Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Biol ; 21(2): e3001991, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36854036

RESUMEN

The conservation of evolutionary history has been linked to increased benefits for humanity and can be captured by phylogenetic diversity (PD). The Evolutionarily Distinct and Globally Endangered (EDGE) metric has, since 2007, been used to prioritise threatened species for practical conservation that embody large amounts of evolutionary history. While there have been important research advances since 2007, they have not been adopted in practice because of a lack of consensus in the conservation community. Here, building from an interdisciplinary workshop to update the existing EDGE approach, we present an "EDGE2" protocol that draws on a decade of research and innovation to develop an improved, consistent methodology for prioritising species conservation efforts. Key advances include methods for dealing with uncertainty and accounting for the extinction risk of closely related species. We describe EDGE2 in terms of distinct components to facilitate future revisions to its constituent parts without needing to reconsider the whole. We illustrate EDGE2 by applying it to the world's mammals. As we approach a crossroads for global biodiversity policy, this Consensus View shows how collaboration between academic and applied conservation biologists can guide effective and practical priority-setting to conserve biodiversity.


Asunto(s)
Biodiversidad , Especies en Peligro de Extinción , Animales , Filogenia , Evolución Biológica , Humanidades , Mamíferos
2.
Syst Biol ; 73(1): 158-182, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38102727

RESUMEN

Phylogenetic metrics are essential tools used in the study of ecology, evolution and conservation. Phylogenetic diversity (PD) in particular is one of the most prominent measures of biodiversity and is based on the idea that biological features accumulate along the edges of phylogenetic trees that are summed. We argue that PD and many other phylogenetic biodiversity metrics fail to capture an essential process that we term attrition. Attrition is the gradual loss of features through causes other than extinction. Here we introduce "EvoHeritage", a generalization of PD that is founded on the joint processes of accumulation and attrition of features. We argue that while PD measures evolutionary history, EvoHeritage is required to capture a more pertinent subset of evolutionary history including only components that have survived attrition. We show that EvoHeritage is not the same as PD on a tree with scaled edges; instead, accumulation and attrition interact in a more complex non-monophyletic way that cannot be captured by edge lengths alone. This leads us to speculate that the one-dimensional edge lengths of classic trees may be insufficiently flexible to capture the nuances of evolutionary processes. We derive a measure of EvoHeritage and show that it elegantly reproduces species richness and PD at opposite ends of a continuum based on the intensity of attrition. We demonstrate the utility of EvoHeritage in ecology as a predictor of community productivity compared with species richness and PD. We also show how EvoHeritage can quantify living fossils and resolve their associated controversy. We suggest how the existing calculus of PD-based metrics and other phylogenetic biodiversity metrics can and should be recast in terms of EvoHeritage accumulation and attrition.


Asunto(s)
Biodiversidad , Filogenia , Evolución Biológica , Clasificación/métodos , Modelos Biológicos
3.
Glob Chang Biol ; 30(6): e17380, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38925582

RESUMEN

Bumble bees are integral pollinators of native and cultivated plant communities, but species are undergoing significant changes in range and abundance on a global scale. Climate change and land cover alteration are key drivers in pollinator declines; however, limited research has evaluated the cumulative effects of these factors on bumble bee assemblages. This study tests bumble bee assemblage (calculated as richness and abundance) responses to climate and land use by modeling species-specific habitat requirements, and assemblage-level responses across geographic regions. We integrated species richness, abundance, and distribution data for 18 bumble bee species with site-specific bioclimatic, landscape composition, and landscape configuration data to evaluate the effects of multiple environmental stressors on bumble bee assemblages throughout 433 agricultural fields in Florida, Indiana, Kansas, Kentucky, Maryland, South Carolina, Utah, Virginia, and West Virginia from 2018 to 2020. Distinct east versus west groupings emerged when evaluating species-specific habitat associations, prompting a detailed evaluation of bumble bee assemblages by geographic region. Maximum temperature of warmest month and precipitation of driest month had a positive impact on bumble bee assemblages in the Corn Belt/Appalachian/northeast, southeast, and northern plains regions, but a negative impact on the mountain region. Further, forest land cover surrounding agricultural fields was highlighted as supporting more rich and abundant bumble bee assemblages. Overall, climate and land use combine to drive bumble bee assemblages, but how those processes operate is idiosyncratic and spatially contingent across regions. From these findings, we suggested regionally specific management practices to best support rich and abundant bumble bee assemblages in agroecosystems. Results from this study contribute to a better understanding of climate and landscape factors affecting bumble bees and their habitats throughout the United States.


Asunto(s)
Cambio Climático , Ecosistema , Animales , Abejas/fisiología , Estados Unidos , Biodiversidad , Agricultura , Polinización
4.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34103391

RESUMEN

As COVID-19 continues to spread across the world, it is increasingly important to understand the factors that influence its transmission. Seasonal variation driven by responses to changing environment has been shown to affect the transmission intensity of several coronaviruses. However, the impact of the environment on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remains largely unknown, and thus seasonal variation remains a source of uncertainty in forecasts of SARS-CoV-2 transmission. Here we address this issue by assessing the association of temperature, humidity, ultraviolet radiation, and population density with estimates of transmission rate (R). Using data from the United States, we explore correlates of transmission across US states using comparative regression and integrative epidemiological modeling. We find that policy intervention ("lockdown") and reductions in individuals' mobility are the major predictors of SARS-CoV-2 transmission rates, but, in their absence, lower temperatures and higher population densities are correlated with increased SARS-CoV-2 transmission. Our results show that summer weather cannot be considered a substitute for mitigation policies, but that lower autumn and winter temperatures may lead to an increase in transmission intensity in the absence of policy interventions or behavioral changes. We outline how this information may improve the forecasting of COVID-19, reveal its future seasonal dynamics, and inform intervention policies.


Asunto(s)
COVID-19/transmisión , Frío , Densidad de Población , Número Básico de Reproducción , COVID-19/epidemiología , COVID-19/prevención & control , Control de Enfermedades Transmisibles/legislación & jurisprudencia , Predicción , Humanos , Movimiento , SARS-CoV-2 , Estaciones del Año , Estados Unidos/epidemiología
5.
J Anim Ecol ; 92(2): 297-309, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35978494

RESUMEN

Determining when animal populations have experienced stress in the past is fundamental to understanding how risk factors drive contemporary and future species' responses to environmental change. For insects, quantifying stress and associating it with environmental factors has been challenging due to a paucity of time-series data and because detectable population-level responses can show varying lag effects. One solution is to leverage historic entomological specimens to detect morphological proxies of stress experienced at the time stressors emerged, allowing us to more accurately determine population responses. Here we studied specimens of four bumblebee species, an invaluable group of insect pollinators, from five museums collected across Britain over the 20th century. We calculated the degree of fluctuating asymmetry (FA; random deviations from bilateral symmetry) between the right and left forewings as a potential proxy of developmental stress. We: (a) investigated whether baseline FA levels vary between species, and how this compares between the first and second half of the century; (b) determined the extent of FA change over the century in the four bumblebee species, and whether this followed a linear or nonlinear trend; (c) tested which annual climatic conditions correlated with increased FA in bumblebees. Species differed in their baseline FA, with FA being higher in the two species that have recently expanded their ranges in Britain. Overall, FA significantly increased over the century but followed a nonlinear trend, with the increase starting c. 1925. We found relatively warm and wet years were associated with higher FA. Collectively our findings show that FA in bumblebees increased over the 20th century and under weather conditions that will likely increase in frequency with climate change. By plotting FA trends and quantifying the contribution of annual climate conditions on past populations, we provide an important step towards improving our understanding of how environmental factors could impact future populations of wild beneficial insects.


Asunto(s)
Cambio Climático , Museos , Animales , Abejas
6.
Proc Natl Acad Sci U S A ; 116(46): 23163-23168, 2019 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-31659035

RESUMEN

Mycorrhizal fungi are critical members of the plant microbiome, forming a symbiosis with the roots of most plants on Earth. Most plant species partner with either arbuscular or ectomycorrhizal fungi, and these symbioses are thought to represent plant adaptations to fast and slow soil nutrient cycling rates. This generates a second hypothesis, that arbuscular and ectomycorrhizal plant species traits complement and reinforce these fungal strategies, resulting in nutrient acquisitive vs. conservative plant trait profiles. Here we analyzed 17,764 species level trait observations from 2,940 woody plant species to show that mycorrhizal plants differ systematically in nitrogen and phosphorus economic traits. Differences were clearest in temperate latitudes, where ectomycorrhizal plant species are more nitrogen use- and phosphorus use-conservative than arbuscular mycorrhizal species. This difference is reflected in both aboveground and belowground plant traits and is robust to controlling for evolutionary history, nitrogen fixation ability, deciduousness, latitude, and species climate niche. Furthermore, mycorrhizal effects are large and frequently similar to or greater in magnitude than the influence of plant nitrogen fixation ability or deciduous vs. evergreen leaf habit. Ectomycorrhizal plants are also more nitrogen conservative than arbuscular plants in boreal and tropical ecosystems, although differences in phosphorus use are less apparent outside temperate latitudes. Our findings bolster current theories of ecosystems rooted in mycorrhizal ecology and support the hypothesis that plant mycorrhizal association is linked to the evolution of plant nutrient economic strategies.


Asunto(s)
Micorrizas , Nitrógeno/metabolismo , Fósforo/metabolismo , Plantas/metabolismo , Plantas/microbiología , Clima , Ecosistema , Fijación del Nitrógeno
7.
Am J Bot ; 108(11): 2112-2126, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34755895

RESUMEN

Plant phenology research has surged in recent decades, in part due to interest in phenological sensitivity to climate change and the vital role phenology plays in ecology. Many local-scale studies have generated important findings regarding the physiology, responses, and risks associated with shifts in plant phenology. By comparison, our understanding of regional- and global-scale phenology has been largely limited to remote sensing of green-up without the ability to differentiate among plant species. However, a new generation of analytical tools and data sources-including enhanced remote sensing products, digitized herbarium specimen data, and public participation in science-now permits investigating patterns and drivers of phenology across extensive taxonomic, temporal, and spatial scales, in an emerging field that we call macrophenology. Recent studies have highlighted how phenology affects dynamics at broad scales, including species interactions and ranges, carbon fluxes, and climate. At the cusp of this developing field of study, we review the theoretical and practical advances in four primary areas of plant macrophenology: (1) global patterns and shifts in plant phenology, (2) within-species changes in phenology as they mediate species' range limits and invasions at the regional scale, (3) broad-scale variation in phenology among species leading to ecological mismatches, and (4) interactions between phenology and global ecosystem processes. To stimulate future research, we describe opportunities for macrophenology to address grand challenges in each of these research areas, as well as recently available data sources that enhance and enable macrophenology research.


Asunto(s)
Cambio Climático , Ecosistema , Plantas , Estaciones del Año
8.
Ecol Lett ; 23(11): 1589-1598, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32812695

RESUMEN

Climate change is shifting the environmental cues that determine the phenology of interacting species. Plant-pollinator systems may be susceptible to temporal mismatch if bees and flowering plants differ in their phenological responses to warming temperatures. While the cues that trigger flowering are well-understood, little is known about what determines bee phenology. Using generalised additive models, we analyzed time-series data representing 67 bee species collected over 9 years in the Colorado Rocky Mountains to perform the first community-wide quantification of the drivers of bee phenology. Bee emergence was sensitive to climatic variation, advancing with earlier snowmelt timing, whereas later phenophases were best explained by functional traits including overwintering stage and nest location. Comparison of these findings to a long-term flower study showed that bee phenology is less sensitive than flower phenology to climatic variation, indicating potential for reduced synchrony of flowers and pollinators under climate change.


Asunto(s)
Cambio Climático , Flores , Animales , Abejas , Colorado , Estaciones del Año , Temperatura
9.
Mol Phylogenet Evol ; 152: 106938, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32791300

RESUMEN

Cryptic species are present throughout the tree of life. They are especially prevalent in ferns, because of processes such hybridization, polyploidy, and reticulate evolution. In addition, the simple morphology of ferns limits phenotypic variation and makes it difficult to detect cryptic species. The model fern genus Ceratopteris has long been suspected to harbor cryptic diversity, in particular within the highly polymorphic C. thalictroides. Yet no studies have included samples from throughout its pan-tropical range or utilized genomic sequencing, making it difficult to assess the full extent of cryptic variation within this genus. Here, we present the first multilocus phylogeny of the genus using reduced representation genomic sequencing (RADseq) and examine population structure, phylogenetic relationships, and ploidy level variation. We recover similar species relationships found in previous studies, find support for the cryptic species C. gaudichaudii as genetically distinct, and identify novel genomic variation within two of the mostly broadly distributed species in the genus, C. thalictroides and C. cornuta. Finally, we detail the utility of our approach for working on cryptic, reticulate groups of ferns. Specifically, it does not require a reference genome, of which there are very few available for ferns. RADseq is a cost-effective way to work with study groups lacking genomic resources, and to obtain the thousands of nuclear markers needed to untangle species complexes.


Asunto(s)
Genoma de Planta/genética , Filogenia , Pteridaceae/clasificación , Pteridaceae/genética , Secuencia de Bases , Mapeo Cromosómico , Genómica , Hibridación Genética , Poliploidía , Especificidad de la Especie
10.
Glob Chang Biol ; 26(11): 6616-6629, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32311220

RESUMEN

Current analyses and predictions of spatially explicit patterns and processes in ecology most often rely on climate data interpolated from standardized weather stations. This interpolated climate data represents long-term average thermal conditions at coarse spatial resolutions only. Hence, many climate-forcing factors that operate at fine spatiotemporal resolutions are overlooked. This is particularly important in relation to effects of observation height (e.g. vegetation, snow and soil characteristics) and in habitats varying in their exposure to radiation, moisture and wind (e.g. topography, radiative forcing or cold-air pooling). Since organisms living close to the ground relate more strongly to these microclimatic conditions than to free-air temperatures, microclimatic ground and near-surface data are needed to provide realistic forecasts of the fate of such organisms under anthropogenic climate change, as well as of the functioning of the ecosystems they live in. To fill this critical gap, we highlight a call for temperature time series submissions to SoilTemp, a geospatial database initiative compiling soil and near-surface temperature data from all over the world. Currently, this database contains time series from 7,538 temperature sensors from 51 countries across all key biomes. The database will pave the way toward an improved global understanding of microclimate and bridge the gap between the available climate data and the climate at fine spatiotemporal resolutions relevant to most organisms and ecosystem processes.


Asunto(s)
Ecosistema , Microclima , Cambio Climático , Nieve , Temperatura
11.
Ecol Appl ; 30(4): e02082, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31971651

RESUMEN

Understanding the factors that influence biodiversity in urban areas is important for informing management efforts aimed at enhancing the ecosystem services in urban settings and curbing the spread of invasive introduced species. We determined the ecological and socioeconomic factors that influence patterns of plant richness, phylogenetic diversity, and composition in 133 private household yards in the Minneapolis-Saint Paul Metropolitan area, Minnesota, USA. We compared the composition of spontaneously occurring plant species and those planted by homeowners with composition in natural areas (at the Cedar Creek Ecosystem Science Reserve) and in the horticulture pool of species available from commercial growers. Yard area and fertilizer frequency influenced species richness of the spontaneous species but expressed homeowner values did not. In contrast, the criteria that homeowners articulated as important in their management decisions, including aesthetics, wildlife, neatness and food provision, significantly predicted cultivated species richness. Strikingly, the composition of plant species that people cultivated in their yards resembled the taxonomic and phylogenetic composition of species available commercially. In contrast, the taxonomic and phylogenetic composition of spontaneous species showed high similarity to natural areas. The large fraction of introduced species that homeowners planted was a likely consequence of what was available for them to purchase. The study links the composition and diversity of yard flora to their natural and anthropogenic sources and sheds light on the human factors and values that influence the plant diversity in residential areas of a major urban system. Enhanced understanding of the influences of the sources of plants, both native and introduced, that enter urban systems and the human factors and values that influence their diversity is critical to identifying the levers to manage urban biodiversity and ecosystem services.


Asunto(s)
Ecosistema , Plantas , Animales , Biodiversidad , Humanos , Minnesota , Filogenia
12.
Ecol Appl ; 29(4): e01884, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30933402

RESUMEN

In natural grasslands, C4 plant dominance increases with growing season temperatures and reflects distinct differences in plant growth rates and water use efficiencies of C3 vs. C4 photosynthetic pathways. However, in lawns, management decisions influence interactions between planted turfgrass and weed species, leading to some uncertainty about the degree of human vs. climatic controls on lawn species distributions. We measured herbaceous plant carbon isotope ratios (δ13 C, index of C3 /C4 relative abundance) and C4 cover in residential lawns across seven U.S. cities to determine how climate, lawn plant management, or interactions between climate and plant management influenced C4 lawn cover. We also calculated theoretical C4 carbon gain predicted by a plant physiological model as an index of expected C4 cover due to growing season climatic conditions in each city. Contrary to theoretical predictions, plant δ13 C and C4 cover in urban lawns were more strongly related to mean annual temperature than to growing season temperature. Wintertime temperatures influenced the distribution of C4 lawn turf plants, contrary to natural ecosystems where growing season temperatures primarily drive C4 distributions. C4 cover in lawns was greatest in the three warmest cities, due to an interaction between climate and homeowner plant management (e.g., planting C4 turf species) in these cities. The proportion of C4 lawn species was similar to the proportion of C4 species in the regional grass flora. However, the majority of C4 species were nonnative turf grasses, and not of regional origin. While temperature was a strong control on lawn species composition across the United States, cities differed as to whether these patterns were driven by cultivated lawn grasses vs. weedy species. In some cities, biotic interactions with weedy plants appeared to dominate, while in other cities, C4 plants were predominantly imported and cultivated. Elevated CO2 and temperature in cities can influence C3 /C4 competitive outcomes; however, this study provides evidence that climate and plant management dynamics influence biogeography and ecology of C3 /C4 plants in lawns. Their differing water and nutrient use efficiency may have substantial impacts on carbon, water, energy, and nutrient budgets across cities.


Asunto(s)
Ecosistema , Poaceae , Ciudades , Humanos , Fotosíntesis , Dispersión de las Plantas , Estados Unidos
14.
New Phytol ; 218(4): 1697-1709, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29603243

RESUMEN

Nonlinear relationships between species and their environments are believed common in ecology and evolution, including during angiosperms' rise to dominance. Early angiosperms are thought of as woody evergreens restricted to warm, wet habitats. They have since expanded into numerous cold and dry places. This expansion may have included transitions across important environmental thresholds. To understand linear and nonlinear relationships between angiosperm structure and biogeographic distributions, we integrated large datasets of growth habits, conduit sizes, leaf phenologies, evolutionary histories, and environmental limits. We consider current-day patterns and develop a new evolutionary model to investigate processes that created them. The macroecological pattern was clear: herbs had lower minimum temperature and precipitation limits. In woody species, conduit sizes were smaller in evergreens and related to species' minimum temperatures. Across evolutionary timescales, our new modeling approach found conduit sizes in deciduous species decreased linearly with minimum temperature limits. By contrast, evergreen species had a sigmoidal relationship with minimum temperature limits and an inflection overlapping freezing. These results suggest freezing represented an important threshold for evergreen but not deciduous woody angiosperms. Global success of angiosperms appears tied to a small set of alternative solutions when faced with a novel environmental threshold.


Asunto(s)
Magnoliopsida/clasificación , Filogeografía , Teorema de Bayes , Evolución Biológica , Ecosistema , Modelos Teóricos , Hojas de la Planta/fisiología , Carácter Cuantitativo Heredable
15.
Ecology ; 99(6): 1473-1479, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29782644

RESUMEN

Niche differences are key to understanding the distribution and structure of biodiversity. To examine niche differences, we must first characterize how species occupy niche space, and two approaches are commonly used in the ecological literature. The first uses species traits to estimate multivariate trait space (so-called functional trait diversity, FD); the second quantifies the amount of time or evolutionary history captured by a group of species (phylogenetic diversity, PD). It is often-but controversially-assumed that these putative measures of niche space are at a minimum correlated and perhaps redundant, since more evolutionary time allows for greater accumulation of trait changes. This theoretical expectation remains surprisingly poorly evaluated, particularly in the context of multivariate measures of trait diversity. We evaluated the relationship between phylogenetic diversity and trait diversity using analytical and simulation-based methods across common models of trait evolution. We show that PD correlates with FD increasingly strongly as more traits are included in the FD measure. Our results indicate that phylogenetic diversity can be a useful surrogate for high-dimensional trait diversity, but we also show that the correlation weakens when the underlying process of trait evolution includes variation in rate and optima.


Asunto(s)
Biodiversidad , Ecología , Fenotipo , Filogenia
16.
New Phytol ; 214(4): 1527-1536, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28262955

RESUMEN

Seed dormancy is expected to provide ecological advantages by adjusting germination to the favorable growth period. However, many species produce nondormant seeds, particularly in wet tropical forests, a biogeographic pattern that is not well accounted for in current models. We hypothesized that the global distribution of dormant seeds derives from their adaptive value in predictably fluctuating (i.e. seasonal) environments. However, the advantage conferred by dormancy might ultimately depend on other seed attributes, particularly size. This general model was tested within a phylogenetically informed framework using a data set comprising > 216 000 world-wide observations of Fabaceae, spanning three orders of magnitude in seed size and including both dormant and nondormant seeds. Our results confirmed our hypothesis: nondormant seeds can only evolve in climates with long growing seasons and/or in lineages that produce larger seeds. Conversely, dormancy should be evolutionarily stable in temperate lineages with small seeds. When the favorable season is fleeting, seed dormancy is the only adaptive strategy. Based on these results, we predict that, within a given lineage, taxa producing larger, nondormant seeds will necessarily predominate in aseasonal environments, while plants bearing small, dormant seeds will be dominant under short growing seasons.


Asunto(s)
Fabaceae/fisiología , Latencia en las Plantas/fisiología , Semillas/fisiología , Evolución Biológica , Germinación , Filogeografía , Estaciones del Año , Semillas/anatomía & histología
17.
Bioinformatics ; 31(17): 2888-90, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-25948716

RESUMEN

UNLABELLED: pez is an R package that permits measurement, modelling and simulation of phylogenetic structure in ecological data. pez contains the first implementation of many methods in R, and aggregates existing data structures and methods into a single, coherent package. AVAILABILITY AND IMPLEMENTATION: pez is released under the GPL v3 open-source license, available on the Internet from CRAN (http://cran.r-project.org). The package is under active development, and the authors welcome contributions (see http://github.com/willpearse/pez). CONTACT: will.pearse@gmail.com.


Asunto(s)
Biodiversidad , Bases de Datos Genéticas , Ecología , Filogenia , Programas Informáticos , Fenotipo
18.
Sci Rep ; 14(1): 13326, 2024 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858479

RESUMEN

Previous work has shown that environmental variables affect SARS-CoV-2 transmission, but it is unclear whether different strains show similar environmental responses. Here we leverage genetic data on the transmission of three (Alpha, Delta and Omicron BA.1) variants of SARS-CoV-2 throughout England, to unpick the roles that climate and public-health interventions play in the circulation of this virus. We find evidence for enhanced transmission of the virus in colder conditions in the first variant selective sweep (of Alpha, in winter), but limited evidence of an impact of climate in either the second (of Delta, in the summer, when vaccines were prevalent) or third sweep (of Omicron, in the winter, during a successful booster-vaccination campaign). We argue that the results for Alpha are to be expected if the impact of climate is non-linear: we find evidence of an asymptotic impact of temperature on the alpha variant transmission rate. That is, at lower temperatures, the influence of temperature on transmission is much higher than at warmer temperatures. As with the initial spread of SARS-CoV-2, however, the overwhelming majority of variation in disease transmission is explained by the intrinsic biology of the virus and public-health mitigation measures. Specifically, when vaccination rates are high, a major driver of the spread of a new variant is it's ability to evade immunity, and any climate effects are secondary (as evidenced for Delta and Omicron). Climate alone cannot describe the transmission dynamics of emerging SARS-CoV-2 variants.


Asunto(s)
COVID-19 , SARS-CoV-2 , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/inmunología , COVID-19/transmisión , COVID-19/virología , COVID-19/epidemiología , COVID-19/prevención & control , Humanos , Inglaterra/epidemiología , Estaciones del Año , Temperatura , Clima , Vacunas contra la COVID-19/inmunología
19.
Nat Commun ; 15(1): 1101, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38424441

RESUMEN

Human-driven extinction threatens entire lineages across the Tree of Life. Here we assess the conservation status of jawed vertebrate evolutionary history, using three policy-relevant approaches. First, we calculate an index of threat to overall evolutionary history, showing that we expect to lose 86-150 billion years (11-19%) of jawed vertebrate evolutionary history over the next 50-500 years. Second, we rank jawed vertebrate species by their EDGE scores to identify the highest priorities for species-focused conservation of evolutionary history, finding that chondrichthyans, ray-finned fish and testudines rank highest of all jawed vertebrates. Third, we assess the conservation status of jawed vertebrate families. We found that species within monotypic families are more likely to be threatened and more likely to be in decline than other species. We provide a baseline for the status of families at risk of extinction to catalyse conservation action. This work continues a trend of highlighting neglected groups-such as testudines, crocodylians, amphibians and chondrichthyans-as conservation priorities from a phylogenetic perspective.


Asunto(s)
Conservación de los Recursos Naturales , Tortugas , Humanos , Animales , Filogenia , Vertebrados/genética , Evolución Biológica , Anfibios , Biodiversidad
20.
Ecol Lett ; 16(10): 1221-33, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23931035

RESUMEN

Landscape ecology plays a vital role in understanding the impacts of land-use change on biodiversity, but it is not a predictive discipline, lacking theoretical models that quantitatively predict biodiversity patterns from first principles. Here, we draw heavily on ideas from phylogenetics to fill this gap, basing our approach on the insight that habitat fragments have a shared history. We develop a landscape 'terrageny', which represents the historical spatial separation of habitat fragments in the same way that a phylogeny represents evolutionary divergence among species. Combining a random sampling model with a terrageny generates numerical predictions about the expected proportion of species shared between any two fragments, the locations of locally endemic species, and the number of species that have been driven locally extinct. The model predicts that community similarity declines with terragenetic distance, and that local endemics are more likely to be found in terragenetically distinctive fragments than in large fragments. We derive equations to quantify the variance around predictions, and show that ignoring the spatial structure of fragmented landscapes leads to over-estimates of local extinction rates at the landscape scale. We argue that ignoring the shared history of habitat fragments limits our ability to understand biodiversity changes in human-modified landscapes.


Asunto(s)
Biodiversidad , Ecología/métodos , Ecosistema , Modelos Biológicos , Animales , Brasil , Filogenia , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA