Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Nat Genet ; 38(7): 801-6, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16751771

RESUMEN

Hyperekplexia is a human neurological disorder characterized by an excessive startle response and is typically caused by missense and nonsense mutations in the gene encoding the inhibitory glycine receptor (GlyR) alpha1 subunit (GLRA1). Genetic heterogeneity has been confirmed in rare sporadic cases, with mutations affecting other postsynaptic glycinergic proteins including the GlyR beta subunit (GLRB), gephyrin (GPHN) and RhoGEF collybistin (ARHGEF9). However, many individuals diagnosed with sporadic hyperekplexia do not carry mutations in these genes. Here we show that missense, nonsense and frameshift mutations in SLC6A5 (ref. 8), encoding the presynaptic glycine transporter 2 (GlyT2), also cause hyperekplexia. Individuals with mutations in SLC6A5 present with hypertonia, an exaggerated startle response to tactile or acoustic stimuli, and life-threatening neonatal apnea episodes. SLC6A5 mutations result in defective subcellular GlyT2 localization, decreased glycine uptake or both, with selected mutations affecting predicted glycine and Na+ binding sites.


Asunto(s)
Proteínas de Transporte de Glicina en la Membrana Plasmática/genética , Mutación , Reflejo de Sobresalto/genética , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Línea Celular , Femenino , Proteínas de Transporte de Glicina en la Membrana Plasmática/química , Proteínas de Transporte de Glicina en la Membrana Plasmática/fisiología , Humanos , Técnicas In Vitro , Recién Nacido , Masculino , Modelos Moleculares , Datos de Secuencia Molecular , Oocitos/metabolismo , Terminales Presinápticos/fisiología , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Reflejo de Sobresalto/fisiología , Transfección , Xenopus laevis
2.
J Biol Chem ; 287(34): 28975-85, 2012 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-22700964

RESUMEN

Hereditary hyperekplexia or startle disease is characterized by an exaggerated startle response, evoked by tactile or auditory stimuli, leading to hypertonia and apnea episodes. Missense, nonsense, frameshift, splice site mutations, and large deletions in the human glycine receptor α1 subunit gene (GLRA1) are the major known cause of this disorder. However, mutations are also found in the genes encoding the glycine receptor ß subunit (GLRB) and the presynaptic Na(+)/Cl(-)-dependent glycine transporter GlyT2 (SLC6A5). In this study, systematic DNA sequencing of SLC6A5 in 93 new unrelated human hyperekplexia patients revealed 20 sequence variants in 17 index cases presenting with homozygous or compound heterozygous recessive inheritance. Five apparently unrelated cases had the truncating mutation R439X. Genotype-phenotype analysis revealed a high rate of neonatal apneas and learning difficulties associated with SLC6A5 mutations. From the 20 SLC6A5 sequence variants, we investigated glycine uptake for 16 novel mutations, confirming that all were defective in glycine transport. Although the most common mechanism of disrupting GlyT2 function is protein truncation, new pathogenic mechanisms included splice site mutations and missense mutations affecting residues implicated in Cl(-) binding, conformational changes mediated by extracellular loop 4, and cation-π interactions. Detailed electrophysiology of mutation A275T revealed that this substitution results in a voltage-sensitive decrease in glycine transport caused by lower Na(+) affinity. This study firmly establishes the combination of missense, nonsense, frameshift, and splice site mutations in the GlyT2 gene as the second major cause of startle disease.


Asunto(s)
Enfermedades Genéticas Congénitas , Proteínas de Transporte de Glicina en la Membrana Plasmática , Glicina/metabolismo , Mutación , Proteínas del Tejido Nervioso , Enfermedades Neurodegenerativas , Animales , Análisis Mutacional de ADN , Femenino , Enfermedades Genéticas Congénitas/genética , Enfermedades Genéticas Congénitas/metabolismo , Glicina/genética , Proteínas de Transporte de Glicina en la Membrana Plasmática/genética , Proteínas de Transporte de Glicina en la Membrana Plasmática/metabolismo , Heterocigoto , Homocigoto , Humanos , Transporte Iónico/genética , Masculino , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Estructura Terciaria de Proteína , Receptores de Glicina/genética , Receptores de Glicina/metabolismo , Xenopus laevis
3.
J Neurosci ; 24(25): 5816-26, 2004 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-15215304

RESUMEN

Glycine receptors (GlyRs) and specific subtypes of GABA(A) receptors are clustered at synapses by the multidomain protein gephyrin, which in turn is translocated to the cell membrane by the GDP-GTP exchange factor collybistin. We report the characterization of several new variants of collybistin, which are created by alternative splicing of exons encoding an N-terminal src homology 3 (SH3) domain and three alternate C termini (CB1, CB2, and CB3). The presence of the SH3 domain negatively regulates the ability of collybistin to translocate gephyrin to submembrane microaggregates in transfected mammalian cells. Because the majority of native collybistin isoforms appear to harbor the SH3 domain, this suggests that collybistin activity may be regulated by protein-protein interactions at the SH3 domain. We localized the binding sites for collybistin and the GlyR beta subunit to the C-terminal MoeA homology domain of gephyrin and show that multimerization of this domain is required for collybistin-gephyrin and GlyR-gephyrin interactions. We also demonstrate that gephyrin clustering in recombinant systems and cultured neurons requires both collybistin-gephyrin interactions and an intact collybistin pleckstrin homology domain. The vital importance of collybistin for inhibitory synaptogenesis is underlined by the discovery of a mutation (G55A) in exon 2 of the human collybistin gene (ARHGEF9) in a patient with clinical symptoms of both hyperekplexia and epilepsy. The clinical manifestation of this collybistin missense mutation may result, at least in part, from mislocalization of gephyrin and a major GABA(A) receptor subtype.


Asunto(s)
Proteínas Portadoras/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas de la Membrana/metabolismo , Empalme Alternativo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Encéfalo/citología , Proteínas Portadoras/genética , Células Cultivadas , Epilepsia/complicaciones , Epilepsia/genética , Exones , Femenino , Factores de Intercambio de Guanina Nucleótido/genética , Humanos , Masculino , Proteínas de la Membrana/genética , Ratones , Datos de Secuencia Molecular , Mutación , Neuronas/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estructura Terciaria de Proteína , Transporte de Proteínas , Ratas , Receptores de Glicina/metabolismo , Reflejo de Sobresalto , Factores de Intercambio de Guanina Nucleótido Rho
4.
Front Mol Neurosci ; 3: 8, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20407582

RESUMEN

Human startle disease, also known as hyperekplexia (OMIM 149400), is a paroxysmal neurological disorder caused by defects in glycinergic neurotransmission. Hyperekplexia is characterised by an exaggerated startle reflex in response to tactile or acoustic stimuli which first presents as neonatal hypertonia, followed in some with episodes of life-threatening infantile apnoea. Genetic screening studies have demonstrated that hyperekplexia is genetically heterogeneous with several missense and nonsense mutations in the postsynaptic glycine receptor (GlyR) alpha1 subunit gene (GLRA1) as the primary cause. More recently, missense, nonsense and frameshift mutations have also been identified in the glycine transporter GlyT2 gene, SLC6A5, demonstrating a presynaptic component to this disease. Further mutations, albeit rare, have been identified in the genes encoding the GlyR beta subunit (GLRB), collybistin (ARHGEF9) and gephyrin (GPHN) - all of which are postsynaptic proteins involved in orchestrating glycinergic neurotransmission. In this review, we describe the clinical ascertainment aspects, phenotypic considerations and the downstream molecular genetic tools utilised to analyse both presynaptic and postsynaptic components of this heterogeneous human neurological disorder. Moreover, we will describe how the ancient startle response is the preserve of glycinergic neurotransmission and how animal models and human hyperekplexia patients have provided synergistic evidence that implicates this inhibitory system in the control of startle reflexes.

5.
Front Mol Neurosci ; 1: 1, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18946534

RESUMEN

Defects in mammalian glycinergic neurotransmission result in a complex motor disorder characterized by neonatal hypertonia and an exaggerated startle reflex, known as hyperekplexia (OMIM 149400). This affects newborn children and is characterized by noise or touch-induced seizures that result in muscle stiffness and breath-holding episodes. Although rare, this disorder can have serious consequences, including brain damage and/or sudden infant death. The primary cause of hyperekplexia is missense and non-sense mutations in the glycine receptor (GlyR) alpha1 subunit gene (GLRA1) on chromosome 5q33.1, although we have also discovered rare mutations in the genes encoding the GlyR beta subunit (GLRB) and the GlyR clustering proteins gephyrin (GPNH) and collybistin (ARHGEF9). Recent studies of the Na(+)/Cl(-)-dependent glycine transporters GlyT1 and GlyT2 using mouse knockout models and human genetics have revealed that mutations in GlyT2 are a second major cause of hyperekplexia, while the phenotype of the GlyT1 knockout mouse resembles a devastating neurological disorder known as glycine encephalopathy (OMIM 605899). These findings highlight the importance of these transporters in regulating the levels of synaptic glycine.

6.
Nat Genet ; 40(4): 449-54, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18344998

RESUMEN

The widespread use of elite sires by means of artificial insemination in livestock breeding leads to the frequent emergence of recessive genetic defects, which cause significant economic and animal welfare concerns. Here we show that the availability of genome-wide, high-density SNP panels, combined with the typical structure of livestock populations, markedly accelerates the positional identification of genes and mutations that cause inherited defects. We report the fine-scale mapping of five recessive disorders in cattle and the molecular basis for three of these: congenital muscular dystony (CMD) types 1 and 2 in Belgian Blue cattle and ichthyosis fetalis in Italian Chianina cattle. Identification of these causative mutations has an immediate translation into breeding practice, allowing marker assisted selection against the defects through avoidance of at-risk matings.


Asunto(s)
Animales Domésticos/genética , Enfermedades de los Bovinos/genética , Mapeo Cromosómico , Genes Recesivos/genética , Marcadores Genéticos/genética , Polimorfismo de Nucleótido Simple/genética , Transportadoras de Casetes de Unión a ATP/genética , Secuencia de Aminoácidos , Animales , Animales Domésticos/crecimiento & desarrollo , Cruzamiento , Bovinos , Células Cultivadas , Cartilla de ADN/química , Distonía/congénito , Distonía/genética , Distonía/veterinaria , Femenino , Perfilación de la Expresión Génica , Ligamiento Genético , Proteínas de Transporte de Glicina en la Membrana Plasmática/genética , Humanos , Masculino , Datos de Secuencia Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Sitios de Carácter Cuantitativo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA