Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
BMC Microbiol ; 20(1): 207, 2020 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-32660423

RESUMEN

BACKGROUND: Isolation of marine microorganisms is fundamental to gather information about their physiology, ecology and genomic content. To date, most of the bacterial isolation efforts have focused on the photic ocean leaving the deep ocean less explored. We have created a marine culture collection of heterotrophic bacteria (MARINHET) using a standard marine medium comprising a total of 1561 bacterial strains, and covering a variety of oceanographic regions from different seasons and years, from 2009 to 2015. Specifically, our marine collection contains isolates from both photic (817) and aphotic layers (744), including the mesopelagic (362) and the bathypelagic (382), from the North Western Mediterranean Sea, the North and South Atlantic Ocean, the Indian, the Pacific, and the Arctic Oceans. We described the taxonomy, the phylogenetic diversity and the biogeography of a fraction of the marine culturable microorganisms to enhance our knowledge about which heterotrophic marine isolates are recurrently retrieved across oceans and along different depths. RESULTS: The partial sequencing of the 16S rRNA gene of all isolates revealed that they mainly affiliate with the classes Alphaproteobacteria (35.9%), Gammaproteobacteria (38.6%), and phylum Bacteroidetes (16.5%). In addition, Alteromonas and Erythrobacter genera were found the most common heterotrophic bacteria in the ocean growing in solid agar medium. When comparing all photic, mesopelagic, and bathypelagic isolates sequences retrieved from different stations, 37% of them were 100% identical. This percentage increased up to 59% when mesopelagic and bathypelagic strains were grouped as the aphotic dataset and compared to the photic dataset of isolates, indicating the ubiquity of some bacterial isolates along different ocean depths. Finally, we isolated three strains that represent a new species, and the genome comparison and phenotypic characterization of two of these strains (ISS653 and ISS1889) concluded that they belong to a new species within the genus Mesonia. CONCLUSIONS: Overall, this study highlights the relevance of culture-dependent studies, with focus on marine isolated bacteria from different oceanographic regions and depths, to provide a more comprehensive view of the culturable marine bacteria as part of the total marine microbial diversity.


Asunto(s)
Bacterias/clasificación , Bacterias/crecimiento & desarrollo , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN/métodos , Regiones Árticas , Océano Atlántico , Bacterias/genética , Bacterias/aislamiento & purificación , ADN Bacteriano/genética , ADN Ribosómico/genética , Procesos Heterotróficos , Océano Índico , Mar Mediterráneo , Océano Pacífico , Filogenia , Filogeografía , Microbiología del Agua
2.
Int J Syst Evol Microbiol ; 70(7): 4329-4338, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32589567

RESUMEN

Strain ISS653T, isolated from Atlantic seawater, is a yellow pigmented, non-motile, Gram-reaction-negative rod-shaped bacterium, strictly aerobic and chemoorganotrophic, slightly halophilic (1-15 % NaCl) and mesophilic (4-37 °C), oxidase- and catalase-positive and proteolytic. Its major cellular fatty acids are iso-C15 : 0, iso-C15 : 0 2-OH, and iso-C17 : 0 3-OH; the major identified phospholipid is phosphatidylethanolamine and the major respiratory quinone is MK6. Genome size is 4.28 Mbp and DNA G+C content is 34.9 mol%. 16S rRNA gene sequence similarity places the strain among members of the family Flavobacteriaceae, with the type strains of Mesonia phycicola (93.2 %), Salegentibacter mishustinae (93.1 %) and Mesonia mobilis (92.9 %) as closest relatives. Average amino acid identity (AAI) and average nucleotide identity (ANI) indices show highest values with M. mobilis (81 % AAI; 78.9 % ANI), M. phycicola (76 % AAI; 76.3 % ANI), Mesonia maritima (72 % AAI, 74.9 % ANI), Mesonia hippocampi (64 % AAI, 70.8 % ANI) and Mesonia algae (68 % AAI; 72.2 % ANI). Phylogenomic analysis using the Up-to-date-Bacterial Core Gene set (UBCG) merges strain ISS653T in a clade with species of the genus Mesonia. We conclude that strain ISS653T represents a novel species of the genus Mesonia for which we propose the name Mesonia oceanica sp. nov., and strain ISS653T (=CECT 9532T=LMG 31236T) as the type strain. A second strain of the species, ISS1889 (=CECT 30008) was isolated from Pacific Ocean seawater. Data obtained throughout the Tara oceans expedition indicate that the species is more abundant in the mesopelagic dark ocean than in the photic layer and it is more frequent in the South Pacific, Indian and North Atlantic oceans.


Asunto(s)
Flavobacteriaceae/clasificación , Filogenia , Agua de Mar/microbiología , Océano Atlántico , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Flavobacteriaceae/aislamiento & purificación , Océano Pacífico , Pigmentación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Vitamina K 2/análogos & derivados
3.
Int J Syst Evol Microbiol ; 70(2): 1231-1239, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31793854

RESUMEN

Strain ISS155T, isolated from surface Mediterranean seawater, has cells that are Gram-reaction-negative, motile, strictly aerobic chemoorganotrophic, oxidase-positive, unable to reduce nitrate to nitrite, and able to grow with cellulose as the sole carbon and energy source. It is mesophilic, neutrophilic, slightly halophilic and has a requirement for sodium and magnesium ions. Its 16S rRNA gene sequence places the strain among members of Cellvibrionaceae, in the Gammaproteobacteria, with Agarilytica rhodophyticola 017T as closest relative (94.3 % similarity). Its major cellular fatty acids are C18 : 1, C16 : 0 and C16 : 1; major phospholipids are phosphatidyl glycerol, phosphatidyl ethanolamine and an unidentified lipid, and the major respiratory quinone is Q8. The genome size is 6.09 Mbp and G+C content is 45.2 mol%. A phylogenomic analysis using UBCG merges strain ISS155T in a clade with A. rhodophyticola, Teredinibacter turnerae, Saccharophagus degradans and Agaribacterium haliotis type strain genomes, all of them possessing a varied array of carbohydrate-active enzymes and the potential for polysaccharide degradation. Average amino acid identity indexes determined against available Cellvibrionaceae type strain genomes show that strain ISS155T is related to them by values lower than 60 %, with a maximum of 58 % to A. rhodophyticola 017T and 57 % to T. turnerae T7902T and S. degradans 2-40T. These results, together with the low 16S rRNA gene sequence similarities and differences in phenotypic profiles, indicate that strain ISS155T represents a new genus and species in Cellvibrionaceae, for which we propose the name Thalassocella blandensis gen. nov., sp. nov., and strain ISS155T (=CECT 9533T=LMG 31237T) as the type strain.


Asunto(s)
Phyllobacteriaceae/clasificación , Filogenia , Agua de Mar/microbiología , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Mar Mediterráneo , Fosfolípidos/química , Phyllobacteriaceae/aislamiento & purificación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Ubiquinona/química
4.
Mol Ecol ; 28(11): 2846-2859, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30830717

RESUMEN

Bacteroidetes is one of the dominant phyla of ocean bacterioplankton, yet its diversity and population structure is poorly understood. To advance in the delineation of ecologically meaningful units within this group, we constructed near full-length 16S rRNA gene clone libraries from contrasting marine environments in the NW Mediterranean. Based on phylogeny and the associated ecological variables (depth and season), 24 different Bacteroidetes clades were delineated. By considering their relative abundance (from iTag amplicon sequencing studies), we described the distribution patterns of each of these clades, delimiting them as Ecologically Significant Taxonomic Units (ESTUs). Spatially, there was almost no overlap among ESTUs at different depths. In deep waters there was predominance of Owenweeksia, Leeuwenhoekiella, Muricauda-related genera, and some depth-associated ESTUs within the NS5 and NS2b marine clades. Seasonally, multi-annual dynamics of recurring ESTUs were present with dominance of some ESTUs within the NS4, NS5 and NS2b marine clades along most of the year, but with variable relative frequencies between months. A drastic change towards the predominance of Formosa-related ESTUs and one ESTU from the NS5 marine clade was typically present after the spring bloom. Even though there are no isolates available for these ESTUs to determine their physiology, correlation analyses identified the environmental preference of some of them. Overall, our results suggest that there is a high degree of niche specialisation within these closely related clades. This work constitutes a step forward in disentangling the ecology of marine Bacteroidetes, which are essential players in organic matter processing in the oceans.


Asunto(s)
Organismos Acuáticos/genética , Bacteroidetes/genética , Ecosistema , Biodiversidad , Microbiología Ambiental , Variación Genética , Mar Mediterráneo , Filogenia , Estaciones del Año , Factores de Tiempo
5.
Proc Natl Acad Sci U S A ; 111(35): E3650-8, 2014 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-25136122

RESUMEN

Proteorhodopsin (PR) is present in half of surface ocean bacterioplankton, where its light-driven proton pumping provides energy to cells. Indeed, PR promotes growth or survival in different bacteria. However, the metabolic pathways mediating the light responses remain unknown. We analyzed growth of the PR-containing Dokdonia sp. MED134 (where light-stimulated growth had been found) in seawater with low concentrations of mixed [yeast extract and peptone (YEP)] or single (alanine, Ala) carbon compounds as models for rich and poor environments. We discovered changes in gene expression revealing a tightly regulated shift in central metabolic pathways between light and dark conditions. Bacteria showed relatively stronger light responses in Ala compared with YEP. Notably, carbon acquisition pathways shifted toward anaplerotic CO2 fixation in the light, contributing 31 ± 8% and 24 ± 6% of the carbon incorporated into biomass in Ala and YEP, respectively. Thus, MED134 was a facultative double mixotroph, i.e., photo- and chemotrophic for its energy source and using both bicarbonate and organic matter as carbon sources. Unexpectedly, relative expression of the glyoxylate shunt genes (isocitrate lyase and malate synthase) was >300-fold higher in the light--but only in Ala--contributing a more efficient use of carbon from organic compounds. We explored these findings in metagenomes and metatranscriptomes and observed similar prevalence of the glyoxylate shunt compared with PR genes and highest expression of the isocitrate lyase gene coinciding with highest solar irradiance. Thus, regulatory interactions between dissolved organic carbon quality and central metabolic pathways critically determine the fitness of surface ocean bacteria engaging in PR phototrophy.


Asunto(s)
Flavobacteriaceae/metabolismo , Procesos Fototróficos/fisiología , Plancton/metabolismo , Rodopsina/metabolismo , Adaptación Fisiológica/fisiología , Bicarbonatos/metabolismo , Biomasa , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Flavobacteriaceae/genética , Regulación Bacteriana de la Expresión Génica , Luz , Biología Marina , Redes y Vías Metabólicas/genética , Plancton/genética , Rodopsina/genética , Rodopsinas Microbianas , Agua de Mar/microbiología
6.
Proc Natl Acad Sci U S A ; 109(44): 17989-94, 2012 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-23027926

RESUMEN

Despite the high abundance of Archaea in the global ocean, their metabolism and biogeochemical roles remain largely unresolved. We investigated the population dynamics and metabolic activity of Thaumarchaeota in polar environments, where these microorganisms are particularly abundant and exhibit seasonal growth. Thaumarchaeota were more abundant in deep Arctic and Antarctic waters and grew throughout the winter at surface and deeper Arctic halocline waters. However, in situ single-cell activity measurements revealed a low activity of this group in the uptake of both leucine and bicarbonate (<5% Thaumarchaeota cells active), which is inconsistent with known heterotrophic and autotrophic thaumarchaeal lifestyles. These results suggested the existence of alternative sources of carbon and energy. Our analysis of an environmental metagenome from the Arctic winter revealed that Thaumarchaeota had pathways for ammonia oxidation and, unexpectedly, an abundance of genes involved in urea transport and degradation. Quantitative PCR analysis confirmed that most polar Thaumarchaeota had the potential to oxidize ammonia, and a large fraction of them had urease genes, enabling the use of urea to fuel nitrification. Thaumarchaeota from Arctic deep waters had a higher abundance of urease genes than those near the surface suggesting genetic differences between closely related archaeal populations. In situ measurements of urea uptake and concentration in Arctic waters showed that small-sized prokaryotes incorporated the carbon from urea, and the availability of urea was often higher than that of ammonium. Therefore, the degradation of urea may be a relevant pathway for Thaumarchaeota and other microorganisms exposed to the low-energy conditions of dark polar waters.


Asunto(s)
Archaea/metabolismo , Biología Marina , Nitrificación , Urea/metabolismo , Hibridación Fluorescente in Situ , Metagenómica , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa
7.
Proc Natl Acad Sci U S A ; 109(43): 17633-8, 2012 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-23045668

RESUMEN

The Antarctic and Arctic regions offer a unique opportunity to test factors shaping biogeography of marine microbial communities because these regions are geographically far apart, yet share similar selection pressures. Here, we report a comprehensive comparison of bacterioplankton diversity between polar oceans, using standardized methods for pyrosequencing the V6 region of the small subunit ribosomal (SSU) rRNA gene. Bacterial communities from lower latitude oceans were included, providing a global perspective. A clear difference between Southern and Arctic Ocean surface communities was evident, with 78% of operational taxonomic units (OTUs) unique to the Southern Ocean and 70% unique to the Arctic Ocean. Although polar ocean bacterial communities were more similar to each other than to lower latitude pelagic communities, analyses of depths, seasons, and coastal vs. open waters, the Southern and Arctic Ocean bacterioplankton communities consistently clustered separately from each other. Coastal surface Southern and Arctic Ocean communities were more dissimilar from their respective open ocean communities. In contrast, deep ocean communities differed less between poles and lower latitude deep waters and displayed different diversity patterns compared with the surface. In addition, estimated diversity (Chao1) for surface and deep communities did not correlate significantly with latitude or temperature. Our results suggest differences in environmental conditions at the poles and different selection mechanisms controlling surface and deep ocean community structure and diversity. Surface bacterioplankton may be subjected to more short-term, variable conditions, whereas deep communities appear to be structured by longer water-mass residence time and connectivity through ocean circulation.


Asunto(s)
Bacterias/aislamiento & purificación , Geografía , Biología Marina , Microbiología del Agua , Regiones Antárticas , Regiones Árticas , Bacterias/clasificación , Bacterias/genética , Filogenia , ARN Ribosómico/genética
8.
Proc Natl Acad Sci U S A ; 113(24): 6585-7, 2016 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-27302946
9.
ISME Commun ; 4(1): ycae042, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38707845

RESUMEN

The ecological role of microorganisms is of utmost importance due to their multiple interactions with the environment. However, assessing the contribution of individual taxonomic groups has proven difficult despite the availability of high throughput data, hindering our understanding of such complex systems. Here, we propose a quantitative definition of guild that is readily applicable to metagenomic data. Our framework focuses on the functional character of protein sequences, as well as their diversifying nature. First, we discriminate functional sequences from the whole sequence space corresponding to a gene annotation to then quantify their contribution to the guild composition across environments. In addition, we identify and distinguish functional implementations, which are sequence spaces that have different ways of carrying out the function. In contrast, we found that orthology delineation did not consistently align with ecologically (or functionally) distinct implementations of the function. We demonstrate the value of our approach with two case studies: the ammonia oxidation and polyamine uptake guilds from the Malaspina circumnavigation cruise, revealing novel ecological dynamics of the latter in marine ecosystems. Thus, the quantification of guilds helps us to assess the functional role of different taxonomic groups with profound implications on the study of microbial communities.

10.
Ecol Evol ; 14(6): e11546, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38895568

RESUMEN

Microbial assemblages under the sea ice of the Dease Strait, Canadian Arctic, were sequenced for metagenomes of a small size fraction (0.2-3 µm). The community from early March was typical for this season, with Alpha- and Gammaproteobacteria as the dominant taxa, followed by Thaumarchaeota and Bacteroidetes. Toward summer, Bacteroidetes, and particularly the genus Polaribacter, became increasingly dominant, followed by the Gammaproteobacteria. Analysis of genes responsible for microbial acquisition of iron showed an abundance of ABC transporters for divalent cations and ferrous iron. The most abundant transporters, however, were the outer membrane TonB-dependent transporters of iron-siderophore complexes. The abundance of iron acquisition genes suggested this element was essential for the microbial assemblage. Interestingly, Gammaproteobacteria were responsible for most of the siderophore synthesis genes. On the contrary, Bacteroidetes did not synthesize siderophores but accounted for most of the transporters, suggesting a role as cheaters in the competition for siderophores as public goods. This cheating ability of the Bacteroidetes may have contributed to their dominance in the summer.

11.
Extremophiles ; 17(1): 123-36, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23208511

RESUMEN

Seasonal shifts in bacterial diversity of microbial mats were analyzed in three hot springs (39-68 °C) of Patagonia, using culture-independent methods. Three major bacterial groups were detected in all springs: Phyla Cyanobacteria and Bacteroidetes, and Order Thermales. Proteobacteria, Acidobacteria and Green Non-Sulfur Bacteria were also detected in small amounts and only in some samples. Thermophilic filamentous heterocyst-containing Mastigocladus were dominant Cyanobacteria in Porcelana Hot Spring and Geyser, and Calothrix in Cahuelmó, followed by the filamentous non-heterocyst Leptolyngbya and Oscillatoria. Bacteroidetes were detected in a wide temperature range and their relative abundance increased with decreasing temperature in almost all samples. Two Meiothermus populations with different temperature optima were found. Overall, fingerprinting analysis with universal bacterial primers showed high similarities within each hot spring despite differences in temperature. On the other hand, Cahuelmó Hot Spring showed a lower resemblance among samples. Porcelana Hot Spring and Porcelana Geyser were rather similar to each other, possibly due to a common geological substrate given their geographic proximity. This was even more evident with specific cyanobacterial primers. The different geological substrate and the seawater influence in Cahuelmó might have caused the differences in the microbial community structure with the other two hot springs.


Asunto(s)
Bacterias/crecimiento & desarrollo , Biodiversidad , Manantiales de Aguas Termales/microbiología , Microbiología del Agua , Bacterias/genética
12.
Nature ; 445(7124): 210-3, 2007 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-17215843

RESUMEN

Proteorhodopsins are bacterial light-dependent proton pumps. Their discovery within genomic material from uncultivated marine bacterioplankton caused considerable excitement because it indicated a potential phototrophic function within these organisms, which had previously been considered strictly chemotrophic. Subsequent studies established that sequences encoding proteorhodopsin are broadly distributed throughout the world's oceans. Nevertheless, the role of proteorhodopsins in native marine bacteria is still unknown. Here we show, from an analysis of the complete genomes of three marine Flavobacteria, that cultivated bacteria in the phylum Bacteroidetes, one of the principal components of marine bacterioplankton, contain proteorhodopsin. Moreover, growth experiments in both natural and artificial seawater (low in labile organic matter, which is typical of the world's oceans) establish that exposure to light results in a marked increase in the cell yield of one such bacterium (Dokdonia sp. strain MED134) when compared with cells grown in darkness. Thus, our results show that the phototrophy conferred by proteorhodopsin can provide critical amounts of energy, not only for respiration and maintenance but also for active growth of marine bacterioplankton in their natural environment.


Asunto(s)
Proteínas Bacterianas/metabolismo , Flavobacterium/crecimiento & desarrollo , Flavobacterium/efectos de la radiación , Luz , Rodopsina/metabolismo , Agua de Mar/microbiología , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/efectos de la radiación , Línea Celular , Flavobacterium/genética , Flavobacterium/metabolismo , Mar Mediterráneo , Ratones , Datos de Secuencia Molecular , Filogenia , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Rodopsina/genética , Rodopsina/efectos de la radiación , Rodopsinas Microbianas
13.
Microb Biotechnol ; 16(6): 1131-1173, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36786388

RESUMEN

Practical experiments drive important scientific discoveries in biology, but theory-based research studies also contribute novel-sometimes paradigm-changing-findings. Here, we appraise the roles of theory-based approaches focusing on the experiment-dominated wet-biology research areas of microbial growth and survival, cell physiology, host-pathogen interactions, and competitive or symbiotic interactions. Additional examples relate to analyses of genome-sequence data, climate change and planetary health, habitability, and astrobiology. We assess the importance of thought at each step of the research process; the roles of natural philosophy, and inconsistencies in logic and language, as drivers of scientific progress; the value of thought experiments; the use and limitations of artificial intelligence technologies, including their potential for interdisciplinary and transdisciplinary research; and other instances when theory is the most-direct and most-scientifically robust route to scientific novelty including the development of techniques for practical experimentation or fieldwork. We highlight the intrinsic need for human engagement in scientific innovation, an issue pertinent to the ongoing controversy over papers authored using/authored by artificial intelligence (such as the large language model/chatbot ChatGPT). Other issues discussed are the way in which aspects of language can bias thinking towards the spatial rather than the temporal (and how this biased thinking can lead to skewed scientific terminology); receptivity to research that is non-mainstream; and the importance of theory-based science in education and epistemology. Whereas we briefly highlight classic works (those by Oakes Ames, Francis H.C. Crick and James D. Watson, Charles R. Darwin, Albert Einstein, James E. Lovelock, Lynn Margulis, Gilbert Ryle, Erwin R.J.A. Schrödinger, Alan M. Turing, and others), the focus is on microbiology studies that are more-recent, discussing these in the context of the scientific process and the types of scientific novelty that they represent. These include several studies carried out during the 2020 to 2022 lockdowns of the COVID-19 pandemic when access to research laboratories was disallowed (or limited). We interviewed the authors of some of the featured microbiology-related papers and-although we ourselves are involved in laboratory experiments and practical fieldwork-also drew from our own research experiences showing that such studies can not only produce new scientific findings but can also transcend barriers between disciplines, act counter to scientific reductionism, integrate biological data across different timescales and levels of complexity, and circumvent constraints imposed by practical techniques. In relation to urgent research needs, we believe that climate change and other global challenges may require approaches beyond the experiment.


Asunto(s)
Inteligencia Artificial , COVID-19 , Humanos , Pandemias , Control de Enfermedades Transmisibles , Filosofía
14.
ISME Commun ; 3(1): 92, 2023 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-37660234

RESUMEN

Traditional culture techniques usually retrieve a small fraction of the marine microbial diversity, which mainly belong to the so-called rare biosphere. However, this paradigm has not been fully tested at a broad scale, especially in the deep ocean. Here, we examined the fraction of heterotrophic bacterial communities in photic and deep ocean layers that could be recovered by culture-dependent techniques at a large scale. We compared 16S rRNA gene sequences from a collection of 2003 cultured heterotrophic marine bacteria with global 16S rRNA metabarcoding datasets (16S TAGs) covering surface, mesopelagic and bathypelagic ocean samples that included 16 of the 23 samples used for isolation. These global datasets represent 60 322 unique 16S amplicon sequence variants (ASVs). Our results reveal a significantly higher proportion of isolates identical to ASVs in deeper ocean layers reaching up to 28% of the 16S TAGs of the bathypelagic microbial communities, which included the isolation of 3 of the top 10 most abundant 16S ASVs in the global bathypelagic ocean, related to the genera Sulfitobacter, Halomonas and Erythrobacter. These isolates contributed differently to the prokaryotic communities across different plankton size fractions, recruiting between 38% in the free-living fraction (0.2-0.8 µm) and up to 45% in the largest particles (20-200 µm) in the bathypelagic ocean. Our findings support the hypothesis that sinking particles in the bathypelagic act as resource-rich habitats, suitable for the growth of heterotrophic bacteria with a copiotroph lifestyle that can be cultured, and that these cultivable bacteria can also thrive as free-living bacteria.

15.
BMC Genomics ; 13: 347, 2012 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-22839777

RESUMEN

BACKGROUND: Genomic Islands (GIs) have key roles since they modulate the structure and size of bacterial genomes displaying a diverse set of laterally transferred genes. Despite their importance, GIs in marine bacterial genomes have not been explored systematically to uncover possible trends and to analyze their putative ecological significance. RESULTS: We carried out a comprehensive analysis of GIs in 70 selected marine bacterial genomes detected with IslandViewer to explore the distribution, patterns and functional gene content in these genomic regions. We detected 438 GIs containing a total of 8152 genes. GI number per genome was strongly and positively correlated with the total GI size. In 50% of the genomes analyzed the GIs accounted for approximately 3% of the genome length, with a maximum of 12%. Interestingly, we found transposases particularly enriched within Alphaproteobacteria GIs, and site-specific recombinases in Gammaproteobacteria GIs. We described specific Homologous Recombination GIs (HR-GIs) in several genera of marine Bacteroidetes and in Shewanella strains among others. In these HR-GIs, we recurrently found conserved genes such as the ß-subunit of DNA-directed RNA polymerase, regulatory sigma factors, the elongation factor Tu and ribosomal protein genes typically associated with the core genome. CONCLUSIONS: Our results indicate that horizontal gene transfer mediated by phages, plasmids and other mobile genetic elements, and HR by site-specific recombinases play important roles in the mobility of clusters of genes between taxa and within closely related genomes, modulating the flexible pool of the genome. Our findings suggest that GIs may increase bacterial fitness under environmental changing conditions by acquiring novel foreign genes and/or modifying gene transcription and/or transduction.


Asunto(s)
Bacterias/genética , Transferencia de Gen Horizontal , Genoma Bacteriano , Islas Genómicas , Organismos Acuáticos/genética , Bases de Datos Genéticas , Anotación de Secuencia Molecular , Filogenia , Microbiología del Agua
16.
Extremophiles ; 16(3): 523-38, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22555750

RESUMEN

Microbial populations are involved in the arsenic biogeochemical cycle in catalyzing arsenic transformations and playing indirect roles. To investigate which ecotypes among the diverse microbial communities could have a role in cycling arsenic in salt lakes in Northern Chile and to obtain clues to facilitate their isolation in pure culture, sediment samples from Salar de Ascotán and Salar de Atacama were cultured in diluted LB medium amended with NaCl and arsenic, at different incubation conditions. The samples and the cultures were analyzed by nucleic acid extraction, fingerprinting analysis, and sequencing. Microbial reduction of As was evidenced in all the enrichments carried out in anaerobiosis. The results revealed that the incubation factors were more important for determining the microbial community structure than arsenic species and concentrations. The predominant microorganisms in enrichments from both sediments belonged to the Firmicutes and Proteobacteria phyla, but most of the bacterial ecotypes were confined to only one system. The occurrence of an active arsenic biogeochemical cycle was suggested in the system with the highest arsenic content that included populations compatible with microorganisms able to transform arsenic for energy conservation, accumulate arsenic, produce H(2), H(2)S and acetic acid (potential sources of electrons for arsenic reduction) and tolerate high arsenic levels.


Asunto(s)
Arsénico/metabolismo , Lagos/microbiología , Proteobacteria/metabolismo , Microbiología del Agua , Anaerobiosis/fisiología , Biodegradación Ambiental , Chile , Proteobacteria/crecimiento & desarrollo , Proteobacteria/aislamiento & purificación
17.
Appl Environ Microbiol ; 77(24): 8676-86, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22003006

RESUMEN

Proteorhodopsin phototrophy is expected to have considerable impact on the ecology and biogeochemical roles of marine bacteria. However, the genetic features contributing to the success of proteorhodopsin-containing bacteria remain largely unknown. We investigated the genome of Dokdonia sp. strain MED134 (Bacteroidetes) for features potentially explaining its ability to grow better in light than darkness. MED134 has a relatively high number of peptidases, suggesting that amino acids are the main carbon and nitrogen sources. In addition, MED134 shares with other environmental genomes a reduction in gene copies at the expense of important ones, like membrane transporters, which might be compensated by the presence of the proteorhodopsin gene. The genome analyses suggest Dokdonia sp. MED134 is able to respond to light at least partly due to the presence of a strong flavobacterial consensus promoter sequence for the proteorhodopsin gene. Moreover, Dokdonia sp. MED134 has a complete set of anaplerotic enzymes likely to play a role in the adaptation of the carbon anabolism to the different sources of energy it can use, including light or various organic matter compounds. In addition to promoting growth, proteorhodopsin phototrophy could provide energy for the degradation of complex or recalcitrant organic matter, survival during periods of low nutrients, or uptake of amino acids and peptides at low concentrations. Our analysis suggests that the ability to harness light potentially makes MED134 less dependent on the amount and quality of organic matter or other nutrients. The genomic features reported here may well be among the keys to a successful photoheterotrophic lifestyle.


Asunto(s)
Flavobacteriaceae/crecimiento & desarrollo , Flavobacteriaceae/genética , Genoma Bacteriano , Procesos Fototróficos , Rodopsina/metabolismo , Carbono/metabolismo , Flavobacteriaceae/metabolismo , Luz , Compuestos Orgánicos/metabolismo , Regiones Promotoras Genéticas , Rodopsinas Microbianas
18.
Proc Natl Acad Sci U S A ; 105(25): 8724-9, 2008 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-18552178

RESUMEN

Analysis of marine cyanobacteria and proteobacteria genomes has provided a profound understanding of the life strategies of these organisms and their ecotype differentiation and metabolisms. However, a comparable analysis of the Bacteroidetes, the third major bacterioplankton group, is still lacking. In the present paper, we report on the genome of Polaribacter sp. strain MED152. On the one hand, MED152 contains a substantial number of genes for attachment to surfaces or particles, gliding motility, and polymer degradation. This agrees with the currently assumed life strategy of marine Bacteroidetes. On the other hand, it contains the proteorhodopsin gene, together with a remarkable suite of genes to sense and respond to light, which may provide a survival advantage in the nutrient-poor sun-lit ocean surface when in search of fresh particles to colonize. Furthermore, an increase in CO(2) fixation in the light suggests that the limited central metabolism is complemented by anaplerotic inorganic carbon fixation. This is mediated by a unique combination of membrane transporters and carboxylases. This suggests a dual life strategy that, if confirmed experimentally, would be notably different from what is known of the two other main bacterial groups (the autotrophic cyanobacteria and the heterotrophic proteobacteria) in the surface oceans. The Polaribacter genome provides insights into the physiological capabilities of proteorhodopsin-containing bacteria. The genome will serve as a model to study the cellular and molecular processes in bacteria that express proteorhodopsin, their adaptation to the oceanic environment, and their role in carbon-cycling.


Asunto(s)
Flavobacteriaceae/genética , Genoma Bacteriano , Rodopsina/genética , Agua de Mar/microbiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dióxido de Carbono/metabolismo , Flavobacteriaceae/metabolismo , Genes Bacterianos , Modelos Biológicos , Rodopsina/metabolismo , Rodopsinas Microbianas
19.
mSphere ; 6(4): e0052521, 2021 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-34406852

RESUMEN

Microbial proton-pumping rhodopsins are considered the simplest strategy among phototrophs to conserve energy from light. Proteorhodopsins are the most studied rhodopsins thus far because of their ubiquitous presence in the ocean, except in Antarctica, where they remain understudied. We analyzed proteorhodopsin abundance and transcriptional activity in the Western Antarctic coastal seawaters. Combining quantitative PCR (qPCR) and metagenomics, the relative abundance of proteorhodopsin-bearing bacteria accounted on average for 17, 3.5, and 29.7% of the bacterial community in Chile Bay (South Shetland Islands) during 2014, 2016, and 2017 summer-autumn, respectively. The abundance of proteorhodopsin-bearing bacteria changed in relation to environmental conditions such as chlorophyll a and temperature. Alphaproteobacteria, Gammaproteobacteria, and Flavobacteriia were the main bacteria that transcribed the proteorhodopsin gene during day and night. Although green light-absorbing proteorhodopsin genes were more abundant than blue-absorbing ones, the latter were transcribed more intensely, resulting in >50% of the proteorhodopsin transcripts during the day and night. Flavobacteriia were the most abundant proteorhodopsin-bearing bacteria in the metagenomes; however, Alphaproteobacteria and Gammaproteobacteria were more represented in the metatranscriptomes, with qPCR quantification suggesting the dominance of the active SAR11 clade. Our results show that proteorhodopsin-bearing bacteria are prevalent in Antarctic coastal waters in late austral summer and early autumn, and their ecological relevance needs to be elucidated to better understand how sunlight energy is used in this marine ecosystem. IMPORTANCE Proteorhodopsin-bearing microorganisms in the Southern Ocean have been overlooked since their discovery in 2000. The present study identify taxonomy and quantify the relative abundance of proteorhodopsin-bearing bacteria and proteorhodopsin gene transcription in the West Antarctic Peninsula's coastal waters. This information is crucial to understand better how sunlight enters this marine environment through alternative ways unrelated to chlorophyll-based strategies. The relative abundance of proteorhodopsin-bearing bacteria seems to be related to environmental parameters (e.g., chlorophyll a, temperature) that change yearly at the coastal water of the West Antarctic Peninsula during the austral late summers and early autumns. Proteorhodopsin-bearing bacteria from Antarctic coastal waters are potentially able to exploit both the green and blue spectrum of sunlight and are a prevalent group during the summer in this polar environment.


Asunto(s)
Metagenómica/métodos , Microbiota/genética , Procesos Fototróficos , Rodopsinas Microbianas/genética , Agua de Mar/microbiología , Alphaproteobacteria/química , Alphaproteobacteria/clasificación , Alphaproteobacteria/genética , Regiones Antárticas , Ecosistema , Flavobacteriaceae/química , Flavobacteriaceae/clasificación , Flavobacteriaceae/genética , Filogenia , Rodopsina/metabolismo , Rodopsinas Microbianas/análisis
20.
Microorganisms ; 9(1)2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33401391

RESUMEN

Current warming in the Western Antarctic Peninsula (WAP) has multiple effects on the marine ecosystem, modifying the trophic web and the nutrient regime. In this study, the effect of decreased surface salinity on the marine microbial community as a consequence of freshening from nearby glaciers was investigated in Chile Bay, Greenwich Island, WAP. In the summer of 2016, samples were collected from glacier ice and transects along the bay for 16S rRNA gene sequencing, while in situ dilution experiments were conducted and analyzed using 16S rRNA gene sequencing and metatranscriptomic analysis. The results reveal that certain common seawater genera, such as Polaribacter, Pseudoalteromonas and HTCC2207, responded positively to decreased salinity in both the bay transect and experiments. The relative abundance of these bacteria slightly decreased, but their functional activity was maintained and increased the over time in the dilution experiments. However, while ice bacteria, such as Flavobacterium and Polaromonas, tolerated the increased salinity after mixing with seawater, their gene expression decreased considerably. We suggest that these bacterial taxa could be defined as sentinels of freshening events in the Antarctic coastal system. Furthermore, these results suggest that a significant portion of the microbial community is resilient and can adapt to disturbances, such as freshening due to the warming effect of climate change in Antarctica.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA