Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Acta Pharmacol Sin ; 42(8): 1347-1353, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33116249

RESUMEN

To discover effective drugs for COVID-19 treatment amongst already clinically approved drugs, we developed a high throughput screening assay for SARS-CoV-2 virus entry inhibitors using SARS2-S pseudotyped virus. An approved drug library of 1800 small molecular drugs was screened for SARS2 entry inhibitors and 15 active drugs were identified as specific SARS2-S pseudovirus entry inhibitors. Antiviral tests using native SARS-CoV-2 virus in Vero E6 cells confirmed that 7 of these drugs (clemastine, amiodarone, trimeprazine, bosutinib, toremifene, flupenthixol, and azelastine) significantly inhibited SARS2 replication, reducing supernatant viral RNA load with a promising level of activity. Three of the drugs were classified as histamine receptor antagonists with clemastine showing the strongest anti-SARS2 activity (EC50 = 0.95 ± 0.83 µM). Our work suggests that these 7 drugs could enter into further in vivo studies and clinical investigations for COVID-19 treatment.


Asunto(s)
Antivirales/uso terapéutico , Tratamiento Farmacológico de COVID-19 , Reposicionamiento de Medicamentos , SARS-CoV-2/efectos de los fármacos , Internalización del Virus/efectos de los fármacos , Línea Celular , Aprobación de Drogas , Ensayos Analíticos de Alto Rendimiento , Humanos , Pruebas de Sensibilidad Microbiana , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/efectos de los fármacos
2.
EClinicalMedicine ; 67: 102372, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38169790

RESUMEN

Background: The mRNA vaccine has demonstrated significant effectiveness in protecting against SARS-CoV-2 during the pandemic, including against severe forms of the disease caused by emerging variants. In this study, we examined safety, immunogenicity, and relative efficacy of a heterologous booster of the lipopolyplex (LPP)-based mRNA vaccine (SW-BIC-213) versus a homologous booster of an inactivated vaccine (BBIBP) in Laos. Methods: In this phase 3 clinical trial, which was randomized, parallel controlled and double-blinded, healthy adults aged 18 years and above were recruited from the Southern Savannakhet Provincial Hospital and Champhone District Hospital. The primary outcomes were safety and immunogenicity, with efficacy as an exploratory endpoint. Participants who were fully immunized with a two-dose inactivated vaccine for more than 6 months were assigned equally to either the SW-BIC-213 group (25 µg) or BBIBP group. The primary safety endpoint was to describe the safety profile of all participants in each group up to 6 months post-booster immunization. The primary immunogenic outcome was to demonstrate the superiority of the neutralizing antibody response, in terms of geometric mean titers (GMTs) of SW-BIC-213, compared with BBIBP 28 days after the booster dose. The exploratory efficacy endpoint aimed to assess the relative efficacy of SW-BIC-213 compared to BBIBP against virologically confirmed symptomatic COVID-19 over a 6-month period. The trial was registered with ClinicalTrials.gov (NCT05580159). Findings: Between October 10, 2022, and January 13, 2023, 1200 participants were assigned to SW-BIC-213 group and 1203 participants in the BBIBP group. All adverse reactions observed during the study were tolerable, transient, and resolved spontaneously. Solicited local reactions were the main adverse reactions in both the SW-BIC-213 group (43.8%) and BBIBP group (14.8%) (p < 0.001). Heterologous boosting with SW-BIC-213 induced higher live virus neutralizing antibodies to SARS-CoV-2 wildtype and BA.5 strains with GMTs reaching 750.1 and 192.9 than homologous boosting with BBIBP with GMTs of 131.5 (p < 0.001) and 47.5 (p < 0.001) on day 29. The statistical findings revealed that, following a period of 14-day to 6-month after booster vaccination, the SW-BIC-213 group exhibited a relative vaccine efficacy (VE) of 70.1% (95% CI: 34.2-86.4) against symptomatic COVID-19 when compared to the BBIBP group. Interpretation: A heterologous booster with the COVID-19 mRNA vaccine SW-BIC-213 manifests a favorable safety profile and proves highly immunogenic and efficacious in preventing symptomatic COVID-19 in individuals who have previously received two doses of inactivated vaccine. Funding: Shanghai Strategic Emerging Industries Development Special Fund, Biomedical Technology Support Special Project of Shanghai "Science and Technology Innovation Action Plan", Shanghai Municipal Science and Technology Commission.

3.
Vaccine ; 41(48): 7297-7306, 2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-37925316

RESUMEN

BACKGROUND: COVID-19 caused by SARS-CoV-2 is a great threat to public health. We present the safety and immunogenicity data from a phase I trial in China of an mRNA vaccine (LVRNA009). METHODS: In the single-centre, double-blind, placebo-controlled and dose-escalation study, 72 healthy unvaccinated adults aged 18-59 years were randomized (3:1) to receive LVRNA009 with one of three vaccine dosage (25, 50 and 100 µg) or placebo, to evaluate for the safety, tolerability and immunogenicity of LVRNA009. RESULTS: All these participants received two injections 28 days apart. No adverse events higher than grade 2 were reported during the study. A total of 30 participants (42 %) reported solicited adverse reactions during the first 14 days after vaccinations. Of the events reported, fever (n = 11, 15 %) was the most common systemic adverse reaction, and pain at the injection site (n = 17, 24 %) was the most frequent solicited local adverse reaction. Anti-S-protein IgG and neutralising antibodies were observed to have been induced 14 days after the first dose, significantly increased 7 days after the second dose, and remained at a high level 28 days after the second dose. Specific T-cell responses peaked 7 days and persisted 28 days after second vaccination. CONCLUSION: LVRNA009 has demonstrated promising results in safety and tolerability at all three dose levels among Chinese adults. LVRNA009 at three dose levels could rapidly induce strong humoral and cellular immune responses, including binding and neutralising antibody production and IFN- γ secretion, which showed good immunogenicity. CLINICAL TRIAL REGISTRATION NUMBER: Clinicaltrials.gov NCT05364047; Chictr.org.cn ChiCTR2100049349.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Adulto , Humanos , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19/uso terapéutico , Método Doble Ciego , Pueblos del Este de Asia , Inmunogenicidad Vacunal , SARS-CoV-2 , Vacunas de ARNm
4.
Emerg Microbes Infect ; 11(1): 1910-1919, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35686572

RESUMEN

Waning of neutralizing titres along with decline of protection efficacy after the second dose of COVID-19 vaccines was observed, including China-made inactivated vaccines. Efficacy of a heterologous boosting using one dose of a recombinant SARS-CoV-2 fusion protein vaccine (V-01) in inactivated vaccine-primed population was studied, aimed to restore the immunity. A randomized, double-blind and placebo-controlled phase III trial was conducted in healthy people aged 18 years or older in Pakistan and Malaysia. Each eligible participant received one dose of the V-01 vaccine developed by Livzon Mabpharm Inc. or placebo within the 3-6 months after the two-dose primary regimen, and was monitored for safety and efficacy. The primary endpoint was protection against confirmed symptomatic SARS-CoV-2 infection. A total of 10,218 participants were randomly assigned to receive a vaccine or placebo. Virus-neutralizing antibodies were assessed in 419 participants. A dramatic increase (11.3-fold; 128.3-1452.8) of neutralizing titres was measured in the V-01 group at 14 days after the booster. Over two months of surveillance, vaccine efficacy was 47.8% (95%CI: 22.6-64.7) according to the intention-to-treat principle. The most common adverse events were transient, mild-to-moderate pain at the injection site, fever, headache, and fatigue. Serious adverse events occurred almost equally in V-01 (0.12%) and placebo (0.16%) groups. The heterologous boosting with the V-01 vaccine was safe and efficacious, which could elicit robust humoral immunity under the epidemic of the Omicron variant.Trial registration: ClinicalTrials.gov identifier: NCT05096832.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Inmunización Secundaria , SARS-CoV-2 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19/inmunología , Humanos , Inmunogenicidad Vacunal , Interferones , Proteínas Recombinantes de Fusión/genética , Vacunas de Productos Inactivados
5.
Protein Cell ; 12(4): 261-278, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32772249

RESUMEN

TANK-binding kinase 1 (TBK1), a core kinase of antiviral pathways, activates the production of interferons (IFNs). It has been reported that deacetylation activates TBK1; however, the precise mechanism still remains to be uncovered. We show here that during the early stage of viral infection, the acetylation of TBK1 was increased, and the acetylation of TBK1 at Lys241 enhanced the recruitment of IRF3 to TBK1. HDAC3 directly deacetylated TBK1 at Lys241 and Lys692, which resulted in the activation of TBK1. Deacetylation at Lys241 and Lys692 was critical for the kinase activity and dimerization of TBK1 respectively. Using knockout cell lines and transgenic mice, we confirmed that a HDAC3 null mutant exhibited enhanced susceptibility to viral challenge via impaired production of type I IFNs. Furthermore, activated TBK1 phosphorylated HDAC3, which promoted the deacetylation activity of HDAC3 and formed a feedback loop. In this study, we illustrated the roles the acetylated and deacetylated forms of TBK1 play in antiviral innate responses and clarified the post-translational modulations involved in the interaction between TBK1 and HDAC3.


Asunto(s)
Histona Desacetilasas/inmunología , Proteínas Serina-Treonina Quinasas/inmunología , Virosis/inmunología , Animales , Chlorocebus aethiops , Células HEK293 , Histona Desacetilasas/genética , Humanos , Ratones , Ratones Transgénicos , Proteínas Serina-Treonina Quinasas/genética , Células RAW 264.7 , Células THP-1 , Células Vero , Virosis/genética
6.
Chin Med J (Engl) ; 134(16): 1967-1976, 2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34310400

RESUMEN

BACKGROUND: Innovative coronavirus disease 2019 (COVID-19) vaccines, with elevated global manufacturing capacity, enhanced safety and efficacy, simplified dosing regimens, and distribution that is less cold chain-dependent, are still global imperatives for tackling the ongoing pandemic. A previous phase I trial indicated that the recombinant COVID-19 vaccine (V-01), which contains a fusion protein (IFN-PADRE-RBD-Fc dimer) as its antigen, is safe and well tolerated, capable of inducing rapid and robust immune responses, and warranted further testing in additional clinical trials. Herein, we aimed to assess the immunogenicity and safety of V-01, providing rationales of appropriate dose regimen for further efficacy study. METHODS: A randomized, double-blind, placebo-controlled phase II clinical trial was initiated at the Gaozhou Municipal Centre for Disease Control and Prevention (Guangdong, China) in March 2021. Both younger (n = 440; 18-59 years of age) and older (n = 440; ≥60 years of age) adult participants in this trial were sequentially recruited into two distinct groups: two-dose regimen group in which participants were randomized either to follow a 10 or 25 µg of V-01 or placebo given intramuscularly 21 days apart (allocation ratio, 3:3:1, n = 120, 120, 40 for each regimen, respectively), or one-dose regimen groups in which participants were randomized either to receive a single injection of 50 µg of V-01 or placebo (allocation ratio, 3:1, n = 120, 40, respectively). The primary immunogenicity endpoints were the geometric mean titers of neutralizing antibodies against live severe acute respiratory syndrome coronavirus 2, and specific binding antibodies to the receptor binding domain (RBD). The primary safety endpoint evaluation was the frequencies and percentages of overall adverse events (AEs) within 30 days after full immunization. RESULTS: V-01 provoked substantial immune responses in the two-dose group, achieving encouragingly high titers of neutralizing antibody and anti-RBD immunoglobulin, which peaked at day 35 (161.9 [95% confidence interval [CI]: 133.3-196.7] and 149.3 [95%CI: 123.9-179.9] in 10 and 25 µg V-01 group of younger adults, respectively; 111.6 [95%CI: 89.6-139.1] and 111.1 [95%CI: 89.2-138.4] in 10 and 25 µg V-01 group of older adults, respectively), and remained high at day 49 after a day-21 second dose; these levels significantly exceed those in convalescent serum from symptomatic COVID-19 patients (53.6, 95%CI: 31.3-91.7). Our preliminary data show that V-01 is safe and well tolerated, with reactogenicity predominantly being absent or mild in severity and only one vaccine-related grade 3 or worse AE being observed within 30 days. The older adult participants demonstrated a more favorable safety profile compared with those in the younger adult group: with AEs percentages of 19.2%, 25.8%, 17.5% in older adults vs. 34.2%, 23.3%, 26.7% in younger adults at the 10, 25 µg V-01 two-dose group, and 50 µg V-01 one-dose group, respectively. CONCLUSIONS: The vaccine candidate V-01 appears to be safe and immunogenic. The preliminary findings support the advancement of the two-dose, 10 µg V-01 regimen to a phase III trial for a large-scale population-based evaluation of safety and efficacy. TRIAL REGISTRATION: http://www.chictr.org.cn/index.aspx (No. ChiCTR2100045107, http://www.chictr.org.cn/showproj.aspx?proj=124702).


Asunto(s)
COVID-19 , Anciano , Anticuerpos Antivirales , COVID-19/terapia , Vacunas contra la COVID-19 , Método Doble Ciego , Humanos , Inmunización Pasiva , Proteínas Recombinantes de Fusión , SARS-CoV-2 , Sueroterapia para COVID-19
7.
World J Gastroenterol ; 20(33): 11618-29, 2014 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-25206268

RESUMEN

Hepatitis B virus (HBV) infection is one of the major causes of liver diseases, affecting more than 350 million people worldwide. The interferon (IFN)-mediated innate immune responses could restrict HBV replication at the different steps of viral life cycle. Indeed, IFN-α has been successfully used for treatment of patients with chronic hepatitis B. However, the role of the innate immune response in HBV replication and the mechanism of the anti-HBV effect of IFN-α are not completely explored. In this review, we summarized the currently available knowledge about the IFN-mediated anti-HBV effect in the HBV life cycle and the possible effectors downstream the IFN signaling pathway. The antiviral effect of Toll-like receptors (TLRs) in HBV replication is briefly discussed. The strategies exploited by HBV to evade the IFN- and TLR-mediated antiviral actions are summarized.


Asunto(s)
Virus de la Hepatitis B/crecimiento & desarrollo , Hepatitis B/metabolismo , Interferones/metabolismo , Transducción de Señal , Receptores Toll-Like/metabolismo , Replicación Viral , Animales , Antivirales/uso terapéutico , Farmacorresistencia Viral , Regulación Viral de la Expresión Génica , Genotipo , Hepatitis B/tratamiento farmacológico , Hepatitis B/inmunología , Hepatitis B/virología , Virus de la Hepatitis B/efectos de los fármacos , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/inmunología , Virus de la Hepatitis B/metabolismo , Interacciones Huésped-Patógeno , Humanos , Inmunidad Innata , Mutación , Resultado del Tratamiento , Replicación Viral/efectos de los fármacos
8.
Virol Sin ; 27(1): 57-68, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22270807

RESUMEN

Protamines are a group of highly basic proteins first discovered in spermatozoon that allow for denser packaging of DNA than histones and will result in down-regulation of gene transcription[1]. It is well recognized that the Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) encodes P6.9, a protamine-like protein that forms the viral subnucleosome through binding to the viral genome[29]. Previous research demonstrates that P6.9 is essential for viral nucleocapsid assembly, while it has no influence on viral genome replication[31]. In the present study, the role of P6.9 in viral gene transcription regulation is characterized. In contrast to protamines or other protamine-like proteins that usually down-regulate gene transcription, P6.9 appears to up-regulate viral gene transcription at 12-24 hours post infection (hpi), whereas it is non-essential for the basal level of viral gene transcription. Fluorescence microscopy reveals the P6.9's co-localization with DNA is temporally and spatially synchronized with P6.9's impact on viral gene transcription, indicating the P6.9-DNA association contributes to transcription regulation. Chromatin fractionation assay further reveals an unexpected co-existence of P6.9 and host RNA polymerase II in the same transcriptionally active chromatin fraction at 24 hpi, which may probably contribute to viral gene transcription up-regulation in the late infection phase.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Epigénesis Genética , Regulación Viral de la Expresión Génica , Nucleopoliedrovirus/fisiología , Transcripción Genética , Proteínas Virales/metabolismo , Replicación Viral , Animales , Línea Celular , Inmunoprecipitación de Cromatina , ADN Viral/metabolismo , Microscopía Fluorescente , Nucleopoliedrovirus/genética , Nucleopoliedrovirus/crecimiento & desarrollo , Protaminas/metabolismo , Unión Proteica , Spodoptera
9.
Virol Sin ; 26(4): 245-51, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21847755

RESUMEN

Protein phosphorylation is one of the most common post-translational modification processes that play an essential role in regulating protein functionality. The Helicoverpa armigera single nucleopolyhedrovirus (HearNPV) orf2-encoded nucleocapsid protein HA2 participates in orchestration of virus-induced actin polymerization through its WCA domain, in which phosphorylation status are supposed to be critical in respect to actin polymerization. In the present study, two putative phosphorylation sites ((232)Thr and (250)Ser) and a highly conserved Serine ((245)Ser) on the WCA domain of HA2 were mutated, and their phenotypes were characterized by reintroducing the mutated HA2 into the HearNPV genome. Viral infectivity assays demonstrated that only the recombinant HearNPV bearing HA2 mutation at (245)Ser can produce infectious virions, both (232)Thr and (250)Ser mutations were lethal to the virus. However, actin polymerization assay demonstrated that all the three viruses bearing HA2 mutations were still capable of initiating actin polymerization in the host nucleus, which indicated the putative phosphorylation sites on HA2 may contribute to HearNPV replication through another unidentified pathway.


Asunto(s)
Replicación del ADN/fisiología , Proteínas Virales/metabolismo , Proteína del Síndrome de Wiskott-Aldrich/metabolismo , Actinas/genética , Actinas/metabolismo , Animales , Línea Celular , Biología Computacional , Replicación del ADN/genética , Fosforilación/genética , Plásmidos/genética , Estructura Terciaria de Proteína/genética , Proteínas Virales/genética , Proteína del Síndrome de Wiskott-Aldrich/genética , Proteína Neuronal del Síndrome de Wiskott-Aldrich/genética , Proteína Neuronal del Síndrome de Wiskott-Aldrich/metabolismo
10.
Virol Sin ; 26(2): 131-8, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21468936

RESUMEN

Naturally occurring mutations in surface proteins of Hepatitis B virus (HBV) usually result in altered hepatitis B surface antigen (HBsAg) secretion efficiency. In the present study, we reported two conserved residues, M75 and M103 with respect to HBsAg, mutations of which not only attenuated HBsAg secretion (M75 only), but also suppressed HBV genome replication without compromising the overlapping p-gene product. We also found M75 and M103 can initiate truncated surface protein (TSPs) synthesis upon over-expression of full-length surface proteins, which may possibly contribute to HBV genome replication. However, attempts to rescue replication-defective HBV mutant by co-expression of TSPs initiated from M75 or M103 were unsuccessful, which indicated surface proteins rather than the putative TSPs were involved in regulation of HBV genome replication.


Asunto(s)
Antígenos de Superficie de la Hepatitis B/metabolismo , Virus de la Hepatitis B/fisiología , Replicación Viral , Línea Celular , Hepatitis B/virología , Antígenos de Superficie de la Hepatitis B/genética , Virus de la Hepatitis B/genética , Humanos , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA