Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Autoimmun ; 144: 103174, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38377868

RESUMEN

In many autoimmune diseases, autoantigen-specific Th17 cells play a pivotal role in disease pathogenesis. Th17 cells can transdifferentiate into other T cell subsets in inflammatory conditions, however, there have been no attempts to target Th17 cell plasticity using vaccines. We investigated if autoantigen-specific Th17 cells could be specifically targeted using a therapeutic vaccine approach, where antigen was formulated in all-trans retinoic acid (ATRA)-containing liposomes, permitting co-delivery of antigen and ATRA to the same target cell. Whilst ATRA was previously found to broadly reduce Th17 responses, we found that antigen formulated in ATRA-containing cationic liposomes only inhibited Th17 cells in an antigen-specific manner and not when combined with an irrelevant antigen. Furthermore, this approach shifted existing Th17 cells away from IL-17A expression and transcriptomic analysis of sorted Th17 lineage cells from IL-17 fate reporter mice revealed a shift of antigen-specific Th17 cells to exTh17 cells, expressing functional markers associated with T cell regulation and tolerance. In the experimental autoimmune encephalomyelitis (EAE) mouse model of MS, vaccination with myelin-specific (MOG) antigen in ATRA-containing liposomes reduced Th17 responses and alleviated disease. This highlights the potential of therapeutic vaccination for changing the phenotype of existing Th17 cells in the context of immune mediated diseases.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Células Th17 , Ratones , Animales , Liposomas/metabolismo , Tretinoina/farmacología , Tretinoina/metabolismo , Autoantígenos/metabolismo , Adyuvantes Inmunológicos , Inmunización , Vacunación , Fenotipo , Ratones Endogámicos C57BL , Células TH1
2.
Vet Res ; 51(1): 57, 2020 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-32312317

RESUMEN

Conserved epitopes are targets commonly researched to be part of universal vaccine candidates against influenza viruses (IV). These conserved epitopes need to be cross-protecting against distinct IV subtypes and to have a strong immunogenic potential. Nevertheless, subunit vaccines generally require a strong adjuvant to enhance their immunological effects. Herewith, we compare four different adjuvants differing in their immunological signatures that may enhance efficacy of a conserved hemagglutinin (HA)-epitope from IV, the NG-34, to define the most efficient combination of antigen/adjuvant to combat IV infections. Soluble NG-34 was mixed with adjuvants like aluminium hydroxide (AH) and AddaVax, known to induce Th2 and humoral responses; CAF01 which displays a biased Th1/Th17 profile and Diluvac Forte which augments the humoral response. Combinations were tested in different groups of mice which were subjected to immunological analyses. CAF01 + NG-34 induced a complete immune response with the highest IgG1, IgG2c titers and percentages of activated CD4 T cell promoting IFN-γ, IL-2 and TNF-α producing cells. Furthermore, in NG-34 stimulated mice splenocytes, cytokine levels of IFN-γ, IL-1ß, IL-6, IL-10, IL-17 and TNF-α were also the highest in the CAF01 + NG-34 mouse group. This complete induced immune response covering the humoral and the cellular arms of the adaptive immunity promoted by CAF01 + NG-34 group suggests that CAF01 could be a good candidate as an adjuvant to combine with NG-34 for an efficacious vaccine against IV. However, more studies performed in IV hosts as well as studies with a challenge model are further required.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Epítopos/inmunología , Vacunas contra la Influenza/inmunología , Linfocitos T/inmunología , Animales , Protección Cruzada , Femenino , Vacunas contra la Influenza/química , Ratones , Ratones Endogámicos C57BL , Vacunas de Subunidad/química , Vacunas de Subunidad/inmunología
3.
J Immunol ; 200(2): 775-787, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29222168

RESUMEN

Marginal zone (MZ) B cells reside in the splenic MZ and play important roles in T cell-independent humoral immune responses against blood-borne pathogens. IκBNS-deficient bumble mice exhibit a severe reduction in the MZ B compartment but regain an MZ B population with age and, thus, represent a valuable model to examine the biology of MZ B cells. In this article, we characterized the MZ B cell defect in further detail and investigated the nature of the B cells that appear in the MZ of aged bumble mice. Flow cytometry analysis of the splenic transitional B cell subsets demonstrated that MZ B cell development was blocked at the transitional-1 to transitional-2-MZ precursor stage in the absence of functional IκBNS. Immunohistochemical analysis of spleen sections from wild-type and bumble mice revealed no alteration in the cellular MZ microenvironment, and analysis of bone marrow chimeras indicated that the MZ B cell development defect in bumble mice was B cell intrinsic. Further, we demonstrate that the B cells that repopulate the MZ in aged bumble mice were distinct from age-matched wild-type MZ B cells. Specifically, the expression of surface markers characteristic for MZ B cells was altered and the L chain Igλ+ repertoire was reduced in bumble mice. Finally, plasma cell differentiation of sorted LPS-stimulated MZ B cells was impaired, and aged bumble mice were unable to respond to NP-Ficoll immunization. These results demonstrate that IκBNS is required for an intact MZ B cell compartment in C57BL/6 mice.


Asunto(s)
Subgrupos de Linfocitos B/inmunología , Subgrupos de Linfocitos B/metabolismo , Selección Clonal Mediada por Antígenos , Quinasa I-kappa B/deficiencia , Bazo/inmunología , Bazo/metabolismo , Factores de Edad , Animales , Antígenos T-Independientes/inmunología , Subgrupos de Linfocitos B/citología , Biomarcadores , Diferenciación Celular , Inmunoglobulina G/genética , Inmunoglobulina G/inmunología , Inmunofenotipificación , Lipopolisacáridos/inmunología , Ratones , Ratones Noqueados , Fenotipo
4.
Proc Natl Acad Sci U S A ; 114(44): E9328-E9337, 2017 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-29078319

RESUMEN

B cell receptor signaling and downstream NF-κB activity are crucial for the maturation and functionality of all major B cell subsets, yet the molecular players in these signaling events are not fully understood. Here we use several genetically modified mouse models to demonstrate that expression of the multifunctional BRCT (BRCA1 C-terminal) domain-containing PTIP (Pax transactivation domain-interacting protein) chromatin regulator is controlled by B cell activation and potentiates steady-state and postimmune antibody production in vivo. By examining the effects of PTIP deficiency in mice at various ages during ontogeny, we demonstrate that PTIP promotes bone marrow B cell development as well as the neonatal establishment and subsequent long-term maintenance of self-reactive B-1 B cells. Furthermore, we find that PTIP is required for B cell receptor- and T:B interaction-induced proliferation, differentiation of follicular B cells during germinal center formation, and normal signaling through the classical NF-κB pathway. Together with the previously identified role for PTIP in promoting sterile transcription at the Igh locus, the present results establish PTIP as a licensing factor for humoral immunity that acts at several junctures of B lineage maturation and effector cell differentiation by controlling B cell activation.


Asunto(s)
Subgrupos de Linfocitos B/inmunología , Proteínas Portadoras/inmunología , Cromatina/inmunología , Inmunidad Humoral/inmunología , Proteínas Nucleares/inmunología , Animales , Médula Ósea/inmunología , Diferenciación Celular/inmunología , Linaje de la Célula/inmunología , Proliferación Celular/fisiología , Células Cultivadas , Proteínas de Unión al ADN , Activación de Linfocitos/inmunología , Ratones , FN-kappa B/inmunología , Transducción de Señal/inmunología
5.
Immunol Cell Biol ; 97(5): 485-497, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30597621

RESUMEN

Impaired classical NF-κB pathway signaling causes reduced antibody responses to T-independent (TI) antigens. We investigated the potential reasons for defective TI responses in mice lacking the atypical inhibitory kappa B (IκB) protein of the NF-κB pathway, IκBNS. Analyses of the plasma cell compartment in vitro and in vivo after challenge with lipopolysaccharide (LPS) showed significant decreases in the frequencies of plasma cells in the absence of IκBNS. In vitro activation of B cells via the B cell receptor or via Toll-like receptor 4 revealed that early activation events were unaffected in IκBNS-deficient B cells, while proliferation was reduced compared to in similarly stimulated wildtype (wt) B cells. IκBNS-deficient B cells also displayed impaired upregulation of the transmembrane activator and calcium modulator cyclophilin ligand interactor (TACI), which is essential for TI responses, and decreased sensitivity to TACI ligands upon stimulation. Furthermore, IκBNS-deficient B cells, in contrast to wt B cells, displayed altered expression of IRF4, Blimp-1 and Pax5 upon LPS-induced differentiation, indicating impaired transcriptional regulation of plasma cell generation.


Asunto(s)
Diferenciación Celular , Regulación de la Expresión Génica/inmunología , Proteínas I-kappa B/deficiencia , Células Plasmáticas/inmunología , Proteína Activadora Transmembrana y Interactiva del CAML/inmunología , Animales , Diferenciación Celular/genética , Diferenciación Celular/inmunología , Proteínas I-kappa B/inmunología , Ratones , Ratones Noqueados , Células Plasmáticas/citología , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/inmunología , Proteína Activadora Transmembrana y Interactiva del CAML/genética
6.
Proc Natl Acad Sci U S A ; 111(39): E4119-26, 2014 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-25228759

RESUMEN

B-1 cells mediate early protection against infection by responding to T cell-independent (TI) antigens found on the surface of various pathogens. Mice with impaired expression of the atypical IκB protein IκBNS have markedly reduced frequencies of B-1 cells. We used a mouse strain with dysfunctional IκBNS derived from an N-ethyl-N-nitrosourea (ENU) screen, named bumble, to investigate the point in the development of B-1 cells where IκBNS is required. The presence of wild-type (wt) peritoneal cells in mixed wt/bumble chimeras did not rescue the development of bumble B-1 cells, but wt peritoneal cells transferred to bumble mice restored natural IgM levels and response to TI antigens. The bumble and wt mice displayed similar levels of fetal liver B-1 progenitors and splenic neonatal transitional B (TrB) cells, both of which were previously shown to give rise to B-1 cells. Interestingly, we found that a subset of wt neonatal TrB cells expressed common B-1a markers (TrB-1a) and that this cell population was absent in the bumble neonatal spleen. Sorted TrB-1a (CD93(+)IgM(+)CD5(+)) cells exclusively generated B-1a cells when adoptively transferred, whereas sorted CD93(+)IgM(+)CD5(-) cells gave rise to B-2 cells and, to a lesser extent, B-1b and B-1a cells. This study identifies a phenotypically distinct splenic population of TrB-1a cells and establishes that the development of B-1a cells is blocked before this stage in the absence of IκBNS.


Asunto(s)
Subgrupos de Linfocitos B/inmunología , Proteínas I-kappa B/deficiencia , Proteínas/inmunología , Traslado Adoptivo , Animales , Animales Recién Nacidos , Antígenos T-Independientes/administración & dosificación , Subgrupos de Linfocitos B/citología , Subgrupos de Linfocitos B/metabolismo , Diferenciación Celular/inmunología , Proteínas I-kappa B/genética , Proteínas I-kappa B/inmunología , Inmunoglobulina M/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Proteínas/genética
7.
Immunol Cell Biol ; 93(2): 136-46, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25310967

RESUMEN

Signalling through Toll-like receptors (TLRs) by endogenous components of viruses or bacteria can promote antibody (Ab) isotype switching to IgG2a/c. Multiple cell types are capable of responding to TLR stimulation in vivo and the processes underlying TLR-induced Ab isotype switching are not fully defined. Here, we used feeble mice, which are deficient in the peptide/histidine transporter solute carrier family 15 member 4 (Slc15a4), and fail to produce cytokines including interferon alpha (IFNα) in response to TLR9 stimulation, to study Ab isotype switching to IgG2c in response to vaccination. We demonstrate that the production of IgG2c in response to CpGA-adjuvanted vaccines was severely reduced in feeble mice, while a more subtle defect was observed for CpGB. The reduced IgG2c production in feeble could not be ascribed to defective plasmacytoid dendritic cell (pDC) responses alone as we found that splenic cDCs and B cells from feeble mice were also defective in response to TLR9 ligation ex vivo. We conclude that Slc15a4 is required for intact function of TLR9-expressing cells and for effective Ab isotype switching to IgG2c in response to CpG-adjuvanted vaccines.


Asunto(s)
Cambio de Clase de Inmunoglobulina , Proteínas de Transporte de Membrana/metabolismo , Receptores de IgG/metabolismo , Recombinación Genética , Receptor Toll-Like 9/metabolismo , Adyuvantes Inmunológicos/farmacología , Animales , Formación de Anticuerpos/efectos de los fármacos , Linfocitos B/efectos de los fármacos , Linfocitos B/inmunología , Proliferación Celular/efectos de los fármacos , Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Epítopos/inmunología , Inmunización , Cambio de Clase de Inmunoglobulina/efectos de los fármacos , Subgrupos Linfocitarios/efectos de los fármacos , Subgrupos Linfocitarios/inmunología , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Oligodesoxirribonucleótidos/farmacología , Recombinación Genética/efectos de los fármacos , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología
8.
J Mol Biol ; 436(4): 168446, 2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-38242283

RESUMEN

Adjuvants are vaccine components that can boost the type, magnitude, breadth, and durability of an immune response. We have previously demonstrated that certain adjuvant combinations can act synergistically to enhance and shape immunogenicity including promotion of Th1 and cytotoxic T-cell development. These combinations also promoted protective immunity in vulnerable populations such as newborns. In this study, we employed combined antigen-specific human in vitro models to identify adjuvant combinations that could synergistically promote the expansion of vaccine-specific CD4+ cells, induce cross-presentation on MHC class I, resulting in antigen-specific activation of CD8+ cells, and direct the balance of immune response to favor the production of Th1-promoting cytokines. A screen of 78 adjuvant combinations identified several T cell-potentiating adjuvant combinations. Remarkably, a combination of TLR9 and STING agonists (CpG + 2,3-cGAMP) promoted influenza-specific CD4+ and CD8+ T cell activation and selectively favored production of Th1-polarizing cytokines TNF and IL-12p70 over co-regulated cytokines IL-6 and IL-12p40, respectively. Phenotypic reprogramming towards cDC1-type dendritic cells by CpG + 2,3-cGAMP was also observed. Finally, we characterized the molecular mechanism of this adjuvant combination including the ability of 2,3-cGAMP to enhance DC expression of TLR9 and the dependency of antigen-presenting cell activation on the Sec22b protein important to endoplasmic reticulum-Golgi vesicle trafficking. The identification of the adjuvant combination CpG + 2,3-cGAMP may therefore prove key to the future development of vaccines against respiratory viral infections tailored for the functionally distinct immune systems of vulnerable populations such as older adults and newborns.


Asunto(s)
Adyuvantes Inmunológicos , Reactividad Cruzada , Células TH1 , Desarrollo de Vacunas , Vacunas Virales , Humanos , Recién Nacido , Adyuvantes Inmunológicos/farmacología , Reactividad Cruzada/efectos de los fármacos , Citocinas/metabolismo , Células Dendríticas/inmunología , Receptor Toll-Like 9 , Células TH1/inmunología , Adolescente , Adulto Joven , Vacunas Virales/inmunología
9.
Int J Pharm ; 652: 123798, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38190949

RESUMEN

Successful oral delivery of liposomes requires formulations designed to withstand harsh gastrointestinal conditions, e.g., by converting to solid-state followed by loading into gastro-resistant delivery devices. The hypothesis was that the use of dextran-trehalose mixtures for spray drying would improve the rehydration kinetics of dried liposomes. The objectives were to determine the protective capacity of trehalose-dextran dehydration precursors and to increase the concentration of liposomes in the dry formulation volume. The study successfully demonstrated that 8.5% dextran combined with 76.5% trehalose protected CAF®04 liposomes during drying, with the liposome content maintained at 15% of the dry powder. Accordingly, the rehydration kinetics were slightly improved in formulations containing up to 8.5% dextran in the dry powder volume. Additionally, a 2.4-fold increase in lipid concentration (3 mM vs 7.245 mM) was achieved for spray dried CAF®04 liposomes. Ultimately, this study demonstrates the significance of trehalose as a primary carrier during spray drying of CAF®04 liposomes and highlights the advantage of incorporating small amounts of dextran to tune rehydration kinetics of spray-dried liposomes.


Asunto(s)
Liposomas , Trehalosa , Dextranos , Secado por Pulverización , Polvos , Tamaño de la Partícula , Liofilización
10.
Sci Rep ; 14(1): 17039, 2024 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-39048693

RESUMEN

Rapidly waning immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) requires continued global access to affordable vaccines. Globally, inactivated SARS-CoV-2 vaccines have been widely used during the SARS-CoV-2 pandemic. In this proof-of-concept study we adapted an original-D614G SARS-CoV-2 virus to Vero cell culture as a strategy to enhance inactivated vaccine manufacturing productivity. A passage 60 (P60) virus showed enhanced fitness and 50-fold increased virus yield in a bioreactor compared to the original-D614G virus. It further remained susceptible to neutralization by plasma from SARS-CoV-2 vaccinated and convalescent individuals, suggesting exposure of relevant epitopes. Monovalent inactivated P60 and bivalent inactivated P60/omicron BA.1 vaccines induced neutralizing responses against original-D614G and BA.1 viruses in mice and hamsters, demonstrating that the P60 virus is a suitable vaccine antigen. Antibodies further cross-neutralized delta and BA.5 viruses. Importantly, the inactivated P60 vaccine protected hamsters against disease upon challenge with original-D614G or BA.1 virus, with minimal lung pathology and lower virus loads in the upper and lower airways. Antigenicity of the P60 virus was thus retained compared to the original virus despite the acquisition of cell culture adaptive mutations. Consequently, cell culture adaptation may be a useful approach to increase yields in inactivated vaccine antigen production.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacunas contra la COVID-19 , COVID-19 , SARS-CoV-2 , Vacunas de Productos Inactivados , Animales , Células Vero , Chlorocebus aethiops , SARS-CoV-2/inmunología , Vacunas de Productos Inactivados/inmunología , Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , COVID-19/inmunología , COVID-19/virología , Ratones , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/sangre , Humanos , Protección Cruzada/inmunología , Cricetinae , Femenino
11.
J Infect Dis ; 206(2): 158-66, 2012 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-22551811

RESUMEN

BACKGROUND: Vaccination is the best measure to protect the population against a potential influenza H5N1 pandemic, but 2 doses of vaccine are needed to elicit protective immune responses. An immunological marker for H5N1 vaccine effectiveness is needed for early identification of the best vaccine candidate. METHODS: We conducted a phase I clinical trial of a virosomal H5N1 vaccine adjuvanted with Matrix M. Sixty adult volunteers were vaccinated intramuscularly with 2 doses of either 30 µg hemagglutinin (HA) alone or with 1.5, 7.5, or 30 µg HA and Matrix M adjuvant (50 µg). The humoral response was measured by the hemagglutination inhibition (HI), microneutralization (MN), and single radial hemolysis (SRH) assays, and the CD4(+) T-helper 1 (Th1)-cell response was measured by intracellular staining for the cytokines interleukin 2, interferon γ, and tumor necrosis factor α. RESULTS: The adjuvanted vaccine effectively induced CD4(+) Th1-cell responses, and the frequency of influenza-specific Th1 cells after the first vaccine dose predicted subsequent HI, MN, and SRH seroprotective responses after the second vaccination. CONCLUSIONS: These results support early identification of Th1-cell responses as a predictive biomarker for an efficient vaccine response, which could have great implications for early identification of persons with low or no response to vaccine when evaluating future pandemic influenza vaccines.


Asunto(s)
Anticuerpos Antivirales/sangre , Subtipo H5N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Gripe Humana/prevención & control , Linfocitos T Colaboradores-Inductores/fisiología , Adyuvantes Inmunológicos/fisiología , Adulto , Citocinas/sangre , Relación Dosis-Respuesta Inmunológica , Humanos , ISCOMs/inmunología , Gripe Humana/inmunología , Gripe Humana/virología , Persona de Mediana Edad , Vacunación , Vacunas de Virosoma/inmunología , Vacunas de Partículas Similares a Virus/inmunología , Adulto Joven
12.
J Control Release ; 353: 134-146, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36372387

RESUMEN

Oral vaccination has in the recent years gained a lot of attraction, mainly due to optimized patient compliance and logistics. However, the development of oral vaccines, especially oral subunit vaccines is challenging. Micro technology can be utilized to overcome some of these challenges, by facilitating protection and effective delivery of the vaccine components in the gastrointestinal tract (GI tract). One such technology is Microcontainers (MCs), which can be realized to be mucoadhesive and to target specific regions of the GI tract via oral delivery. Here, we test MCs, for oral delivery of the C. trachomatis vaccine candidate CTH522, in combination with effective mucosal adjuvants. The adjuvants alpha- galactosylceramide (α-GalCer), C-di-GMP and cholera toxin B were compared in vivo, to identify the most prominent adjuvant for formulation with CTH522. Formulations were administered both purely oral and as boosters following a subcutaneous (s.c.) prime with CTH522 in combination with the CAF®01 adjuvant. CTH522 formulated with α-GalCer showed to be the most efficient combination for the oral vaccine, based on the immunological analysis. Lyophilized formulation of CTH522 and α-GalCer was loaded into MCs and these were subsequently coated with Eudragit L100-55 and evaluated in vivo in mice for the ability of MCs to mediate intestinal vaccine delivery and increase immunogenicity of the vaccine. Mice receiving oral prime and boosters did show a significantly enhanced mucosal immune responses compared to naive mice. This indicates the MCs are indeed capable of delivering the vaccine formulation intact and able to stimulate the immune cells. Mice orally boosted with MCs following a s.c. prime with CAF01, demonstrated improved systemic and local Th17 responses, along with increased local IFN-γ and IgA levels compared to both the s.c. prime alone and the homologous oral prime-boost immunization. However, due to the relatively weak observed effect of the MC delivery on the immune responses, it was hypothesized that the MCs are proportionally too large for the GI tract of mice, and thus cleared before an effective immune response can be induced. To investigate this, MCs were loaded with BaSO4, and orally administered to mice. Analysis with X-ray and CT showed a transit time of approximately 1-1.5 h from the stomach to the cecum, corresponding to the standard transit time in mice, and an extremely narrow absorption window. This indicates that mice is not a suitable animal model for evaluation of MCs. These data should be taken into consideration in future in vivo trials with this and similar technologies, where larger animals might be a necessity for proof-of-concept studies.


Asunto(s)
Galactosilceramidas , Inmunidad Mucosa , Animales , Ratones , Galactosilceramidas/farmacología , Vacunación , Adyuvantes Inmunológicos , Adyuvantes Farmacéuticos/farmacología , Chlamydia trachomatis , Vacunas de Subunidad , Ratones Endogámicos BALB C
13.
NPJ Vaccines ; 8(1): 189, 2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38135685

RESUMEN

Class-switching to IgG2a/c in mice is a hallmark response to intracellular pathogens. T cells can promote class-switching and the predominant pathway for induction of IgG2a/c antibody responses has been suggested to be via stimulation from Th1 cells. We previously formulated CAF®01 (cationic liposomes containing dimethyldioctadecylammonium bromide (DDA) and Trehalose-6,6-dibehenate (TDB)) with the lipidated TLR7/8 agonist 3M-052 (DDA/TDB/3M-052), which promoted robust Th1 immunity in newborn mice. When testing this adjuvant in adult mice using the recombinant Chlamydia trachomatis (C.t.) vaccine antigen CTH522, it similarly enhanced IgG2a/c responses compared to DDA/TDB, but surprisingly reduced the magnitude of the IFN-γ+Th1 response in a TLR7 agonist dose-dependent manner. Single-cell RNA-sequencing revealed that DDA/TDB/3M-052 liposomes initiated early transcription of class-switch regulating genes directly in pre-germinal center B cells. Mixed bone marrow chimeras further demonstrated that this adjuvant did not require Th1 cells for IgG2a/c switching, but rather facilitated TLR7-dependent T-bet programming directly in B cells. This study underlines that adjuvant-directed IgG2a/c class-switching in vivo can occur in the absence of T-cell help, via direct activation of TLR7 on B cells and positions DDA/TDB/3M-052 as a powerful adjuvant capable of eliciting type I-like immunity in B cells without strong induction of Th1 responses.

14.
Front Immunol ; 13: 1000755, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36341341

RESUMEN

Mice lacking the atypical inhibitory kappa B (IκB) protein, IκBNS, a regulator of the NF-κB pathway encoded by the nfkbid gene, display impaired antibody responses to both T cell-independent (TI) and T cell-dependent (TD) antigens. To better understand the basis of these defects, we crossed mice carrying floxed nfkbid alleles with mice expressing Cre under the transcriptional control of the Cd79a gene to create mice that lacked IκBNS expression only in B cells. Analyses of these conditional knock-out mice revealed intact CD4+ and CD8+ T cell populations, including preserved frequencies of FoxP3+ regulatory T cells, which are known to be reduced in IκBNS knock-out mice. Like IκBNS knock-out mice, mice with conditional IκBNS ablation in B cells displayed defective IgM responses to TI antigens and a severe reduction in peritoneal B-1a cells. However, in contrast to mice lacking IκBNS altogether, the conditional IκBNS knock-out mice responded well to TD antigens compared to the control mice, with potent IgG responses following immunization with the viral antigen, rSFV-ßGal or the widely used hapten-protein model antigen, NP-CGG. Furthermore, B cell intrinsic IκBNS expression was dispensable for germinal center (GC) formation and T follicular helper cell responses to NP-CGG immunization. The results presented here suggest that the defect in antibody responses to TD antigens observed in IκBNS knock-out mice results from a B cell extrinsic defect.


Asunto(s)
Antígenos , Linfocitos B , Ratones , Animales , Diferenciación Celular , Ratones Noqueados , FN-kappa B/metabolismo , Inmunoglobulina G
15.
Nat Commun ; 13(1): 155, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013189

RESUMEN

Antibodies binding to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike have therapeutic promise, but emerging variants show the potential for virus escape. This emphasizes the need for therapeutic molecules with distinct and novel neutralization mechanisms. Here we describe the isolation of a nanobody that interacts simultaneously with two RBDs from different spike trimers of SARS-CoV-2, rapidly inducing the formation of spike trimer-dimers leading to the loss of their ability to attach to the host cell receptor, ACE2. We show that this nanobody potently neutralizes SARS-CoV-2, including the beta and delta variants, and cross-neutralizes SARS-CoV. Furthermore, we demonstrate the therapeutic potential of the nanobody against SARS-CoV-2 and the beta variant in a human ACE2 transgenic mouse model. This naturally elicited bispecific monomeric nanobody establishes an uncommon strategy for potent inactivation of viral antigens and represents a promising antiviral against emerging SARS-CoV-2 variants.


Asunto(s)
Anticuerpos Biespecíficos/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , SARS-CoV-2/inmunología , Anticuerpos de Dominio Único/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Animales , Anticuerpos Biespecíficos/metabolismo , COVID-19/virología , Chlorocebus aethiops , Microscopía por Crioelectrón , Células HEK293 , Humanos , Ratones Transgénicos , Pruebas de Neutralización/métodos , Unión Proteica , Conformación Proteica , Multimerización de Proteína/inmunología , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiología , Anticuerpos de Dominio Único/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismo , Células Vero
16.
Nat Commun ; 13(1): 4234, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35918315

RESUMEN

Respiratory syncytial virus is a leading cause of morbidity and mortality in children, due in part to their distinct immune system, characterized by impaired induction of Th 1 immunity. Here we show application of cationic adjuvant formulation CAF08, a liposomal vaccine formulation tailored to induce Th 1 immunity in early life via synergistic engagement of Toll-like Receptor 7/8 and the C-type lectin receptor Mincle. We apply quantitative phosphoproteomics to human dendritic cells and reveal a role for Protein Kinase C-δ for enhanced Th1 cytokine production in neonatal dendritic cells and identify signaling events resulting in antigen cross-presentation. In a murine in vivo model a single immunization at birth with CAF08-adjuvanted RSV pre-fusion antigen protects newborn mice from RSV infection by induction of antigen-specific CD8+ T-cells and Th1 cells. Overall, we describe a pediatric adjuvant formulation and characterize its mechanism of action providing a promising avenue for development of early life vaccines against RSV and other respiratory viral pathogens.


Asunto(s)
Infecciones por Virus Sincitial Respiratorio , Vacunas contra Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Adyuvantes Inmunológicos , Animales , Anticuerpos Antivirales , Linfocitos T CD8-positivos , Humanos , Pulmón , Ratones , Ratones Endogámicos BALB C , Proteínas Virales de Fusión
17.
Front Immunol ; 11: 571321, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33133085

RESUMEN

Humoral immunity is established after differentiation of antigen-specific B cells into plasma cells (PCs) that produce antibodies of relevant specificities. Defects in the development, activation, or differentiation of B cells severely compromises the immune response. Primary immunodeficiencies are often characterized by hypogammaglobulinemia and the inability to mount effective antigen-specific antibody responses, resulting in increased susceptibility to infections. After IgA deficiency, which is most often asymptomatic, common variable immunodeficiency (CVID) is the most prevalent symptomatic primary immunodeficiency, but in most cases the underlying genetic causes are unknown or their roles in disease pathogenesis are poorly understood. In this study, we developed a protocol for in vitro stimulation of primary human B cells for subsequent analyses of PC differentiation and antibody production. With this approach, we were able to detect a population of CD38+ IRF4+ Blimp-1+ cells committed to PC fate and IgG production, including when starting from cryopreserved samples. The application of functional assays to characterize PC differentiation and possible defects therein in B cells from patients suffering from primary antibody deficiencies with late B cell defects could increase our understanding of the disease pathophysiology and underlying mechanisms.


Asunto(s)
Linfocitos B/inmunología , Inmunodeficiencia Variable Común/inmunología , Células Plasmáticas/inmunología , ADP-Ribosil Ciclasa 1/metabolismo , Formación de Anticuerpos , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Inmunodeficiencia Variable Común/terapia , Citometría de Flujo , Humanos , Inmunofenotipificación , Factores Reguladores del Interferón/metabolismo , Activación de Linfocitos , Factor de Transcripción PAX5/metabolismo , Factor 1 de Unión al Dominio 1 de Regulación Positiva/metabolismo
19.
J Control Release ; 291: 1-10, 2018 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-30291987

RESUMEN

Pattern recognition receptors, including the Toll-like receptors (TLRs), are important in the induction and activation of two critical arms of the host defence to pathogens and microorganisms: the rapid innate immune response (as characterised by the production of Th1 promoting cytokines and type 1 interferons) and the adaptive immune response. Through this activation, ligands and agonists of TLRs can enhance immunotherapeutic efficacy. Resiquimod is a small (water-soluble) agonist of the endosome-located Toll-like receptors 7 and 8 (TLR7/8). However due to its molecular attributes it rapidly distributes throughout the body after injection. To circumvent this, these TLR agonists can be incorporated within delivery systems, such as liposomes, to promote the co-delivery of both antigen and agonists to antigen presenting cells. In this present study, resiquimod has been chemically conjugated to a lipid to form a lipid-TLR7/8 agonist conjugate which can be incorporated within immunogenic cationic liposomes composed of dimethyldioctadecylammonium bromide (DDA) and the immunostimulatory glycolipid trehalose 6,6' - dibehenate (TDB). This DDA:TDB-TLR7/8 formulation offers similar vesicle characteristics to DDA:TDB (size and charge) and offers high retention of both resiquimod and the electrostatically adsorbed TB subunit antigen Ag85B-ESAT6-Rv2660c (H56). Following immunisation through the intramuscular (i.m.) route, these cationic DDA:TDB-TLR7/8 liposomes form a vaccine depot at the injection site. However, immunisation studies have shown that this biodistribution does not translate into notably increased antibody nor Th1 responses at the spleen and draining popliteal lymph node compared to DDA:TDB liposomes. This work demonstrates that the conjugation of TLR7/8 agonists to cationic liposomes can promote co-delivery but the immune responses stimulated do not merit the added complexity considerations of the formulation.


Asunto(s)
Adyuvantes Inmunológicos/administración & dosificación , Glucolípidos/administración & dosificación , Imidazoles/administración & dosificación , Liposomas/química , Receptor Toll-Like 7/agonistas , Vacunas/administración & dosificación , Adyuvantes Inmunológicos/química , Adyuvantes Inmunológicos/farmacocinética , Animales , Femenino , Glucolípidos/química , Glucolípidos/farmacocinética , Imidazoles/química , Imidazoles/farmacocinética , Lípidos/química , Ratones Endogámicos BALB C , Compuestos de Amonio Cuaternario/química , Vacunas/química , Vacunas/farmacocinética
20.
Front Immunol ; 9: 1738, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30105023

RESUMEN

B-1a cells are mainly generated from fetal liver progenitor cells, peri- and neonatally. The developmental steps and anatomical sites required for these cells to become mature B-1a cells remain elusive. We recently described a phenotypically distinct transitional B cell subset in the spleen of neonatal mice that generated B-1a cells when adoptively transferred. This, in combination with findings demonstrating that B-1a cells are lacking in congenitally asplenic mice, led us to hypothesize that the neonatal spleen is required for B-1a cell development. In accordance with previous reports, we found that B-1a cell numbers were reduced in adult mice that had undergone splenectomy compared to after sham surgery. In contrast, neonatal splenectomy led to peritoneal B-1a cell frequencies comparable to those observed in sham-operated mice until 6 weeks after surgery, suggesting that an intact spleen is required for B-1a cell maintenance rather than development. To study the role of the prenatal spleen in generating B-1a cells, we transferred fetal liver cells from pre-splenic embryos [embryonic age 11 (E11) days] into splenectomized recipient mice. B-1a cells were generated in the absence of the spleen, albeit at slightly reduced frequencies, and populated the peritoneal cavity and bone marrow. Lower bone marrow B-1a cell frequencies were also observed both after neonatal and adult splenectomy. These results demonstrated that B-1a cells could be generated in the complete absence of an intact spleen, but that asplenia led to a decline in these cells, suggesting a role of the spleen for maintaining the B-1a compartment.


Asunto(s)
Subgrupos de Linfocitos B/citología , Subgrupos de Linfocitos B/metabolismo , Diferenciación Celular , Células Precursoras de Linfocitos B/citología , Células Precursoras de Linfocitos B/metabolismo , Esplenectomía , Factores de Edad , Animales , Animales Recién Nacidos , Biomarcadores , Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Linaje de la Célula , Inmunofenotipificación , Recuento de Linfocitos , Ratones , Ratones Noqueados , Ratones Transgénicos , Fenotipo , Bazo/citología , Bazo/inmunología , Bazo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA