortina/metabolismo , Humanos
5.
Nature ; 566(7745): 548-552, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30760924

RESUMEN

Singlet molecular oxygen (1O2) has well-established roles in photosynthetic plants, bacteria and fungi1-3, but not in mammals. Chemically generated 1O2 oxidizes the amino acid tryptophan to precursors of a key metabolite called N-formylkynurenine4, whereas enzymatic oxidation of tryptophan to N-formylkynurenine is catalysed by a family of dioxygenases, including indoleamine 2,3-dioxygenase 15. Under inflammatory conditions, this haem-containing enzyme is expressed in arterial endothelial cells, where it contributes to the regulation of blood pressure6. However, whether indoleamine 2,3-dioxygenase 1 forms 1O2 and whether this contributes to blood pressure control have remained unknown. Here we show that arterial indoleamine 2,3-dioxygenase 1 regulates blood pressure via formation of 1O2. We observed that in the presence of hydrogen peroxide, the enzyme generates 1O2 and that this is associated with the stereoselective oxidation of L-tryptophan to a tricyclic hydroperoxide via a previously unrecognized oxidative activation of the dioxygenase activity. The tryptophan-derived hydroperoxide acts in vivo as a signalling molecule, inducing arterial relaxation and decreasing blood pressure; this activity is dependent on Cys42 of protein kinase G1α. Our findings demonstrate a pathophysiological role for 1O2 in mammals through formation of an amino acid-derived hydroperoxide that regulates vascular tone and blood pressure under inflammatory conditions.


Asunto(s)
Presión Sanguínea/fisiología , Inflamación/sangre , Inflamación/fisiopatología , Oxígeno Singlete/metabolismo , Vasodilatadores/metabolismo , Animales , Línea Celular , Proteína Quinasa Dependiente de GMP Cíclico Tipo I/antagonistas & inhibidores , Proteína Quinasa Dependiente de GMP Cíclico Tipo I/química , Proteína Quinasa Dependiente de GMP Cíclico Tipo I/metabolismo , Cisteína/metabolismo , Activación Enzimática/efectos de los fármacos , Femenino , Humanos , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/metabolismo , Peróxido de Hidrógeno/farmacología , Indolamina-Pirrol 2,3,-Dioxigenasa/química , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Inflamación/enzimología , Masculino , Oxidación-Reducción/efectos de los fármacos , Ratas , Transducción de Señal , Oxígeno Singlete/química , Triptófano/química , Triptófano/metabolismo
6.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35217625

RESUMEN

As natural chemokine inhibitors, evasin proteins produced in tick saliva are potential therapeutic agents for numerous inflammatory diseases. Engineering evasins to block the desired chemokines and avoid off-target side effects requires structural understanding of their target selectivity. Structures of the class A evasin EVA-P974 bound to human CC chemokine ligands 7 and 17 (CCL7 and CCL17) and to a CCL8-CCL7 chimera reveal that the specificity of class A evasins for chemokines of the CC subfamily is defined by conserved, rigid backbone-backbone interactions, whereas the preference for a subset of CC chemokines is controlled by side-chain interactions at four hotspots in flexible structural elements. Hotspot mutations alter target preference, enabling inhibition of selected chemokines. The structure of an engineered EVA-P974 bound to CCL2 reveals an underlying molecular mechanism of EVA-P974 target preference. These results provide a structure-based framework for engineering evasins as targeted antiinflammatory therapeutics.


Asunto(s)
Proteínas de Artrópodos/química , Quimiocinas/metabolismo , Inflamación/metabolismo , Ingeniería de Proteínas , Garrapatas/metabolismo , Animales , Proteínas de Artrópodos/metabolismo , Unión Proteica , Conformación Proteica , Receptores de Quimiocina/metabolismo
7.
J Biol Chem ; 299(12): 105482, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37992806

RESUMEN

Bromodomains (BDs) regulate gene expression by recognizing protein motifs containing acetyllysine. Although originally characterized as histone-binding proteins, it has since become clear that these domains interact with other acetylated proteins, perhaps most prominently transcription factors. The likely transient nature and low stoichiometry of such modifications, however, has made it challenging to fully define the interactome of any given BD. To begin to address this knowledge gap in an unbiased manner, we carried out mRNA display screens against a BD-the N-terminal BD of BRD3-using peptide libraries that contained either one or two acetyllysine residues. We discovered peptides with very strong consensus sequences and with affinities that are significantly higher than typical BD-peptide interactions. X-ray crystal structures also revealed modes of binding that have not been seen with natural ligands. Intriguingly, however, our sequences are not found in the human proteome, perhaps suggesting that strong binders to BDs might have been selected against during evolution.


Asunto(s)
Proteoma , Factores de Transcripción , Humanos , Proteoma/metabolismo , Factores de Transcripción/metabolismo , Dominios Proteicos , Secuencias de Aminoácidos , Péptidos/metabolismo , Unión Proteica , Acetilación
8.
Acc Chem Res ; 56(19): 2688-2699, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37708351

RESUMEN

Tyrosine sulfation is a post-translational modification (PTM) that modulates function by mediating key protein-protein interactions. One of the early proteins shown to possess this PTM was hirudin, produced in the salivary glands of the medicinal leech Hirudo medicinalis, whereby tyrosine sulfation led to a ∼10-fold improvement in α-thrombin inhibitory activity. Outside of this pioneering discovery, the involvement of tyrosine sulfation in modulating the activity of salivary proteins from other hematophagous organisms was unknown. We hypothesized that the intrinsic instability of the tyrosine sulfate functionality, particularly under the acidic conditions used to isolate and analyze peptides and proteins, has led to poor detection during the isolation and/or expression of these molecules.Herein, we summarize our efforts to interrogate the functional role of tyrosine sulfation in the thrombin inhibitory and anticoagulant activity of salivary peptides and proteins from a range of different blood feeding organisms, including leeches, ticks, mosquitoes, and flies. Specifically, we have harnessed synthetic chemistry to efficiently generate homogeneously sulfated peptides and proteins for detailed structure-function studies both in vitro and in vivo.Our studies began with the leech protein hirudin P6 (from Hirudinaria manillensis), which is both sulfated on tyrosine and O-glycosylated at a nearby threonine residue. Synthetically, this was achieved through solid-phase peptide synthesis (SPPS) with a late-stage on-resin sulfation, followed by native chemical ligation and a folding step to generate six differentially modified variants of hirudin P6 to assess the functional interplay between O-glycosylation and tyrosine sulfation. A one-pot, kinetically controlled ligation of three peptide fragments was used to assemble homogeneously sulfoforms of madanin-1 and chimadanin from the tick Haemaphysalis longicornis. Dual tyrosine sulfation at two distinct sites was shown to increase the thrombin inhibitory activity by up to 3 orders of magnitude through a novel interaction with exosite II of thrombin. The diselenide-selenoester ligation developed by our lab provided us with a means to rapidly assemble a library of different sulfated tick anticoagulant proteins: the andersonins, hyalomins, madanin-like proteins, and hemeathrins, thus enabling the generation of key structure-activity data on this family of proteins. We have also confirmed the presence of tyrosine sulfation in the anticoagulant proteins of Anopheles mosquitoes (anophelins) and the Tsetse fly (TTI) via insect expression and mass spectrometric analysis. These molecules were subsequently synthesized and assessed for thrombin inhibitory and anticoagulant activity. Activity was significantly improved by the addition of tyrosine sulfate modifications and led to molecules with potent antithrombotic activity in an in vivo murine thrombosis model.The Account concludes with our most recent work on the design of trivalent hybrids that tandemly occupy the active site and both exosites (I and II) of α-thrombin, with a TTI-anophelin hybrid (Ki = 20 fM against α-thrombin) being one of the most potent protease inhibitors and anticoagulants ever generated. Taken together, this Account highlights the importance of the tyrosine sulfate post-translational modification within salivary proteins from blood feeding organisms for enhancing anticoagulant activity. This work lays the foundation for exploiting native or engineered variants as therapeutic leads for thrombotic disorders in the future.


Asunto(s)
Anticoagulantes , Trombina , Animales , Ratones , Anticoagulantes/farmacología , Secuencia de Aminoácidos , Trombina/metabolismo , Hirudinas/farmacología , Hirudinas/química , Hirudinas/metabolismo , Tirosina/química , Proteínas y Péptidos Salivales
9.
Chemistry ; : e202401606, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38801240

RESUMEN

The development of novel antivirals is crucial not only for managing current COVID-19 infections but for addressing potential future zoonotic outbreaks. SARS-CoV-2 main protease (Mpro) is vital for viral replication and viability and therefore serves as an attractive target for antiviral intervention. Herein, we report the optimization of a cyclic peptide inhibitor that emerged from an mRNA display selection against the SARS-CoV-2 Mpro to enhance its cell permeability and in vitro antiviral activity. By identifying mutation-tolerant amino acid residues within the peptide sequence, we describe the development of a second-generation Mpro inhibitor bearing five cyclohexylalanine residues. This cyclic peptide analogue exhibited significantly improved cell permeability and antiviral activity compared to the parent peptide. This approach highlights the importance of optimizing cyclic peptide hits for activity against intracellular targets such as the SARS-CoV-2 Mpro.

10.
Endocr Pract ; 30(4): 319-326, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38184241

RESUMEN

OBJECTIVE: Molecular testing is a well-established tool that assists in the management of thyroid nodules. We describe our experience using molecular testing of thyroid nodules with Bethesda III to VI cytology. METHODS: This is a retrospective multicenter, multinational study of thyroid nodules that underwent preoperative molecular profiling with ThyGenX/ThyGeNEXT or ThyroSeq V3 between 2015 and 2022. The clinical characteristics and mutational profiles of tumors were compared. Collected data included demographics, cytology results, surgical pathology, and molecular alterations. Molecular alterations were categorized into 3 main phenotypes: BRAF-like, RAS-like, and non-BRAF-non-RAS (NBNR). RESULTS: Overall, 784 patients who had surgery were included, of which 603 (76.2%) were females. The most common histologic type was papillary thyroid cancer (PTC) with 727 (91.9%) cases. In total, 205 (28.2%) cases showed an aggressive subtype of PTC (eg, tall cell and hobnail). BRAF-like alterations were most likely to be found in Bethesda V and VI nodules and show extrathyroidal extension (ETE), nodal disease, and/or aggressive subtypes of PTC (P < .001 for all). RAS-like alterations were more commonly found in Bethesda III and IV nodules and were less likely to show ETE, nodal disease, and/or aggressive histology (P < .001 for all). NBNR alterations were more commonly found in Bethesda III and IV nodules and were less likely to show ETE, nodal disease, and/or aggressive subtypes of PTC. However, they were rarely but significantly associated with poorly differentiated thyroid cancer (P < .005). CONCLUSION: Molecular testing of thyroid nodules can help determine the likelihood of malignancy and classify nodules into several tumor phenotypes, predicting their behaviors and potentially allowing for a more tailored treatment. NBNR alterations should be managed with caution.


Asunto(s)
Neoplasias de la Tiroides , Nódulo Tiroideo , Femenino , Humanos , Masculino , Nódulo Tiroideo/patología , Estudios Retrospectivos , Proteínas Proto-Oncogénicas B-raf/genética , Biopsia con Aguja Fina , Neoplasias de la Tiroides/patología , Cáncer Papilar Tiroideo/genética , Mutación
11.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33468674

RESUMEN

The global incidence of tuberculosis remains unacceptably high, with new preventative strategies needed to reduce the burden of disease. We describe here a method for the generation of synthetic self-adjuvanted protein vaccines and demonstrate application in vaccination against Mycobacterium tuberculosis Two vaccine constructs were designed, consisting of full-length ESAT6 protein fused to the TLR2-targeting adjuvants Pam2Cys-SK4 or Pam3Cys-SK4 These were produced by chemical synthesis using a peptide ligation strategy. The synthetic self-adjuvanting vaccines generated powerful local CD4+ T cell responses against ESAT6 and provided significant protection in the lungs from virulent M. tuberculosis aerosol challenge when administered to the pulmonary mucosa of mice. The flexible synthetic platform we describe, which allows incorporation of adjuvants to multiantigenic vaccines, represents a general approach that can be applied to rapidly assess vaccination strategies in preclinical models for a range of diseases, including against novel pandemic pathogens such as SARS-CoV-2.


Asunto(s)
Mycobacterium tuberculosis/inmunología , Vacunas contra la Tuberculosis/farmacología , Tuberculosis/inmunología , Tuberculosis/prevención & control , Vacunas Conjugadas/farmacología , Adyuvantes Inmunológicos/farmacología , Animales , Antígenos Bacterianos/inmunología , Vacuna BCG/inmunología , Vacuna BCG/farmacología , Proteínas Bacterianas , Linfocitos T CD4-Positivos/inmunología , COVID-19/prevención & control , Modelos Animales de Enfermedad , Femenino , Ratones , Ratones Endogámicos C57BL , SARS-CoV-2/inmunología , Receptor Toll-Like 2/inmunología , Vacunas contra la Tuberculosis/inmunología , Vacunas Conjugadas/inmunología , Vacunas Sintéticas/inmunología , Vacunas Sintéticas/farmacología
12.
J Biol Chem ; 298(10): 102382, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35973511

RESUMEN

Class A tick evasins are natural chemokine-binding proteins that block the signaling of multiple chemokines from the CC subfamily through their cognate receptors, thus suppressing leukocyte recruitment and inflammation. Development of tick evasins as chemokine-targeted anti-inflammatory therapeutics requires an understanding of the factors controlling their chemokine recognition and selectivity. To investigate the role of the evasin N-terminal region for chemokine recognition, we prepared chimeric evasins by interchanging the N-terminal regions of four class A evasins, including a newly identified evasin, EVA-RPU02. We show through chemokine binding analysis of the parental and chimeric evasins that the N-terminal region is critical for chemokine binding affinity and selectivity. Notably, we found some chimeras were unable to bind certain cognate chemokine ligands of both parental evasins. Moreover, unlike any natural evasins characterized to date, some chimeras exhibited specific binding to a single chemokine. These results indicate that the evasin N terminus interacts cooperatively with the "body" of the evasin to enable optimum chemokine recognition. Furthermore, the altered chemokine selectivity of the chimeras validates the approach of engineering the N termini of evasins to yield unique chemokine recognition profiles.


Asunto(s)
Proteínas de Artrópodos , Quimiocinas , Receptores CXCR , Rhipicephalus , Proteínas y Péptidos Salivales , Animales , Proteínas de Artrópodos/metabolismo , Quimiocinas/metabolismo , Unión Proteica , Receptores CXCR/metabolismo , Rhipicephalus/metabolismo , Transducción de Señal , Proteínas y Péptidos Salivales/metabolismo
13.
Bioconjug Chem ; 34(6): 1072-1083, 2023 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-37262436

RESUMEN

Disulfide-rich peptide toxins have long been studied for their ability to inhibit voltage-gated sodium channel subtype NaV1.7, a validated target for the treatment of pain. In this study, we sought to combine the pore blocking activity of conotoxins with the gating modifier activity of spider toxins to design new bivalent inhibitors of NaV1.7 with improved potency and selectivity. To do this, we created an array of heterodimeric toxins designed to target human NaV1.7 by ligating a conotoxin to a spider toxin and assessed the potency and selectivity of the resulting bivalent toxins. A series of spider-derived gating modifier toxins (GpTx-1, ProTx-II, gHwTx-IV, JzTx-V, CcoTx-1, and Pn3a) and two pore-blocker µ-conotoxins, SxIIIC and KIIIA, were used for this study. We employed either enzymatic ligation with sortase A for C- to N-terminal ligation or click chemistry for N- to N-terminal ligation. The bivalent peptide resulting from ligation of ProTx-II and SxIIIC (Pro[LPATG6]Sx) was shown to be the best combination as native ProTx-II potency at hNaV1.7 was conserved following ligation. At hNaV1.4, a synergistic effect between the pore blocker and gating modifier toxin moieties was observed, resulting in altered sodium channel subtype selectivity compared to the parent peptides. Further studies including mutant bivalent peptides and mutant hNaV1.7 channels suggested that gating modifier toxins have a greater contribution to the potency of the bivalent peptides than pore blockers. This study delineated potential benefits and drawbacks of designing pharmacological hybrid peptides targeting hNaV1.7.


Asunto(s)
Péptidos , Humanos , Péptidos/farmacología
14.
Proc Natl Acad Sci U S A ; 117(23): 12657-12664, 2020 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-32461364

RESUMEN

Blood-feeding arthropods produce antiinflammatory salivary proteins called evasins that function through inhibition of chemokine-receptor signaling in the host. Herein, we show that the evasin ACA-01 from the Amblyomma cajennense tick can be posttranslationally sulfated at two tyrosine residues, albeit as a mixture of sulfated variants. Homogenously sulfated variants of the proteins were efficiently assembled via a semisynthetic native chemical ligation strategy. Sulfation significantly improved the binding affinity of ACA-01 for a range of proinflammatory chemokines and enhanced the ability of ACA-01 to inhibit chemokine signaling through cognate receptors. Comparisons of evasin sequences and structural data suggest that tyrosine sulfation serves as a receptor mimetic strategy for recognizing and suppressing the proinflammatory activity of a wide variety of mammalian chemokines. As such, the incorporation of this posttranslational modification (PTM) or mimics thereof into evasins may provide a strategy to optimize tick salivary proteins for antiinflammatory applications.


Asunto(s)
Ácaros y Garrapatas/metabolismo , Proteínas de Artrópodos/metabolismo , Quimiocinas/antagonistas & inhibidores , Procesamiento Proteico-Postraduccional , Saliva/metabolismo , Animales , Proteínas de Artrópodos/química , Quimiocinas/metabolismo , Células HEK293 , Humanos , Unión Proteica , Sulfatos/metabolismo , Tirosina/metabolismo
15.
Proc Natl Acad Sci U S A ; 117(43): 26728-26738, 2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-33046654

RESUMEN

Cyclic peptide library screening technologies show immense promise for identifying drug leads and chemical probes for challenging targets. However, the structural and functional diversity encoded within such libraries is largely undefined. We have systematically profiled the affinity, selectivity, and structural features of library-derived cyclic peptides selected to recognize three closely related targets: the acetyllysine-binding bromodomain proteins BRD2, -3, and -4. We report affinities as low as 100 pM and specificities of up to 106-fold. Crystal structures of 13 peptide-bromodomain complexes reveal remarkable diversity in both structure and binding mode, including both α-helical and ß-sheet structures as well as bivalent binding modes. The peptides can also exhibit a high degree of structural preorganization. Our data demonstrate the enormous potential within these libraries to provide diverse binding modes against a single target, which underpins their capacity to yield highly potent and selective ligands.


Asunto(s)
Biblioteca de Péptidos , Péptidos Cíclicos , Sitios de Unión , Descubrimiento de Drogas , Humanos , Péptidos Cíclicos/química , Péptidos Cíclicos/metabolismo , Unión Proteica , Dominios Proteicos , Factores de Transcripción/química , Factores de Transcripción/metabolismo
16.
Clin Otolaryngol ; 48(5): 748-755, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37212457

RESUMEN

BACKGROUND: Although more common in females, thyroid cancer is deemed to be more aggressive in males. The reasons for sex disparities in thyroid cancer are not well understood. We hypothesised that differences in molecular mutations between females and males contribute to this phenomenon. METHODS: Retrospective multicentre multinational study of thyroid nodules that underwent preoperative molecular profiling between 2015 and 2022. The clinical characteristics and mutational profiles of tumours in female and male patients were compared. Collected data included demographics, cytology results, surgical pathology, and molecular alterations. RESULTS: A total of 738 patients were included of which 571 (77.4%) were females. The extrathyroidal extension was more common in malignancies in males (chi-squared, p = 0.028). The rate of point mutations and gene fusions were similar in both sex groups (p > 0.05 for all mutations). Patients with nodules with BRAFV600E mutations were significantly younger than BRAF wild-type nodule patients (t-test, p = 0.0001). Conversely, patients with TERT promoter mutations were significantly older than patients with wild-type TERT (t-test, p < 0.0001). For patients harbouring both BRAFV600E and TERT mutations, the difference in age at presentation was significantly different in females (t-test, p = 0.009) but not in males (t-test, p = 0.433). Among females, patients with BRAFV600E and TERT mutations were significantly older than their wild-type or single-mutation counterpart (t-test, p = 0.003). CONCLUSION: The absolute rate of molecular mutations was similar in females and males. We found that extrathyroidal extension was more common in males. Moreover, BRAFV600E and TERT mutations occur at a younger age in males than in females. These two findings are factors that may explain the tendency of more aggressive disease in males.

17.
Angew Chem Int Ed Engl ; 62(50): e202313037, 2023 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-37818778

RESUMEN

Mild strategies for the selective modification of peptides and proteins are in demand for applications in therapeutic peptide and protein discovery, and in the study of fundamental biomolecular processes. Herein, we describe the development of an electrochemical selenoetherification (e-SE) platform for the efficient site-selective functionalization of polypeptides. This methodology utilizes the unique reactivity of the 21st amino acid, selenocysteine, to effect formation of valuable bioconjugates through stable selenoether linkages under mild electrochemical conditions. The power of e-SE is highlighted through late-stage C-terminal modification of the FDA-approved cancer drug leuprolide and assembly of a library of anti-HER2 affibody conjugates bearing complex cargoes. Following assembly by e-SE, the utility of functionalized affibodies for in vitro imaging and targeting of HER2 positive breast and lung cancer cell lines is also demonstrated.


Asunto(s)
Antineoplásicos , Selenocisteína , Selenocisteína/química , Péptidos/química , Proteínas , Línea Celular
18.
Biochemistry ; 61(22): 2495-2505, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36326185

RESUMEN

The main protease (Mpro) of SARS-CoV-2 is essential for viral replication and has been the focus of many drug discovery efforts since the start of the COVID-19 pandemic. Nirmatrelvir (NTV) is an inhibitor of SARS-CoV-2 Mpro that is used in the combination drug Paxlovid for the treatment of mild to moderate COVID-19. However, with increased use of NTV across the globe, there is a possibility that future SARS-CoV-2 lineages will evolve resistance to NTV. Early prediction and monitoring of resistance mutations could allow for measures to slow the spread of resistance and for the development of new compounds with activity against resistant strains. In this work, we have used in silico mutational scanning and inhibitor docking of Mpro to identify potential resistance mutations. Subsequent in vitro experiments revealed five mutations (N142L, E166M, Q189E, Q189I, and Q192T) that reduce the potency of NTV and of a previously identified non-covalent cyclic peptide inhibitor of Mpro. The E166M mutation reduced the half-maximal inhibitory concentration (IC50) of NTV 24-fold and 118-fold for the non-covalent peptide inhibitor. Our findings inform the ongoing genomic surveillance of emerging SARS-CoV-2 lineages.


Asunto(s)
Antivirales , Tratamiento Farmacológico de COVID-19 , COVID-19 , Proteasas 3C de Coronavirus , Farmacorresistencia Viral , Inhibidores de Proteasas , SARS-CoV-2 , Humanos , Antivirales/farmacología , Antivirales/química , COVID-19/virología , Simulación del Acoplamiento Molecular , Mutación , Pandemias , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/química , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/genética , Farmacorresistencia Viral/genética , Proteasas 3C de Coronavirus/antagonistas & inhibidores
19.
J Am Chem Soc ; 144(1): 23-41, 2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-34968405

RESUMEN

Although electrochemical strategies for small-molecule synthesis are flourishing, this technology has yet to be fully exploited for the mild and chemoselective modification of peptides and proteins. With the growing number of diverse peptide natural products being identified and the emergence of modified proteins as therapeutic and diagnostic agents, methods for electrochemical modification stand as alluring prospects for harnessing the reactivity of polypeptides to build molecular complexity. As a mild and inherently tunable reaction platform, electrochemistry is arguably well-suited to overcome the chemo- and regioselectivity issues which limit existing bioconjugation strategies. This Perspective will showcase recently developed electrochemical approaches to peptide and protein modification. The article also highlights the wealth of untapped opportunities for the production of homogeneously modified biomolecules, with an eye toward realizing the enormous potential of electrochemistry for chemoselective bioconjugation chemistry.


Asunto(s)
Proteínas
20.
Biochem Soc Trans ; 50(1): 387-401, 2022 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-34994377

RESUMEN

Tyrosine-O-sulfation is a common post-translational modification (PTM) of proteins following the cellular secretory pathway. First described in human fibrinogen, tyrosine-O-sulfation has long been associated with the modulation of protein-protein interactions in several physiological processes. A number of relevant interactions for hemostasis are largely dictated by this PTM, many of which involving the serine proteinase thrombin (FIIa), a central player in the blood-clotting cascade. Tyrosine sulfation is not limited to endogenous FIIa ligands and has also been found in hirudin, a well-known and potent thrombin inhibitor from the medicinal leech, Hirudo medicinalis. The discovery of hirudin led to successful clinical application of analogs of leech-inspired molecules, but also unveiled several other natural thrombin-directed anticoagulant molecules, many of which undergo tyrosine-O-sulfation. The presence of this PTM has been shown to enhance the anticoagulant properties of these peptides from a range of blood-feeding organisms, including ticks, mosquitos and flies. Interestingly, some of these molecules display mechanisms of action that mimic those of thrombin's bona fide substrates.


Asunto(s)
Hirudinas , Trombina , Secuencia de Aminoácidos , Animales , Anticoagulantes , Hirudinas/química , Hirudinas/metabolismo , Hirudinas/farmacología , Trombina/metabolismo , Tirosina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA