Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 144(9): 4158-4167, 2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-35170941

RESUMEN

gem-Hydrogenation of an internal alkyne with the aid of [Cp*RuCl]4 as the precatalyst is a highly unorthodox transformation, in which one C atom of the triple bond is transformed into a methylene group, whereas the second C atom gets converted into a ruthenium carbene. In the case of 1,3-enynes bearing a propargylic steering substituent as the substrates, the reaction occurs regioselectively, giving rise to vinyl carbene complexes that adopt interconverting η1/η3-binding modes in solution; a prototypical example of such a reactive intermediate was characterized in detail by spectroscopic means. Although both forms are similarly stable, only the η3-vinyl carbene proved kinetically competent to insert into primary, secondary, or tertiary C-H bonds on the steering group itself or another suitably placed ether, acetal, orthoester, or (sulfon)amide substituent. The ensuing net hydrogenative C-H insertion reaction is highly enabling in that it gives ready access to spirocyclic as well as bridged ring systems of immediate relevance as building blocks for medicinal chemistry. Moreover, the reaction scales well and lends itself to the formation of partly or fully deuterated isotopologues. Labeling experiments in combination with PHIP NMR spectroscopy (PHIP = parahydrogen induced polarization) confirmed that the reactions are indeed triggered by gem-hydrogenation, whereas kinetic data provided valuable insights into the very nature of the turnover-limiting transition state of the actual C-H insertion step.


Asunto(s)
Compuestos Organometálicos , Rutenio , Alquinos/química , Catálisis , Hidrogenación , Compuestos Organometálicos/química , Rutenio/química
2.
J Am Chem Soc ; 142(43): 18541-18553, 2020 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-33073575

RESUMEN

The only recently discovered gem-hydrogenation of internal alkynes is a fundamentally new transformation, in which both H atoms of dihydrogen are transferred to the same C atom of a triple bond while the other position transforms into a discrete metal carbene complex. [Cp*RuCl]4 is presently the catalyst of choice: the resulting piano-stool ruthenium carbenes can engage a tethered alkene into either cyclopropanation or metathesis, and a prototypical example of such a reactive intermediate with an olefin ligated to the ruthenium center has been isolated and characterized by X-ray diffraction. It is the substitution pattern of the olefin that determines whether metathesis or cyclopropanation takes place: a systematic survey using alkenes of largely different character in combination with a computational study of the mechanism at the local coupled cluster level of theory allowed the preparative results to be sorted and an intuitive model with predictive power to be proposed. This model links the course of the reaction to the polarization of the double bond as well as to the stability of the secondary carbene complex formed, if metathesis were to take place. The first application of "hydrogenative metathesis" to the total synthesis of sinularones E and F concurred with this interpretation and allowed the proposed structure of these marine natural products to be confirmed. During this synthesis, it was found that gem-hydrogenation also provides opportunities for C-H functionalization. Moreover, silylated alkynes are shown to participate well in hydrogenative metathesis, which opens a new entry into valuable allylsilane building blocks. Crystallographic evidence suggests that the polarized [Ru-Cl] bond of the catalyst interacts with the neighboring R3Si group. Since attractive interligand Cl/R3Si contacts had already previously been invoked to explain the outcome of various ruthenium-catalyzed reactions, including trans-hydrosilylation, the experimental confirmation provided herein has implications beyond the present case.

3.
J Am Chem Soc ; 142(20): 9240-9249, 2020 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-32388980

RESUMEN

Cell-permeable photoswitchable small molecules, termed optojasps, are introduced to optically control the dynamics of the actin cytoskeleton and cellular functions that depend on it. These light-dependent effectors were designed from the F-actin-stabilizing marine depsipeptide jasplakinolide by functionalizing them with azobenzene photoswitches. As demonstrated, optojasps can be employed to control cell viability, cell motility, and cytoskeletal signaling with the high spatial and temporal resolution that light affords. Optojasps can be expected to find applications in diverse areas of cell biological research. They may also provide a template for photopharmacology targeting the ubiquitous actin cytoskeleton with precision control in the micrometer range.


Asunto(s)
Actinas/química , Compuestos Azo/química , Depsipéptidos/química , Bibliotecas de Moléculas Pequeñas/química , Compuestos Azo/síntesis química , Conformación Molecular , Procesos Fotoquímicos , Bibliotecas de Moléculas Pequeñas/síntesis química
4.
Angew Chem Int Ed Engl ; 58(51): 18476-18481, 2019 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-31609498

RESUMEN

Enynes with a tethered carbonyl substituent are converted into substituted furan derivatives upon hydrogenation using [Cp*RuCl]4 as the catalyst. Paradoxically, this transformation can occur along two distinct pathways, each of which proceeds via discrete pianostool ruthenium carbenes. In the first case, hydrogenation and carbene formation are synchronized ("gem-hydrogenation"), whereas the second pathway comprises carbene formation by carbophilic activation of the triple bond, followed by hydrogenative catalyst recycling. Representative carbene intermediates of either route were characterized by X-ray crystallography; the structural data prove that the attack of the carbonyl group on the electrophilic carbene center follows a Bürgi-Dunitz trajectory.

5.
Angew Chem Int Ed Engl ; 58(26): 8851-8856, 2019 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-31025795

RESUMEN

The unusual geminal hydrogenation of a propargyl alcohol derivative with [CpX RuCl] as the catalyst entails formation of pianostool ruthenium carbenes in the first place; these reactive intermediates can be intercepted with tethered alkenes to give either cyclopropanes or cyclic olefins as the result of a formal metathesis event. The course of the reaction is critically dependent on the substitution pattern of the alkene trap.

6.
Angew Chem Int Ed Engl ; 58(26): 8845-8850, 2019 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-31025788

RESUMEN

Parahydrogen (p-H2 ) induced polarization (PHIP) NMR spectroscopy showed that [CpX Ru] complexes with greatly different electronic properties invariably engage propargyl alcohol derivatives into gem-hydrogenation with formation of pianostool ruthenium carbenes; in so doing, less electron rich CpX rings lower the barriers, stabilize the resulting complexes and hence provide opportunities for harnessing genuine carbene reactivity. The chemical character of the resulting ruthenium complexes was studied by DFT-assisted analysis of the chemical shift tensors determined by solid-state 13 C NMR spectroscopy. The combined experimental and computational data draw the portrait of a family of ruthenium carbenes that amalgamate purely electrophilic behavior with characteristics more befitting metathesis-active Grubbs-type catalysts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA