Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Biol Lett ; 19(10): 20230142, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37875159

RESUMEN

Body-size relationships between predators and prey exhibit remarkable diversity. However, the assumption that predators typically consume proportionally smaller prey often underlies size-dependent predation in ecosystem models. In reality, some animals can consume larger prey or exhibit limited changes in prey size as they grow larger themselves. These distinct predator-prey size relationships challenge the conventional assumptions of traditional size-based models. Cephalopods, with their diverse feeding behaviours and life histories, offer an excellent case study to investigate the impact of greater biological realism in predator-prey size relationships on energy flow within a size-structured ecosystem model. By categorizing cephalopods into high and low-activity groups, in line with empirically derived, distinct predator-prey size relationships, we found that incorporating greater biological realism in size-based feeding reduced ecosystem biomass and production, while simultaneously increasing biomass stability and turnover. Our results have broad implications for ecosystem modelling, since distinct predator-prey size relationships extend beyond cephalopods, encompassing a wide array of major taxonomic groups from filter-feeding fishes to baleen whales. Incorporating a diversity of size-based feeding in food web models can enhance their ecological and predictive accuracy when studying ecosystem dynamics.


Asunto(s)
Ecosistema , Cadena Alimentaria , Animales , Biomasa , Tamaño Corporal , Conducta Alimentaria , Conducta Predatoria , Modelos Biológicos
2.
Glob Chang Biol ; 28(11): 3515-3536, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35293658

RESUMEN

Offshore platforms, subsea pipelines, wells and related fixed structures supporting the oil and gas (O&G) industry are prevalent in oceans across the globe, with many approaching the end of their operational life and requiring decommissioning. Although structures can possess high ecological diversity and productivity, information on how they interact with broader ecological processes remains unclear. Here, we review the current state of knowledge on the role of O&G infrastructure in maintaining, altering or enhancing ecological connectivity with natural marine habitats. There is a paucity of studies on the subject with only 33 papers specifically targeting connectivity and O&G structures, although other studies provide important related information. Evidence for O&G structures facilitating vertical and horizontal seascape connectivity exists for larvae and mobile adult invertebrates, fish and megafauna; including threatened and commercially important species. The degree to which these structures represent a beneficial or detrimental net impact remains unclear, is complex and ultimately needs more research to determine the extent to which natural connectivity networks are conserved, enhanced or disrupted. We discuss the potential impacts of different decommissioning approaches on seascape connectivity and identify, through expert elicitation, critical knowledge gaps that, if addressed, may further inform decision making for the life cycle of O&G infrastructure, with relevance for other industries (e.g. renewables). The most highly ranked critical knowledge gap was a need to understand how O&G structures modify and influence the movement patterns of mobile species and dispersal stages of sessile marine species. Understanding how different decommissioning options affect species survival and movement was also highly ranked, as was understanding the extent to which O&G structures contribute to extending species distributions by providing rest stops, foraging habitat, and stepping stones. These questions could be addressed with further dedicated studies of animal movement in relation to structures using telemetry, molecular techniques and movement models. Our review and these priority questions provide a roadmap for advancing research needed to support evidence-based decision making for decommissioning O&G infrastructure.


Asunto(s)
Ecosistema , Peces , Animales , Invertebrados , Larva , Océanos y Mares
3.
Glob Chang Biol ; 27(14): 3200-3217, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33835618

RESUMEN

Climate-driven changes in the distribution of species are a pervasive and accelerating impact of climate change, and despite increasing research effort in this rapidly emerging field, much remains unknown or poorly understood. We lack a holistic understanding of patterns and processes at local, regional and global scales, with detailed explorations of range shifts in the southern hemisphere particularly under-represented. Australian waters encompass the world's third largest marine jurisdiction, extending from tropical to sub-Antarctic climate zones, and have waters warming at rates twice the global average in the north and two to four times in the south. Here, we report the results of a multi-taxon continent-wide review describing observed and predicted species redistribution around the Australian coastline, and highlight critical gaps in knowledge impeding our understanding of, and response to, these considerable changes. Since range shifts were first reported in the region in 2003, 198 species from nine Phyla have been documented shifting their distribution, 87.3% of which are shifting poleward. However, there is little standardization of methods or metrics reported in observed or predicted shifts, and both are hindered by a lack of baseline data. Our results demonstrate the importance of historical data sets and underwater visual surveys, and also highlight that approximately one-fifth of studies incorporated citizen science. These findings emphasize the important role the public has had, and can continue to play, in understanding the impact of climate change. Most documented shifts are of coastal fish species in sub-tropical and temperate systems, while tropical systems in general were poorly explored. Moreover, most distributional changes are only described at the poleward boundary, with few studies considering changes at the warmer, equatorward range limit. Through identifying knowledge gaps and research limitations, this review highlights future opportunities for strategic research effort to improve the representation of Australian marine species and systems in climate-impact research.


Asunto(s)
Cambio Climático , Ecosistema , Animales , Australia , Peces
4.
J Anim Ecol ; 89(11): 2692-2703, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32895913

RESUMEN

Individual body size strongly influences the trophic role of marine organisms and the structure and function of marine ecosystems. Quantifying trophic position-individual body size relationships (trophic allometries) underpins the development of size-structured ecosystem models to predict abundance and the transfer of energy through ecosystems. Trophic allometries are well studied for fishes but remain relatively unexplored for cephalopods. Cephalopods are important components of coastal, oceanic and deep-sea ecosystems, and they play a key role in the transfer of biomass from low trophic positions to higher predators. It is therefore important to resolve cephalopod trophic allometries to accurately represent them within size-structured ecosystem models. We assessed the trophic positions of cephalopods in an oceanic pelagic (0-500 m) community (sampled by trawling in a cold-core eddy in the western Tasman Sea), comprising 22 species from 12 families, using bulk tissue stable isotope analysis and amino acid compound-specific stable isotope analysis. We assessed whether ontogenetic trophic position shifts were evident at the species-level and tested for the best predictor of community-level trophic allometry among body size, taxonomy and functional grouping (informed by fin and mantle morphology). Individuals in this cephalopod community spanned two trophic positions and fell into three functional groups on an activity level gradient: low, medium and high. The relationship between trophic position and ontogeny varied among species, with the most marked differences evident between species from different functional groups. Activity-level-based functional group and individual body size are best explained by cephalopod trophic positions (marginal R2  = 0.43). Our results suggest that the morphological traits used to infer activity level, such as fin-to-mantle length ratio, fin musculature and mantle musculature are strong predictors of cephalopod trophic allometries. Contrary to established theory, not all cephalopods are voracious predators. Low activity level cephalopods have a distinct feeding mode, with low trophic positions and little-to-no ontogenetic increases. Given the important role of cephalopods in marine ecosystems, distinct feeding modes could have important consequences for energy pathways and ecosystem structure and function. These findings will facilitate trait-based and other model estimates of cephalopod abundance in the changing global ocean.


Asunto(s)
Cefalópodos , Ecosistema , Animales , Organismos Acuáticos , Cadena Alimentaria , Estado Nutricional , Océanos y Mares
5.
Glob Chang Biol ; 24(11): 5440-5453, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30003633

RESUMEN

The environmental effects of climate change are predicted to cause distribution shifts in many marine taxa, yet data are often difficult to collect. Quantifying and monitoring species' suitable environmental habitats is a pragmatic approach for assessing changes in species distributions but is underdeveloped for quantifying climate change induced range shifts in marine systems. Specifically, habitat predictions present opportunities for quantifying spatiotemporal distribution changes while accounting for sources of natural climate variation. Here we demonstrate the utility of a marine-based habitat model parameterized using citizen science data and remotely sensed environmental covariates for quantifying shifts in oceanographic habitat suitability over 22 years for a coastal-pelagic fish species in a climate change hotspot. Our analyses account for the effects of natural intra- and interannual climate variability to reveal rapid poleward shifts in core (94.4 km/decade) and poleward edge (108.8 km/decade) oceanographic habitats. Temporal persistence of suitable oceanographic habitat at high latitudes also increased by approximately 3 months over the study period. Our approach demonstrates how marine citizen science data can be used to quantify range shifts, but necessitates shifting focus from species distributions directly, to the distribution of species' environmental habitat preferences.


Asunto(s)
Distribución Animal , Cambio Climático , Ecosistema , Perciformes/fisiología , Animales , Australia , Participación de la Comunidad , Recolección de Datos , Geografía , Océanos y Mares , Océano Pacífico , Proyectos de Investigación
6.
Glob Chang Biol ; 23(7): 2602-2617, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-27935174

RESUMEN

Ocean warming, acidification, deoxygenation and reduced productivity are widely considered to be the major stressors to ocean ecosystems induced by emissions of CO2 . However, an overlooked stressor is the change in ocean circulation in response to climate change. Strong changes in the intensity and position of the western boundary currents have already been observed, and the consequences of such changes for ecosystems are beginning to emerge. In this study, we address climatically induced changes in ocean circulation on a global scale but relevant to propagule dispersal for species inhabiting global shelf ecosystems, using a high-resolution global ocean model run under the IPCC RCP 8.5 scenario. The » degree model resolution allows improved regional realism of the ocean circulation beyond that of available CMIP5-class models. We use a Lagrangian approach forced by modelled ocean circulation to simulate the circulation pathways that disperse planktonic life stages. Based on trajectory backtracking, we identify present-day coastal retention, dominant flow and dispersal range for coastal regions at the global scale. Projecting into the future, we identify areas of the strongest projected circulation change and present regional examples with the most significant modifications in their dominant pathways. Climatically induced changes in ocean circulation should be considered as an additional stressor of marine ecosystems in a similar way to ocean warming or acidification.


Asunto(s)
Cambio Climático , Ecosistema , Calentamiento Global , Movimientos del Agua , Dióxido de Carbono , Clima , Océanos y Mares , Agua de Mar
7.
Glob Chang Biol ; 23(5): 2047-2057, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28122146

RESUMEN

Shifts in species ranges are a global phenomenon, well known to occur in response to a changing climate. New species arriving in an area may become pest species, modify ecosystem structure, or represent challenges or opportunities for fisheries and recreation. Early detection of range shifts and prompt implementation of any appropriate management strategies is therefore crucial. This study investigates whether 'first sightings' of marine species outside their normal ranges could provide an early warning of impending climate-driven range shifts. We examine the relationships between first sightings and marine regions defined by patterns of local climate velocities (calculated on a 50-year timescale), while also considering the distribution of observational effort (i.e. number of sampling days recorded with biological observations in global databases). The marine trajectory regions include climate 'source' regions (areas lacking connections to warmer areas), 'corridor' regions (areas where moving isotherms converge), and 'sink' regions (areas where isotherms locally disappear). Additionally, we investigate the latitudinal band in which first sightings were recorded, and species' thermal affiliations. We found that first sightings are more likely to occur in climate sink and 'divergent' regions (areas where many rapid and diverging climate trajectories pass through) indicating a role of temperature in driving changes in marine species distributions. The majority of our fish first sightings appear to be tropical and subtropical species moving towards high latitudes, as would be expected in climate warming. Our results indicate that first sightings are likely related to longer-term climatic processes, and therefore have potential use to indicate likely climate-driven range shifts. The development of an approach to detect impending range shifts at an early stage will allow resource managers and researchers to better manage opportunities resulting from range-shifting species before they potentially colonize.


Asunto(s)
Cambio Climático , Ecosistema , Peces , Animales , Clima , Temperatura , Clima Tropical
8.
Glob Chang Biol ; 22(7): 2462-74, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26990671

RESUMEN

As a consequence of global climate-driven changes, marine ecosystems are experiencing polewards redistributions of species - or range shifts - across taxa and throughout latitudes worldwide. Research on these range shifts largely focuses on understanding and predicting changes in the distribution of individual species. The ecological effects of marine range shifts on ecosystem structure and functioning, as well as human coastal communities, can be large, yet remain difficult to anticipate and manage. Here, we use qualitative modelling of system feedback to understand the cumulative impacts of multiple species shifts in south-eastern Australia, a global hotspot for ocean warming. We identify range-shifting species that can induce trophic cascades and affect ecosystem dynamics and productivity, and evaluate the potential effectiveness of alternative management interventions to mitigate these impacts. Our results suggest that the negative ecological impacts of multiple simultaneous range shifts generally add up. Thus, implementing whole-of-ecosystem management strategies and regular monitoring of range-shifting species of ecological concern are necessary to effectively intervene against undesirable consequences of marine range shifts at the regional scale. Our study illustrates how modelling system feedback with only limited qualitative information about ecosystem structure and range-shifting species can predict ecological consequences of multiple co-occurring range shifts, guide ecosystem-based adaptation to climate change and help prioritise future research and monitoring.


Asunto(s)
Organismos Acuáticos , Cambio Climático , Ecosistema , Modelos Teóricos , Australia , Conservación de los Recursos Naturales
9.
Glob Chang Biol ; 22(6): 2038-53, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26855008

RESUMEN

Ocean warming 'hotspots' are regions characterized by above-average temperature increases over recent years, for which there are significant consequences for both living marine resources and the societies that depend on them. As such, they represent early warning systems for understanding the impacts of marine climate change, and test-beds for developing adaptation options for coping with those impacts. Here, we examine five hotspots off the coasts of eastern Australia, South Africa, Madagascar, India and Brazil. These particular hotspots have underpinned a large international partnership that is working towards improving community adaptation by characterizing, assessing and projecting the likely future of coastal-marine food resources through the provision and sharing of knowledge. To inform this effort, we employ a high-resolution global ocean model forced by Representative Concentration Pathway 8.5 and simulated to year 2099. In addition to the sea surface temperature, we analyse projected stratification, nutrient supply, primary production, anthropogenic CO2 -driven ocean acidification, deoxygenation and ocean circulation. Our simulation finds that the temperature-defined hotspots studied here will continue to experience warming but, with the exception of eastern Australia, may not remain the fastest warming ocean areas over the next century as the strongest warming is projected to occur in the subpolar and polar areas of the Northern Hemisphere. Additionally, we find that recent rapid change in SST is not necessarily an indicator that these areas are also hotspots of the other climatic stressors examined. However, a consistent facet of the hotspots studied here is that they are all strongly influenced by ocean circulation, which has already shown changes in the recent past and is projected to undergo further strong change into the future. In addition to the fast warming, change in local ocean circulation represents a distinct feature of present and future climate change impacting marine ecosystems in these areas.


Asunto(s)
Cambio Climático , Ecosistema , Agua de Mar/química , Temperatura , Movimientos del Agua , Adaptación Fisiológica , Australia , Brasil , Dióxido de Carbono/análisis , India , Madagascar , Modelos Teóricos , Océanos y Mares , Sudáfrica
10.
Ecol Lett ; 18(9): 944-53, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26189556

RESUMEN

Species' ranges are shifting globally in response to climate warming, with substantial variability among taxa, even within regions. Relationships between range dynamics and intrinsic species traits may be particularly apparent in the ocean, where temperature more directly shapes species' distributions. Here, we test for a role of species traits and climate velocity in driving range extensions in the ocean-warming hotspot of southeast Australia. Climate velocity explained some variation in range shifts, however, including species traits more than doubled the variation explained. Swimming ability, omnivory and latitudinal range size all had positive relationships with range extension rate, supporting hypotheses that increased dispersal capacity and ecological generalism promote extensions. We find independent support for the hypothesis that species with narrow latitudinal ranges are limited by factors other than climate. Our findings suggest that small-ranging species are in double jeopardy, with limited ability to escape warming and greater intrinsic vulnerability to stochastic disturbances.


Asunto(s)
Cambio Climático , Ecosistema , Peces/fisiología , Invertebrados/fisiología , Temperatura , Animales , Australia , Tamaño Corporal , Dieta/veterinaria , Cadena Alimentaria , Fenómenos de Retorno al Lugar Habitual , Funciones de Verosimilitud , Modelos Lineales , Biología Marina , Actividad Motora , Océanos y Mares , Densidad de Población , Reproducción
12.
Sci Rep ; 12(1): 4412, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35292683

RESUMEN

Marine species not only suffer from direct effects of warming oceans but also indirectly via the emergence of novel species interactions. While metabolic adjustments can be crucial to improve resilience to warming, it is largely unknown if this improves performance relative to novel competitors. We aimed to identify if spiny lobsters-inhabiting a global warming and species re-distribution hotspot-align their metabolic performance to improve resilience to both warming and novel species interactions. We measured metabolic and escape capacity of two Australian spiny lobsters, resident Jasus edwardsii and the range-shifting Sagmariasus verreauxi, acclimated to current average-(14.0 °C), current summer-(17.5 °C) and projected future summer-(21.5 °C) habitat temperatures. We found that both species decreased their standard metabolic rate with increased acclimation temperature, while sustaining their scope for aerobic metabolism. However, the resident lobster showed reduced anaerobic escape performance at warmer temperatures and failed to match the metabolic capacity of the range-shifting lobster. We conclude that although resident spiny lobsters optimise metabolism in response to seasonal and future temperature changes, they may be unable to physiologically outperform their range-shifting competitors. This highlights the critical importance of exploring direct as well as indirect effects of temperature changes to understand climate change impacts.


Asunto(s)
Palinuridae , Aclimatación , Animales , Australia , Cambio Climático , Calentamiento Global , Océanos y Mares , Palinuridae/fisiología , Temperatura
13.
Commun Biol ; 5(1): 1329, 2022 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-36463333

RESUMEN

Anthropogenic climate change is causing a rapid redistribution of life on Earth, particularly in the ocean, with profound implications for humans. Yet warming-driven range shifts are known to be influenced by a variety of factors whose combined effects are still little understood. Here, we use scientist-verified out-of-range observations from a national citizen-science initiative to assess the combined effect of long-term warming, climate extremes (i.e., heatwaves and cold spells), ocean currents, and species traits on early stages of marine range extensions in two warming 'hotspot' regions of southern Australia. We find effects of warming to be contingent upon complex interactions with the strength of ocean currents and their mutual directional agreement, as well as species traits. Our study represents the most comprehensive account to date of factors driving early stages of marine species redistributions, providing important evidence for the assessment of the vulnerability of marine species distributions to climate change.


Asunto(s)
Ciencia Ciudadana , Humanos , Fenotipo , Cambio Climático , Convulsiones
14.
Rev Fish Biol Fish ; 32(1): 19-36, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33424142

RESUMEN

The oceans face a range of complex challenges for which the impacts on society are highly uncertain but mostly negative. Tackling these challenges is testing society's capacity to mobilise transformative action, engendering a sense of powerlessness. Envisaging positive but realistic visions of the future, and considering how current knowledge, resources, and technology could be used to achieve these futures, may lead to greater action to achieve sustainable transformations. Future Seas (www.FutureSeas2030.org) brought together researchers across career stages, Indigenous Peoples and environmental managers to develop scenarios for 12 challenges facing the oceans, leveraging interdisciplinary knowledge to improve society's capacity to purposefully shape the direction of marine social-ecological systems over the UN Decade of Ocean Science for Sustainable Development (2021-2030). We describe and reflect on Future Seas, providing guidance for co-developing scenarios in interdisciplinary teams tasked with exploring ocean futures. We detail the narrative development for two futures: our current trajectory based on published evidence, and a more sustainable future, consistent with the UN's Sustainable Development Goals, which is technically achievable using existing and emerging knowledge. Presentation of Business-as-usual and More Sustainable futures-together-allows communication of both trajectories, whilst also highlighting achievable, sustainable versions of the future. The advantages of the interdisciplinary approach taken include: (1) integrating different perspectives on solutions, (2) capacity to explore interactions between Life Under Water (Goal 14) and other SDGs, and (3) cross-disciplinary learning. This approach allowed participants to conceptualise shared visions of the future and co-design transformative pathways to achieving those futures. Supplementary Information SI: The online version contains supplementary material available at (10.1007/s11160-020-09629-5) contains supplementary material, which is available to authorized users.

15.
Sci Rep ; 12(1): 4800, 2022 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-35314739

RESUMEN

The Northern Humboldt Current System sustains one of the most productive fisheries in the world. However, climate change is anticipated to negatively affect fish production in this region over the next few decades, and detailed analyses for many fishery resources are unavailable. We implemented a trait-based Climate Vulnerability Assessment based on expert elicitation to estimate the relative vulnerability of 28 fishery resources (benthic, demersal, and pelagic) to the impacts of climate change by 2055; ten exposure factors (e.g., temperature, salinity, pH, chlorophyll) and 13 sensitivity attributes (biological and population-level traits) were used. Nearly 36% of the species assessed had "high" or "very high" vulnerability. Benthic species were ranked the most vulnerable (gastropod and bivalve species). The pelagic group was the second most vulnerable; the Pacific chub mackerel and the yellowfin tuna were amongst the most vulnerable pelagic species. The demersal group had the relatively lowest vulnerability. This study allowed identification of vulnerable fishery resources, research and monitoring priorities, and identification of the key exposure factors and sensitivity attributes which are driving that vulnerability. Our findings can help fishery managers incorporate climate change into harvest level and allocation decisions, and assist stakeholders plan for and adapt to a changing future.


Asunto(s)
Cambio Climático , Explotaciones Pesqueras , Animales , Conservación de los Recursos Naturales , Ecosistema , Peces
16.
Rev Fish Biol Fish ; 32(1): 65-100, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35280238

RESUMEN

Marine ecosystems and their associated biodiversity sustain life on Earth and hold intrinsic value. Critical marine ecosystem services include maintenance of global oxygen and carbon cycles, production of food and energy, and sustenance of human wellbeing. However marine ecosystems are swiftly being degraded due to the unsustainable use of marine environments and a rapidly changing climate. The fundamental challenge for the future is therefore to safeguard marine ecosystem biodiversity, function, and adaptive capacity whilst continuing to provide vital resources for the global population. Here, we use foresighting/hindcasting to consider two plausible futures towards 2030: a business-as-usual trajectory (i.e. continuation of current trends), and a more sustainable but technically achievable future in line with the UN Sustainable Development Goals. We identify key drivers that differentiate these alternative futures and use these to develop an action pathway towards the desirable, more sustainable future. Key to achieving the more sustainable future will be establishing integrative (i.e. across jurisdictions and sectors), adaptive management that supports equitable and sustainable stewardship of marine environments. Conserving marine ecosystems will require recalibrating our social, financial, and industrial relationships with the marine environment. While a sustainable future requires long-term planning and commitment beyond 2030, immediate action is needed to avoid tipping points and avert trajectories of ecosystem decline. By acting now to optimise management and protection of marine ecosystems, building upon existing technologies, and conserving the remaining biodiversity, we can create the best opportunity for a sustainable future in 2030 and beyond.

17.
Rev Fish Biol Fish ; 32(1): 123-143, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33589856

RESUMEN

Improved public understanding of the ocean and the importance of sustainable ocean use, or ocean literacy, is essential for achieving global commitments to sustainable development by 2030 and beyond. However, growing human populations (particularly in mega-cities), urbanisation and socio-economic disparity threaten opportunities for people to engage and connect directly with ocean environments. Thus, a major challenge in engaging the whole of society in achieving ocean sustainability by 2030 is to develop strategies to improve societal connections to the ocean. The concept of ocean literacy reflects public understanding of the ocean, but is also an indication of connections to, and attitudes and behaviours towards, the ocean. Improving and progressing global ocean literacy has potential to catalyse the behaviour changes necessary for achieving a sustainable future. As part of the Future Seas project (https://futureseas2030.org/), this paper aims to synthesise knowledge and perspectives on ocean literacy from a range of disciplines, including but not exclusive to marine biology, socio-ecology, philosophy, technology, psychology, oceanography and human health. Using examples from the literature, we outline the potential for positive change towards a sustainable future based on knowledge that already exists. We focus on four drivers that can influence and improve ocean literacy and societal connections to the ocean: (1) education, (2) cultural connections, (3) technological developments, and (4) knowledge exchange and science-policy interconnections. We explore how each driver plays a role in improving perceptions of the ocean to engender more widespread societal support for effective ocean management and conservation. In doing so, we develop an ocean literacy toolkit, a practical resource for enhancing ocean connections across a broad range of contexts worldwide.

18.
Rev Fish Biol Fish ; 32(1): 231-251, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33814734

RESUMEN

One of the most pronounced effects of climate change on the world's oceans is the (generally) poleward movement of species and fishery stocks in response to increasing water temperatures. In some regions, such redistributions are already causing dramatic shifts in marine socioecological systems, profoundly altering ecosystem structure and function, challenging domestic and international fisheries, and impacting on human communities. Such effects are expected to become increasingly widespread as waters continue to warm and species ranges continue to shift. Actions taken over the coming decade (2021-2030) can help us adapt to species redistributions and minimise negative impacts on ecosystems and human communities, achieving a more sustainable future in the face of ecosystem change. We describe key drivers related to climate-driven species redistributions that are likely to have a high impact and influence on whether a sustainable future is achievable by 2030. We posit two different futures-a 'business as usual' future and a technically achievable and more sustainable future, aligned with the Sustainable Development Goals. We then identify concrete actions that provide a pathway towards the more sustainable 2030 and that acknowledge and include Indigenous perspectives. Achieving this sustainable future will depend on improved monitoring and detection, and on adaptive, cooperative management to proactively respond to the challenge of species redistribution. We synthesise examples of such actions as the basis of a strategic approach to tackle this global-scale challenge for the benefit of humanity and ecosystems. Supplementary Information: The online version contains supplementary material available at 10.1007/s11160-021-09641-3.

19.
Rev Fish Biol Fish ; 32(1): 39-63, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34566277

RESUMEN

Proactive and coordinated action to mitigate and adapt to climate change will be essential for achieving the healthy, resilient, safe, sustainably harvested and biodiverse ocean that the UN Decade of Ocean Science and sustainable development goals (SDGs) seek. Ocean-based mitigation actions could contribute 12% of the emissions reductions required by 2030 to keep warming to less than 1.5 ºC but, because substantial warming is already locked in, extensive adaptation action is also needed. Here, as part of the Future Seas project, we use a "foresighting/hindcasting" technique to describe two scenarios for 2030 in the context of climate change mitigation and adaptation for ocean systems. The "business-as-usual" future is expected if current trends continue, while an alternative future could be realised if society were to effectively use available data and knowledge to push as far as possible towards achieving the UN SDGs. We identify three drivers that differentiate between these alternative futures: (i) appetite for climate action, (ii) handling extreme events, and (iii) climate interventions. Actions that could navigate towards the optimistic, sustainable and technically achievable future include:(i)proactive creation and enhancement of economic incentives for mitigation and adaptation;(ii)supporting the proliferation of local initiatives to spur a global transformation;(iii)enhancing proactive coastal adaptation management;(iv)investing in research to support adaptation to emerging risks;(v)deploying marine-based renewable energy;(vi)deploying marine-based negative emissions technologies;(vii)developing and assessing solar radiation management approaches; and(viii)deploying appropriate solar radiation management approaches to help safeguard critical ecosystems. Supplementary Information: The online version contains supplementary material available at 10.1007/s11160-021-09678-4.

20.
Philos Trans R Soc Lond B Biol Sci ; 375(1814): 20190461, 2020 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-33131446

RESUMEN

Climate change, overfishing, marine pollution and other anthropogenic drivers threaten our global oceans. More effective efforts are urgently required to improve the capacity of marine conservation action worldwide, as highlighted by the United Nations Decade of Ocean Science for Sustainable Development 2021-2030. Marine citizen science presents a promising avenue to enhance engagement in marine conservation around the globe. Building on an expanding field of citizen science research and practice, we present a global overview of the current extent and potential of marine citizen science and its contribution to marine conservation. Employing an online global survey, we explore the geographical distribution, type and format of 74 marine citizen science projects. By assessing how the projects adhere to the Ten Principles of Citizen Science (as defined by the European Citizen Science Association), we investigate project development, identify challenges and outline future opportunities to contribute to marine science and conservation. Synthesizing the survey results and drawing on evidence from case studies of diverse projects, we assess whether and how citizen science can lead to new scientific knowledge and enhanced environmental stewardship. Overall, we explore how marine citizen science can inform current understanding of marine biodiversity and support the development and implementation of marine conservation initiatives worldwide. This article is part of the theme issue 'Integrative research perspectives on marine conservation'.


Asunto(s)
Biodiversidad , Ciencia Ciudadana/estadística & datos numéricos , Conservación de los Recursos Naturales/estadística & datos numéricos , Explotaciones Pesqueras , Océanos y Mares , Monitoreo del Ambiente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA