Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
New Phytol ; 233(5): 2232-2248, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34913494

RESUMEN

Oomycete plant pathogens secrete effector proteins to promote disease. The damaging soilborne legume pathogen Aphanomyces euteiches harbors a specific repertoire of Small Secreted Protein effectors (AeSSPs), but their biological functions remain unknown. Here we characterize AeSSP1256. The function of AeSSP1256 is investigated by physiological and molecular characterization of Medicago truncatula roots expressing the effector. A potential protein target of AeSSP1256 is identified by yeast-two hybrid, co-immunoprecipitation, and fluorescent resonance energy transfer-fluorescence lifetime imaging microscopy (FRET-FLIM) assays, as well as promoter studies and mutant characterization. AeSSP1256 impairs M. truncatula root development and promotes pathogen infection. The effector is localized to the nucleoli rim, triggers nucleoli enlargement and downregulates expression of M. truncatula ribosome-related genes. AeSSP1256 interacts with a functional nucleocytoplasmic plant RNA helicase (MtRH10). AeSSP1256 relocates MtRH10 to the perinucleolar space and hinders its binding to plant RNA. MtRH10 is associated with ribosome-related genes, root development and defense. This work reveals that an oomycete effector targets a plant RNA helicase, possibly to trigger nucleolar stress and thereby promote pathogen infection.


Asunto(s)
Aphanomyces , Medicago truncatula , Aphanomyces/fisiología , Regulación de la Expresión Génica de las Plantas , Medicago truncatula/genética , Medicago truncatula/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , ARN Helicasas/genética , ARN de Planta/metabolismo
2.
BMC Biol ; 16(1): 43, 2018 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-29669603

RESUMEN

BACKGROUND: Oomycetes are a group of filamentous eukaryotic microorganisms that have colonized all terrestrial and oceanic ecosystems, and they include prominent plant pathogens. The Aphanomyces genus is unique in its ability to infect both plant and animal species, and as such exemplifies oomycete versatility in adapting to different hosts and environments. Dissecting the underpinnings of oomycete diversity provides insights into their specificity and pathogenic mechanisms. RESULTS: By carrying out genomic analyses of the plant pathogen A. euteiches and the crustacean pathogen A. astaci, we show that host specialization is correlated with specialized secretomes that are adapted to the deconstruction of the plant cell wall in A. euteiches and protein degradation in A. astaci. The A. euteiches genome is characterized by a large repertoire of small secreted protein (SSP)-encoding genes that are highly induced during plant infection, and are not detected in other oomycetes. Functional analysis revealed an SSP from A. euteiches containing a predicted nuclear-localization signal which shuttles to the plant nucleus and increases plant susceptibility to infection. CONCLUSION: Collectively, our results show that Aphanomyces host adaptation is associated with evolution of specialized secretomes and identify SSPs as a new class of putative oomycete effectors.


Asunto(s)
Aphanomyces/patogenicidad , Genómica/métodos , Aclimatación/genética , Aclimatación/fisiología , Animales , Aphanomyces/genética , Oomicetos/genética , Oomicetos/patogenicidad , Enfermedades de las Plantas/microbiología
3.
EMBO Rep ; 17(3): 441-54, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26769563

RESUMEN

Pattern recognition receptors (PRRs) play a key role in plant and animal innate immunity. PRR binding of their cognate ligand triggers a signaling network and activates an immune response. Activation of PRR signaling must be controlled prior to ligand binding to prevent spurious signaling and immune activation. Flagellin perception in Arabidopsis through FLAGELLIN-SENSITIVE 2 (FLS2) induces the activation of mitogen-activated protein kinases (MAPKs) and immunity. However, the precise molecular mechanism that connects activated FLS2 to downstream MAPK cascades remains unknown. Here, we report the identification of a differentially phosphorylated MAP kinase kinase kinase that also interacts with FLS2. Using targeted proteomics and functional analysis, we show that MKKK7 negatively regulates flagellin-triggered signaling and basal immunity and this requires phosphorylation of MKKK7 on specific serine residues. MKKK7 attenuates MPK6 activity and defense gene expression. Moreover, MKKK7 suppresses the reactive oxygen species burst downstream of FLS2, suggesting that MKKK7-mediated attenuation of FLS2 signaling occurs through direct modulation of the FLS2 complex.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Quinasas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/inmunología , Flagelina/metabolismo , Sistema de Señalización de MAP Quinasas , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/genética , Inmunidad de la Planta , Unión Proteica , Proteínas Quinasas/genética , Proteínas Quinasas/inmunología , Especies Reactivas de Oxígeno/metabolismo
4.
New Phytol ; 210(2): 602-17, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26700936

RESUMEN

To successfully colonize their host, pathogens produce effectors that can interfere with host cellular processes. Here we investigated the function of CRN13 candidate effectors produced by plant pathogenic oomycetes and detected in the genome of the amphibian pathogenic chytrid fungus Batrachochytrium dendrobatidis (BdCRN13). When expressed in Nicotiana, AeCRN13, from the legume root pathogen Aphanomyces euteiches, increases the susceptibility of the leaves to the oomycete Phytophthora capsici. When transiently expressed in amphibians or plant cells, AeCRN13 and BdCRN13 localize to the cell nuclei, triggering aberrant cell development and eventually causing cell death. Using Förster resonance energy transfer experiments in plant cells, we showed that both CRN13s interact with nuclear DNA and trigger plant DNA damage response (DDR). Mutating key amino acid residues in a predicted HNH-like endonuclease motif abolished the interaction of AeCRN13 with DNA, the induction of DDR and the enhancement of Nicotiana susceptibility to P. capsici. Finally, H2AX phosphorylation, a marker of DNA damage, and enhanced expression of genes involved in the DDR were observed in A. euteiches-infected Medicago truncatula roots. These results show that CRN13 from plant and animal eukaryotic pathogens promotes host susceptibility by targeting nuclear DNA and inducing DDR.


Asunto(s)
Aphanomyces/metabolismo , Daño del ADN , Proteínas de Unión al ADN/metabolismo , Células Eucariotas/metabolismo , Medicago truncatula/microbiología , Proteínas/metabolismo , Secuencia de Aminoácidos , Animales , Núcleo Celular/metabolismo , Tamaño de la Célula , ADN de Plantas/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Regulación de la Expresión Génica de las Plantas , Microinyecciones , Phytophthora/fisiología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/microbiología , Unión Proteica , Transporte de Proteínas , Nicotiana/microbiología , Xenopus laevis/embriología
5.
Mol Plant Microbe Interact ; 27(7): 603-10, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24654978

RESUMEN

Bacterial flagellin molecules are strong inducers of innate immune responses in both mammals and plants. The opportunistic pathogen Pseudomonas aeruginosa secretes an alkaline protease called AprA that degrades flagellin monomers. Here, we show that AprA is widespread among a wide variety of bacterial species. In addition, we investigated the role of AprA in virulence of the bacterial plant pathogen P. syringae pv. tomato DC3000. The AprA-deficient DC3000 ΔaprA knockout mutant was significantly less virulent on both tomato and Arabidopsis thaliana. Moreover, infiltration of A. thaliana Col-0 leaves with DC3000 ΔaprA evoked a significantly higher level of expression of the defense-related genes FRK1 and PR-1 than did wild-type DC3000. In the flagellin receptor mutant fls2, pathogen virulence and defense-related gene activation did not differ between DC3000 and DC3000 ΔaprA. Together, these results suggest that AprA of DC3000 is important for evasion of recognition by the FLS2 receptor, allowing wild-type DC3000 to be more virulent on its host plant than AprA-deficient DC3000 ΔaprA. To provide further evidence for the role of DC3000 AprA in host immune evasion, we overexpressed the AprA inhibitory peptide AprI of DC3000 in A. thaliana to counteract the immune evasive capacity of DC3000 AprA. Ectopic expression of aprI in A. thaliana resulted in an enhanced level of resistance against wild-type DC3000, while the already elevated level of resistance against DC3000 ΔaprA remained unchanged. Together, these results indicate that evasion of host immunity by the alkaline protease AprA is important for full virulence of strain DC3000 and likely acts by preventing flagellin monomers from being recognized by its cognate immune receptor.


Asunto(s)
Arabidopsis/microbiología , Flagelina/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Pseudomonas syringae/fisiología , Serina Endopeptidasas/metabolismo , Solanum lycopersicum/microbiología , Regulación Enzimológica de la Expresión Génica , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Pseudomonas syringae/inmunología , Serina Endopeptidasas/genética , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
6.
PLoS Pathog ; 7(8): e1002206, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21901099

RESUMEN

The building blocks of bacterial flagella, flagellin monomers, are potent stimulators of host innate immune systems. Recognition of flagellin monomers occurs by flagellin-specific pattern-recognition receptors, such as Toll-like receptor 5 (TLR5) in mammals and flagellin-sensitive 2 (FLS2) in plants. Activation of these immune systems via flagellin leads eventually to elimination of the bacterium from the host. In order to prevent immune activation and thus favor survival in the host, bacteria secrete many proteins that hamper such recognition. In our search for Toll like receptor (TLR) antagonists, we screened bacterial supernatants and identified alkaline protease (AprA) of Pseudomonas aeruginosa as a TLR5 signaling inhibitor as evidenced by a marked reduction in IL-8 production and NF-κB activation. AprA effectively degrades the TLR5 ligand monomeric flagellin, while polymeric flagellin (involved in bacterial motility) and TLR5 itself resist degradation. The natural occurring alkaline protease inhibitor AprI of P. aeruginosa blocked flagellin degradation by AprA. P. aeruginosa aprA mutants induced an over 100-fold enhanced activation of TLR5 signaling, because they fail to degrade excess monomeric flagellin in their environment. Interestingly, AprA also prevents flagellin-mediated immune responses (such as growth inhibition and callose deposition) in Arabidopsis thaliana plants. This was due to decreased activation of the receptor FLS2 and clearly demonstrated by delayed stomatal closure with live bacteria in plants. Thus, by degrading the ligand for TLR5 and FLS2, P. aeruginosa escapes recognition by the innate immune systems of both mammals and plants.


Asunto(s)
Proteínas Bacterianas/metabolismo , Endopeptidasas/metabolismo , Flagelina/inmunología , Inmunidad Innata , Inmunidad de la Planta , Pseudomonas aeruginosa/inmunología , Animales , Proteínas de Arabidopsis/antagonistas & inhibidores , Proteínas de Arabidopsis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/inmunología , Bovinos , Línea Celular , Endopeptidasas/genética , Endopeptidasas/inmunología , Flagelina/metabolismo , Humanos , Interleucina-8/metabolismo , Mutación , FN-kappa B/metabolismo , Proteínas Quinasas/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Transducción de Señal , Receptor Toll-Like 5/antagonistas & inhibidores , Receptor Toll-Like 5/metabolismo
7.
J Exp Bot ; 64(5): 1237-48, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23095994

RESUMEN

Plants are able to detect microbes by pattern recognition receptors in the host cells that, upon recognition of the enemy, activate effective immune responses in the invaded tissue. Recognition of microbes occurs by common conserved structures called microbe-associated molecular patterns (MAMPs). Plant pathogens and beneficial soil-borne microbes live in close contact with their host. Hence, prevention of the host's defence programme is essential for their survival. Active suppression of host defences by microbial effector proteins is a well-known strategy employed by many successful plant-associated microbes. Evasion of host immune recognition is less well studied but is emerging as another important strategy. Escape from recognition by the host's immune system can be caused by alterations in the structure of the recognized MAMPs, or by active intervention of ligand-receptor recognition. This paper reviews the structure and recognition of common MAMPs and the ways that plant-associated microbes have evolved to prevent detection by their host.


Asunto(s)
Bacterias/inmunología , Hongos/inmunología , Evasión Inmune/inmunología , Inmunidad de la Planta , Receptores de Reconocimiento de Patrones/metabolismo
8.
PLoS One ; 9(11): e110624, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25375163

RESUMEN

The biotrophic plant pathogen Hyaloperonospora arabidopsidis produces a set of putative effector proteins that contain the conserved RXLR motif. For most of these RXLR proteins the role during infection is unknown. Thirteen RXLR proteins from H. arabidopsidis strain Waco9 were analyzed for sequence similarities and tested for a role in virulence. The thirteen RXLR proteins displayed conserved N-termini and this N-terminal conservation was also found in the 134 predicted RXLR genes from the genome of H. arabidopsidis strain Emoy2. To investigate the effects of single RXLR effector proteins on plant defense responses, thirteen H. arabidopsidis Waco9 RXLR genes were expressed in Arabidopsis thaliana. Subsequently, these plants were screened for altered susceptibility to the oomycetes H. arabidopsidis and Phytophthora capsici, and the bacterial pathogen Pseudomonas syringae. Additionally, the effect of the RXLR proteins on flg22-triggered basal immune responses was assessed. Multifactorial analysis of results collated from all experiments revealed that, except for RXLR20, all RXLR effector proteins tested affected plant immunity. For RXLR9 this was confirmed using a P. syringae ΔCEL-mediated effector delivery system. Together, the results show that many H. arabidopsidis RXLR effectors have small effects on the plant immune response, suggesting that suppression of host immunity by this biotrophic pathogen is likely to be caused by the combined actions of effectors.


Asunto(s)
Arabidopsis/genética , Interacciones Huésped-Patógeno , Oomicetos/patogenicidad , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta/genética , Proteínas de Plantas/genética , Virulencia
9.
Plant Physiol ; 146(3): 1293-304, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18218967

RESUMEN

Colonization of Arabidopsis thaliana roots by nonpathogenic Pseudomonas fluorescens WCS417r bacteria triggers a jasmonate/ethylene-dependent induced systemic resistance (ISR) that is effective against a broad range of pathogens. Microarray analysis revealed that the R2R3-MYB-like transcription factor gene MYB72 is specifically activated in the roots upon colonization by WCS417r. Here, we show that T-DNA knockout mutants myb72-1 and myb72-2 are incapable of mounting ISR against the pathogens Pseudomonas syringae pv tomato, Hyaloperonospora parasitica, Alternaria brassicicola, and Botrytis cinerea, indicating that MYB72 is essential to establish broad-spectrum ISR. Overexpression of MYB72 did not result in enhanced resistance against any of the pathogens tested, demonstrating that MYB72 is not sufficient for the expression of ISR. Yeast two-hybrid analysis revealed that MYB72 physically interacts in vitro with the ETHYLENE INSENSITIVE3 (EIN3)-LIKE3 transcription factor EIL3, linking MYB72 function to the ethylene response pathway. However, WCS417r activated MYB72 in ISR-deficient, ethylene-insensitive ein2-1 plants. Moreover, exogenous application of the ethylene precursor 1-aminocyclopropane-1-carboxylate induced wild-type levels of resistance in myb72-1, suggesting that MYB72 acts upstream of ethylene in the ISR pathway. Collectively, this study identified the transcriptional regulator MYB72 as a novel ISR signaling component that is required in the roots during early signaling steps of rhizobacteria-mediated ISR.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/fisiología , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/inmunología , Pseudomonas fluorescens/fisiología , Factores de Transcripción/genética , Acetatos/metabolismo , Aminoácidos Cíclicos/metabolismo , Arabidopsis/microbiología , Proteínas de Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Proteínas de Unión al ADN/metabolismo , Etilenos/metabolismo , Glucanos/metabolismo , Mutagénesis Insercional , Oxilipinas/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Transducción de Señal/fisiología , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA