Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Arterioscler Thromb Vasc Biol ; 43(10): 1900-1920, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37589142

RESUMEN

BACKGROUND: Thoracic aortic dissection (TAD) is a life-threatening aortic disease without effective medical treatment. Increasing evidence has suggested a role for NE (neutrophil elastase) in vascular diseases. In this study, we aimed at investigating a causal role for NE in TAD and exploring the molecular mechanisms involved. METHODS: ß-aminopropionitrile monofumarate was administrated in mice to induce TAD. NE deficiency mice, pharmacological inhibitor GW311616A, and adeno-associated virus-2-mediated in vivo gene transfer were applied to explore a causal role for NE and associated target gene in TAD formation. Multiple functional assays and biochemical analyses were conducted to unravel the underlying cellular and molecular mechanisms of NE in TAD. RESULTS: NE aortic gene expression and plasma activity was significantly increased during ß-aminopropionitrile monofumarate-induced TAD and in patients with acute TAD. NE deficiency prevents ß-aminopropionitrile monofumarate-induced TAD onset/development, and GW311616A administration ameliorated TAD formation/progression. Decreased levels of neutrophil extracellular traps, inflammatory cells, and MMP (matrix metalloproteinase)-2/9 were observed in NE-deficient mice. TBL1x (F-box-like/WD repeat-containing protein TBL1x) has been identified as a novel substrate and functional downstream target of NE in TAD. Loss-of-function studies revealed that NE mediated inflammatory cell transendothelial migration by modulating TBL1x-LTA4H (leukotriene A4 hydrolase) signaling and that NE regulated smooth muscle cell phenotype modulation under TAD pathological condition by regulating TBL1x-MECP2 (methyl CpG-binding protein 2) signal axis. Further mechanistic studies showed that TBL1x inhibition decreased the binding of TBL1x and HDAC3 (histone deacetylase 3) to MECP2 and LTA4H gene promoters, respectively. Finally, adeno-associated virus-2-mediated Tbl1x gene knockdown in aortic smooth muscle cells confirmed a regulatory role for TBL1x in NE-mediated TAD formation. CONCLUSIONS: We unravel a critical role of NE and its target TBL1x in regulating inflammatory cell migration and smooth muscle cell phenotype modulation in the context of TAD. Our findings suggest that the NE-TBL1x signal axis represents a valuable therapeutic for treating high-risk TAD patients.


Asunto(s)
Aneurisma de la Aorta Torácica , Disección Aórtica , Disección de la Aorta Torácica , Animales , Humanos , Ratones , Aminopropionitrilo/toxicidad , Aneurisma de la Aorta Torácica/inducido químicamente , Aneurisma de la Aorta Torácica/genética , Aneurisma de la Aorta Torácica/metabolismo , Disección Aórtica/inducido químicamente , Disección Aórtica/genética , Elastasa de Leucocito/genética , Elastasa de Leucocito/efectos adversos
2.
Vascul Pharmacol ; 112: 54-71, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30115528

RESUMEN

During atherosclerosis, the gradual accumulation of lipids into the subendothelial space of damaged arteries results in several lipid modification processes followed by macrophage uptake in the arterial wall. The way in which these modified lipoproteins are dealt with determines the likelihood of cholesterol accumulation within the monocyte-derived macrophage and thus its transformation into the foam cell that makes up the characteristic fatty streak observed in the early stages of atherosclerosis. The unique expression of chemokine receptors and cellular adhesion molecules expressed on the cell surface of monocytes points to a particular extravasation route that they can take to gain entry into atherosclerotic site, in order to undergo differentiation into the phagocytic macrophage. Indeed several GWAS and animal studies have identified key genes and proteins required for monocyte recruitment as well cholesterol handling involving lipid uptake, cholesterol esterification and cholesterol efflux. A re-examination of the previously accepted paradigm of macrophage foam cell origin has been called into question by recent studies demonstrating shared expression of scavenger receptors, cholesterol transporters and pro-inflammatory cytokine release by alternative cell types present in the neointima, namely; endothelial cells, vascular smooth muscle cells and stem/progenitor cells. Thus, therapeutic targets aimed at a more heterogeneous foam cell population with shared functions, such as enhanced protease activity, and signalling pathways, mediated by non-coding RNA molecules, may provide greater therapeutic outcome in patients. Finally, studies targeting each aspect of foam cell formation and death using both genetic knock down and pharmacological inhibition have provided researchers with a clearer understanding of the cellular processes at play, as well as helped researchers to identify key molecular targets, which may hold significant therapeutic potential in the future.


Asunto(s)
Aterosclerosis/tratamiento farmacológico , Fármacos Cardiovasculares/farmacología , Células Espumosas/efectos de los fármacos , Placa Aterosclerótica , Animales , Apoptosis/efectos de los fármacos , Aterosclerosis/genética , Aterosclerosis/metabolismo , Aterosclerosis/patología , Colesterol/metabolismo , Células Espumosas/metabolismo , Células Espumosas/patología , Predisposición Genética a la Enfermedad , Humanos , Terapia Molecular Dirigida , Necrosis , Fenotipo , Factores de Riesgo , Transducción de Señal/efectos de los fármacos
3.
Pharmaceuticals (Basel) ; 12(3)2019 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-31390798

RESUMEN

Abdominal Aortic Aneurysm (AAA) affects 4-5% of men over 65, and Aortic Dissection (AD) is a life-threatening aortic pathology associated with high morbidity and mortality. Initiators of AAA and AD include smoking and arterial hypertension, whilst key pathophysiological features of AAA and AD include chronic inflammation, hypoxia, and large modifications to the extra cellular matrix (ECM). As it stands, only surgical methods are available for preventing aortic rupture in patients, which often presents difficulties for recovery. No pharmacological treatment is available, as such researchers are attempting to understand the cellular and molecular pathophysiology of AAA and AD. Upregulation of matrix metalloproteinase (MMPs), particularly MMP-2 and MMP-9, has been identified as a key event occurring during aneurysmal growth. As such, several animal models of AAA and AD have been used to investigate the therapeutic potential of suppressing MMP-2 and MMP-9 activity as well as modulating the activity of other MMPs, and TIMPs involved in the pathology. Whilst several studies have offered promising results, targeted delivery of MMP inhibition still needs to be developed in order to avoid surgery in high risk patients.

4.
J Am Heart Assoc ; 7(4)2018 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-29437605

RESUMEN

BACKGROUND: To investigate whether neutrophil elastase (NE) plays a causal role in atherosclerosis, and the molecular mechanisms involved. METHODS AND RESULTS: NE genetic-deficient mice (Apolipoprotein E-/-/NE-/- mice), bone marrow transplantation, and a specific NE inhibitor (GW311616A) were employed in this study to establish the causal role of NE in atherosclerosis. Aortic expression of NE mRNA and plasma NE activity was significantly increased in high-fat diet (HFD)-fed wild-type (WT) (Apolipoprotein E-/-) mice but, as expected, not in NE-deficient mice. Selective NE knockout markedly reduced HFD-induced atherosclerosis and significantly increased indicators of atherosclerotic plaque stability. While plasma lipid profiles were not affected by NE deficiency, decreased levels of circulating proinflammatory cytokines and inflammatory monocytes (Ly6Chi/CD11b+) were observed in NE-deficient mice fed with an HFD for 12 weeks as compared with WT. Bone marrow reconstitution of WT mice with NE-/- bone marrow cells significantly reduced HFD-induced atherosclerosis, while bone marrow reconstitution of NE-/- mice with WT bone marrow cells restored the pathological features of atherosclerotic plaques induced by HFD in NE-deficient mice. In line with these findings, pharmacological inhibition of NE in WT mice through oral administration of NE inhibitor GW311616A also significantly reduced atherosclerosis. Mechanistically, we demonstrated that NE promotes foam cell formation by increasing ATP-binding cassette transporter ABCA1 protein degradation and inhibiting macrophage cholesterol efflux. CONCLUSIONS: We outlined a pathogenic role for NE in foam cell formation and atherosclerosis development. Consequently, inhibition of NE may represent a potential therapeutic approach to treating cardiovascular disease.


Asunto(s)
Aorta/efectos de los fármacos , Enfermedades de la Aorta/prevención & control , Aterosclerosis/prevención & control , Elastasa de Leucocito/antagonistas & inhibidores , Elastasa de Leucocito/deficiencia , Neutrófilos/efectos de los fármacos , Piperidinas/farmacología , Inhibidores de Serina Proteinasa/farmacología , Transportador 1 de Casete de Unión a ATP/metabolismo , Animales , Aorta/enzimología , Aorta/patología , Enfermedades de la Aorta/enzimología , Enfermedades de la Aorta/genética , Enfermedades de la Aorta/patología , Aterosclerosis/enzimología , Aterosclerosis/genética , Aterosclerosis/patología , Células Cultivadas , Colesterol/sangre , Citocinas/sangre , Modelos Animales de Enfermedad , Células Espumosas/efectos de los fármacos , Células Espumosas/metabolismo , Células Espumosas/patología , Mediadores de Inflamación/sangre , Elastasa de Leucocito/genética , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados para ApoE , Neutrófilos/enzimología , Placa Aterosclerótica , Proteolisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA