Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Clin Monit Comput ; 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39162839

RESUMEN

Artificial neural networks (ANNs) are versatile tools capable of learning without prior knowledge. This study aims to evaluate whether ANN can calculate minute volume during spontaneous breathing after being trained using data from an animal model of metabolic acidosis. Data was collected from ten anesthetized, spontaneously breathing pigs divided randomly into two groups, one without dead space and the other with dead space at the beginning of the experiment. Each group underwent two equal sequences of pH lowering with pre-defined targets by continuous infusion of lactic acid. The inputs to ANNs were pH, ΔPaCO2 (variation of the arterial partial pressure of CO2), PaO2, and blood temperature which were sampled from the animal model. The output was the delta minute volume (ΔVM), (the change of minute volume as compared to the minute volume the animal had at the beginning of the experiment). The ANN performance was analyzed using mean squared error (MSE), linear regression, and the Bland-Altman (B-A) method. The animal experiment provided the necessary data to train the ANN. The best architecture of ANN had 17 intermediate neurons; the best performance of the finally trained ANN had a linear regression with R2 of 0.99, an MSE of 0.001 [L/min], a B-A analysis with bias ± standard deviation of 0.006 ± 0.039 [L/min]. ANNs can accurately estimate ΔVM using the same information that arrives at the respiratory centers. This performance makes them a promising component for the future development of closed-loop artificial ventilators.

2.
Crit Care ; 26(1): 55, 2022 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-35255949

RESUMEN

BACKGROUND: The ratio of partial pressure of arterial oxygen to inspired oxygen fraction (PaO2/FIO2) during invasive mechanical ventilation (MV) is used as criteria to grade the severity of respiratory failure in acute respiratory distress syndrome (ARDS). During the SARS-CoV2 pandemic, the use of PaO2/FIO2 ratio has been increasingly used in non-invasive respiratory support such as high-flow nasal cannula (HFNC) and non-invasive ventilation (NIV). The grading of hypoxemia in non-invasively ventilated patients is uncertain. The main hypothesis, investigated in this study, was that the PaO2/FIO2 ratio does not change when switching between MV, NIV and HFNC. METHODS: We investigated respiratory function in critically ill patients with COVID-19 included in a single-center prospective observational study of patients admitted to the intensive care unit (ICU) at Uppsala University Hospital in Sweden. In a steady state condition, the PaO2/FIO2 ratio was recorded before and after any change between two of the studied respiratory support techniques (i.e., HFNC, NIV and MV). RESULTS: A total of 148 patients were included in the present analysis. We find that any change in respiratory support from or to HFNC caused a significant change in PaO2/FIO2 ratio. Changes in respiratory support between NIV and MV did not show consistent change in PaO2/FIO2 ratio. In patients classified as mild to moderate ARDS during MV, the change from HFNC to MV showed a variable increase in PaO2/FIO2 ratio ranging between 52 and 140 mmHg (median of 127 mmHg). This made prediction of ARDS severity during MV from the apparent ARDS grade during HFNC impossible. CONCLUSIONS: HFNC is associated with lower PaO2/FIO2 ratio than either NIV or MV in the same patient, while NIV and MV provided similar PaO2/FIO2 and thus ARDS grade by Berlin definition. The large variation of PaO2/FIO2 ratio indicates that great caution should be used when estimating ARDS grade as a measure of pulmonary damage during HFNC.


Asunto(s)
COVID-19 , Ventilación no Invasiva , Síndrome de Dificultad Respiratoria , Insuficiencia Respiratoria , COVID-19/terapia , Cánula , Enfermedad Crítica/terapia , Humanos , Ventilación no Invasiva/métodos , Oxígeno , Terapia por Inhalación de Oxígeno , ARN Viral , Respiración Artificial , Síndrome de Dificultad Respiratoria/terapia , Insuficiencia Respiratoria/terapia , SARS-CoV-2
3.
Crit Care ; 26(1): 328, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36284360

RESUMEN

BACKGROUND: Steroids have been shown to reduce inflammation, hypoxic pulmonary vasoconstriction (HPV) and lung edema. Based on evidence from clinical trials, steroids are widely used in severe COVID-19. However, the effects of steroids on pulmonary gas volume and blood volume in this group of patients are unexplored. OBJECTIVE: Profiting by dual-energy computed tomography (DECT), we investigated the relationship between the use of steroids in COVID-19 and distribution of blood volume as an index of impaired HPV. We also investigated whether the use of steroids influences lung weight, as index of lung edema, and how it affects gas distribution. METHODS: Severe COVID-19 patients included in a single-center prospective observational study at the intensive care unit at Uppsala University Hospital who had undergone DECT were enrolled in the current study. Patients' cohort was divided into two groups depending on the administration of steroids. From each patient's DECT, 20 gas volume maps and the corresponding 20 blood volume maps, evenly distributed along the cranial-caudal axis, were analyzed. As a proxy for HPV, pulmonary blood volume distribution was analyzed in both the whole lung and the hypoinflated areas. Total lung weight, index of lung edema, was estimated. RESULTS: Sixty patients were analyzed, whereof 43 received steroids. Patients not exposed to steroids showed a more extensive non-perfused area (19% vs 13%, p < 0.01) and less homogeneous pulmonary blood volume of hypoinflated areas (kurtosis: 1.91 vs 2.69, p < 0.01), suggesting a preserved HPV compared to patients treated with steroids. Moreover, patients exposed to steroids showed a significantly lower lung weight (953 gr vs 1140 gr, p = 0.01). A reduction in alveolar-arterial difference of oxygen followed the treatment with steroids (322 ± 106 mmHg at admission vs 267 ± 99 mmHg at DECT, p = 0.04). CONCLUSIONS: The use of steroids might cause impaired HPV and might reduce lung edema in severe COVID-19. This is consistent with previous findings in other diseases. Moreover, a reduced lung weight, as index of decreased lung edema, and a more homogeneous distribution of gas within the lung were shown in patients treated with steroids. TRIAL REGISTRATION: Clinical Trials ID: NCT04316884, Registered March 13, 2020.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Infecciones por Papillomavirus , Humanos , Tomografía Computarizada por Rayos X/métodos , Pulmón , Hipoxia , Oxígeno , Esteroides , Edema
4.
Crit Care ; 25(1): 276, 2021 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-34348797

RESUMEN

BACKGROUND: Typical features differentiate COVID-19-associated lung injury from acute respiratory distress syndrome. The clinical role of chest computed tomography (CT) in describing the progression of COVID-19-associated lung injury remains to be clarified. We investigated in COVID-19 patients the regional distribution of lung injury and the influence of clinical and laboratory features on its progression. METHODS: This was a prospective study. For each CT, twenty images, evenly spaced along the cranio-caudal axis, were selected. For regional analysis, each CT image was divided into three concentric subpleural regions of interest and four quadrants. Hyper-, normally, hypo- and non-inflated lung compartments were defined. Nonparametric tests were used for hypothesis testing (α = 0.05). Spearman correlation test was used to detect correlations between lung compartments and clinical features. RESULTS: Twenty-three out of 111 recruited patients were eligible for further analysis. Five hundred-sixty CT images were analyzed. Lung injury, composed by hypo- and non-inflated areas, was significantly more represented in subpleural than in core lung regions. A secondary, centripetal spread of lung injury was associated with exposure to mechanical ventilation (p < 0.04), longer spontaneous breathing (more than 14 days, p < 0.05) and non-protective tidal volume (p < 0.04). Positive fluid balance (p < 0.01), high plasma D-dimers (p < 0.01) and ferritin (p < 0.04) were associated with increased lung injury. CONCLUSIONS: In a cohort of COVID-19 patients with severe respiratory failure, a predominant subpleural distribution of lung injury is observed. Prolonged spontaneous breathing and high tidal volumes, both causes of patient self-induced lung injury, are associated to an extensive involvement of more central regions. Positive fluid balance, inflammation and thrombosis are associated with lung injury. Trial registration Study registered a priori the 20th of March, 2020. Clinical Trials ID NCT04316884.


Asunto(s)
COVID-19/diagnóstico por imagen , Lesión Pulmonar/diagnóstico por imagen , Anciano , COVID-19/complicaciones , Femenino , Humanos , Lesión Pulmonar/virología , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Respiración Artificial , Suecia , Volumen de Ventilación Pulmonar , Tomografía Computarizada por Rayos X
5.
Am J Respir Crit Care Med ; 201(10): 1218-1229, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32150440

RESUMEN

Rationale: Tidal expiratory flow limitation (tidal-EFL) is not completely avoidable by applying positive end-expiratory pressure and may cause respiratory and hemodynamic complications in ventilated patients with lungs prone to collapse. During spontaneous breathing, expiratory diaphragmatic contraction counteracts tidal-EFL. We hypothesized that during both spontaneous breathing and controlled mechanical ventilation, external expiratory resistances reduce tidal-EFL.Objectives: To assess whether external expiratory resistances 1) affect expiratory diaphragmatic contraction during spontaneous breathing, 2) reduce expiratory flow and make lung compartments more homogeneous with more similar expiratory time constants, and 3) reduce tidal atelectasis, preventing hyperinflation.Methods: Three positive end-expiratory pressure levels and four external expiratory resistances were tested in 10 pigs after lung lavage. We analyzed expiratory diaphragmatic electric activity and respiratory mechanics. On the basis of computed tomography scans, four lung compartments-not inflated (atelectasis), poorly inflated, normally inflated, and hyperinflated-were defined.Measurements and Main Results: Consequently to additional external expiratory resistances, and mainly in lungs prone to collapse (at low positive end-expiratory pressure), 1) the expiratory transdiaphragmatic pressure decreased during spontaneous breathing by >10%, 2) expiratory flow was reduced and the expiratory time constants became more homogeneous, and 3) the amount of atelectasis at end-expiration decreased from 24% to 16% during spontaneous breathing and from 32% to 18% during controlled mechanical ventilation, without increasing hyperinflation.Conclusions: The expiratory modulation induced by external expiratory resistances preserves the positive effects of the expiratory brake while minimizing expiratory diaphragmatic contraction. External expiratory resistances optimize lung mechanics and limit tidal-EFL and tidal atelectasis, without increasing hyperinflation.


Asunto(s)
Diafragma/fisiología , Espiración/fisiología , Contracción Muscular/fisiología , Respiración con Presión Positiva/métodos , Síndrome de Dificultad Respiratoria/terapia , Animales , Diafragma/fisiopatología , Modelos Animales de Enfermedad , Pulmón/diagnóstico por imagen , Respiración con Presión Positiva/efectos adversos , Atelectasia Pulmonar/diagnóstico por imagen , Ventilación Pulmonar , Respiración Artificial/métodos , Síndrome de Dificultad Respiratoria/fisiopatología , Mecánica Respiratoria/fisiología , Porcinos , Tomografía Computarizada por Rayos X
6.
Crit Care ; 24(1): 486, 2020 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-32758266

RESUMEN

BACKGROUND: There is little evidence to support the management of severe COVID-19 patients. METHODS: To document this variation in practices, we performed an online survey (April 30-May 25, 2020) on behalf of the European Society of Intensive Care Medicine (ESICM). A case vignette was sent to ESICM members. Questions investigated practices for a previously healthy 39-year-old patient presenting with severe hypoxemia from COVID-19 infection. RESULTS: A total of 1132 ICU specialists (response rate 20%) from 85 countries (12 regions) responded to the survey. The survey provides information on the heterogeneity in patient's management, more particularly regarding the timing of ICU admission, the first line oxygenation strategy, optimization of management, and ventilatory settings in case of refractory hypoxemia. Practices related to antibacterial, antiviral, and anti-inflammatory therapies are also investigated. CONCLUSIONS: There are important practice variations in the management of severe COVID-19 patients, including differences at regional and individual levels. Large outcome studies based on multinational registries are warranted.


Asunto(s)
Infecciones por Coronavirus/terapia , Cuidados Críticos , Internacionalidad , Neumonía Viral/terapia , Pautas de la Práctica en Medicina/estadística & datos numéricos , Adulto , COVID-19 , Encuestas de Atención de la Salud , Humanos , Pandemias , Índice de Severidad de la Enfermedad
7.
Crit Care Med ; 47(9): e774-e781, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31162202

RESUMEN

OBJECTIVES: Airway closure is involved in adverse effects of mechanical ventilation under both general anesthesia and in acute respiratory distress syndrome patients. However, direct evidence and characterization of individual airway closure is lacking. Here, we studied the same individual peripheral airways in intact lungs of anesthetized and mechanically ventilated rabbits, at baseline and following lung injury, using high-resolution synchrotron phase-contrast CT. DESIGN: Laboratory animal investigation. SETTING: European synchrotron radiation facility. SUBJECTS: Six New-Zealand White rabbits. INTERVENTIONS: The animals were anesthetized, paralyzed, and mechanically ventilated in pressure-controlled mode (tidal volume, 6 mL/kg; respiratory rate, 40; FIO2, 0.6; inspiratory:expiratory, 1:2; and positive end-expiratory pressure, 3 cm H2O) at baseline. Imaging was performed with a 47.5 × 47.5 × 47.5 µm voxel size, at positive end-expiratory pressure 12, 9, 6, 3, and 0 cm H2O. The imaging sequence was repeated after lung injury induced by whole-lung lavage and injurious ventilation in four rabbits. Cross-sections of the same individual airways were measured. MEASUREMENTS AND MAIN RESULTS: The airways were measured at baseline (n = 48; radius, 1.7 to 0.21 mm) and after injury (n = 32). Closure was observed at 0 cm H2O in three of 48 airways (6.3%; radius, 0.35 ± 0.08 mm at positive end-expiratory pressure 12) at baseline and five of 32 (15.6%; radius, 0.28 ± 0.09 mm) airways after injury. Cross-section was significantly reduced at 3 and 0 cm H2O, after injury, with a significant relation between the relative change in cross-section and airway radius at 12 cm H2O in injured, but not in normal lung (R = 0.60; p < 0.001). CONCLUSIONS: Airway collapsibility increases in the injured lung with a significant dependence on airway caliber. We identify "compliant collapse" as the main mechanism of airway closure in initially patent airways, which can occur at more than one site in individual airways.


Asunto(s)
Obstrucción de las Vías Aéreas/diagnóstico por imagen , Pulmón/diagnóstico por imagen , Pulmón/fisiopatología , Respiración Artificial/efectos adversos , Animales , Conejos , Tomografía Computarizada por Rayos X
8.
Am J Respir Crit Care Med ; 195(12): 1608-1616, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27922742

RESUMEN

RATIONALE: The diaphragm is the major inspiratory muscle and is assumed to relax during expiration. However, electrical postinspiratory activity has been observed. Whether there is an expiratory diaphragmatic contraction that preserves lung patency has yet to be explored. OBJECTIVES: We hypothesized the occurrence of an expiratory diaphragmatic contraction directed at stabilizing peripheral airways and preventing or reducing cyclic expiratory lung collapse. METHODS: Mild acute respiratory distress syndrome was induced in 10 anesthetized, spontaneously breathing pigs. Lung volume was decreased by lowering end-expiratory airway pressure in a stepwise manner. We recorded the diaphragmatic electric activity during expiration, dynamic computed tomographic scans, and respiratory mechanics. In five pigs, the same protocol was repeated during mechanical ventilation after muscle paralysis. MEASUREMENTS AND MAIN RESULTS: Diaphragmatic electric activity during expiration increased by decreasing end-expiratory lung volume during spontaneous breathing. This enhanced the diaphragm muscle force, to a greater extent with lower lung volume, indicating a diaphragmatic electromechanical coupling during spontaneous expiration. In turn, the resulting diaphragmatic contraction delayed and reduced the expiratory collapse and increased lung aeration compared with mechanical ventilation with muscle paralysis and absence of diaphragmatic activity. CONCLUSIONS: The diaphragm is an important regulator of expiration. Its expiratory activity seems to preserve lung volume and to protect against lung collapse. The loss of diaphragmatic expiratory contraction during mechanical ventilation and muscle paralysis may be a contributing factor to unsuccessful respiratory support.


Asunto(s)
Diafragma/fisiología , Espiración/fisiología , Atelectasia Pulmonar/prevención & control , Síndrome de Dificultad Respiratoria/fisiopatología , Animales , Modelos Animales de Enfermedad , Pulmón/diagnóstico por imagen , Pulmón/fisiopatología , Atelectasia Pulmonar/fisiopatología , Respiración Artificial , Síndrome de Dificultad Respiratoria/diagnóstico por imagen , Porcinos , Tomografía Computarizada por Rayos X
9.
Crit Care Med ; 45(4): 687-694, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28107207

RESUMEN

OBJECTIVES: Positive pressure ventilation exposes the lung to mechanical stresses that can exacerbate injury. The exact mechanism of this pathologic process remains elusive. The goal of this study was to describe recruitment/derecruitment at acinar length scales over short-time frames and test the hypothesis that mechanical interdependence between neighboring lung units determines the spatial and temporal distributions of recruitment/derecruitment, using a computational model. DESIGN: Experimental animal study. SETTING: International synchrotron radiation laboratory. SUBJECTS: Four anesthetized rabbits, ventilated in pressure controlled mode. INTERVENTIONS: The lung was consecutively imaged at ~ 1.5-minute intervals using phase-contrast synchrotron imaging, at positive end-expiratory pressures of 12, 9, 6, 3, and 0 cm H2O before and after lavage and mechanical ventilation induced injury. The extent and spatial distribution of recruitment/derecruitment was analyzed by subtracting subsequent images. In a realistic lung structure, we implemented a mechanistic model in which each unit has individual pressures and speeds of opening and closing. Derecruited and recruited lung fractions (Fderecruited, Frecruited) were computed based on the comparison of the aerated volumes at successive time points. MEASUREMENTS AND MAIN RESULTS: Alternative recruitment/derecruitment occurred in neighboring alveoli over short-time scales in all tested positive end-expiratory pressure levels and despite stable pressure controlled mode. The computational model reproduced this behavior only when parenchymal interdependence between neighboring acini was accounted for. Simulations closely mimicked the experimental magnitude of Fderecruited and Frecruited when mechanical interdependence was included, while its exclusion gave Frecruited values of zero at positive end-expiratory pressure greater than or equal to 3 cm H2O. CONCLUSIONS: These findings give further insight into the microscopic behavior of the injured lung and provide a means of testing protective-ventilation strategies to prevent recruitment/derecruitment and subsequent lung damage.


Asunto(s)
Lesión Pulmonar Aguda/etiología , Lesión Pulmonar Aguda/fisiopatología , Respiración con Presión Positiva/efectos adversos , Alveolos Pulmonares/fisiopatología , Lesión Pulmonar Aguda/diagnóstico por imagen , Animales , Simulación por Computador , Masculino , Presión , Alveolos Pulmonares/diagnóstico por imagen , Conejos , Sincrotrones
10.
J Clin Monit Comput ; 31(3): 551-559, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27067075

RESUMEN

Ventilation treatment of acute lung injury (ALI) requires the application of positive airway pressure at the end of expiration (PEEPapp) to avoid lung collapse. However, the total pressure exerted on the alveolar walls (PEEPtot) is the sum of PEEPapp and intrinsic PEEP (PEEPi), a hidden component. To measure PEEPtot, ventilation must be discontinued with an end-expiratory hold maneuver (EEHM). We hypothesized that artificial neural networks (ANN) could estimate the PEEPtot from flow and pressure tracings during ongoing mechanical ventilation. Ten pigs were mechanically ventilated, and the time constant of their respiratory system (τRS) was measured. We shortened their expiratory time (TE) according to multiples of τRS, obtaining different respiratory patterns (Rpat). Pressure (PAW) and flow (V'AW) at the airway opening during ongoing mechanical ventilation were simultaneously recorded, with and without the addition of external resistance. The last breath of each Rpat included an EEHM, which was used to compute the reference PEEPtot. The entire protocol was repeated after the induction of ALI with i.v. injection of oleic acid, and 382 tracings were obtained. The ANN had to extract the PEEPtot, from the tracings without an EEHM. ANN agreement with reference PEEPtot was assessed with the Bland-Altman method. Bland Altman analysis of estimation error by ANN showed -0.40 ± 2.84 (expressed as bias ± precision) and ±5.58 as limits of agreement (data expressed as cmH2O). The ANNs estimated the PEEPtot well at different levels of PEEPapp under dynamic conditions, opening up new possibilities in monitoring PEEPi in critically ill patients who require ventilator treatment.


Asunto(s)
Lesión Pulmonar Aguda/diagnóstico , Lesión Pulmonar Aguda/terapia , Manometría/métodos , Monitoreo Fisiológico/métodos , Redes Neurales de la Computación , Respiración con Presión Positiva/métodos , Terapia Asistida por Computador/métodos , Lesión Pulmonar Aguda/fisiopatología , Animales , Diagnóstico por Computador/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos , Reproducibilidad de los Resultados , Respiración Artificial/métodos , Sensibilidad y Especificidad , Porcinos , Resultado del Tratamiento
11.
Intensive Care Med Exp ; 12(1): 10, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38311676

RESUMEN

BACKGROUND: How assisted spontaneous breathing should be used during acute respiratory distress syndrome is questioned. Recent evidence suggests that high positive end-expiratory pressure (PEEP) may limit the risk of patient self-inflicted lung injury (P-SILI). The aim of this study was to assess the effects of PEEP on esophageal pressure swings, inspiratory drive, and the neuromuscular efficiency of ventilation. We hypothesized that high PEEP would reduce esophageal pressure swings, regardless of inspiratory drive changes, by modulating the effort-to-drive ratio (EDR). This was tested retrospectively in an experimental animal crossover study. Anesthetized pigs (n = 15) were subjected to mild to moderate lung injury and different PEEP levels were applied, changing PEEP from 0 to 15 cmH2O and back to 0 cmH2O in steps of 3 cmH2O. Airway pressure, esophageal pressure (Pes), and electric activity of the diaphragm (Edi) were collected. The EDR was calculated as the tidal change in Pes divided by the tidal change in Edi. Statistical differences were tested using the Wilcoxon signed-rank test. RESULTS: Inspiratory esophageal pressure swings decreased from - 4.2 ± 3.1 cmH2O to - 1.9 ± 1.5 cmH2O (p < 0.01), and the mean EDR fell from - 1.12 ± 1.05 cmH2O/µV to - 0.24 ± 0.20 (p < 0.01) as PEEP was increased from 0 to 15 cmH2O. The EDR was significantly correlated to the PEEP level (rs = 0.35, p < 0.01). CONCLUSIONS: Higher PEEP limits inspiratory effort by modulating the EDR of the respiratory system. These findings indicate that PEEP may be used in titration of the spontaneous impact on ventilation and in P-SILI risk reduction, potentially facilitating safe assisted spontaneous breathing. Similarly, ventilation may be shifted from highly spontaneous to predominantly controlled ventilation using PEEP. These findings need to be confirmed in clinical settings.

12.
PLoS One ; 19(2): e0299199, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38381730

RESUMEN

BACKGROUND: The effects of awake prone positioning (APP) on respiratory mechanics in patients with COVID-19 are not well characterized. The aim of this study was to investigate changes of global and regional lung volumes during APP compared with the supine position using electrical lung impedance tomography (EIT) in patients with hypoxemic respiratory failure due to COVID-19. MATERIALS AND METHODS: This exploratory non-randomized cross-over study was conducted at two university hospitals in Sweden between January and May 2021. Patients admitted to the intensive care unit with confirmed COVID-19, an arterial cannula in place, a PaO2/FiO2 ratio <26.6 kPa (<200 mmHg) and high-flow nasal oxygen or non-invasive ventilation were eligible for inclusion. EIT-data were recorded at supine baseline, at 30 and 60 minutes after APP-initiation, and 30 minutes after supine repositioning. The primary outcomes were changes in global and regional tidal impedance variation (TIV), center of ventilation (CoV), global and regional delta end-expiratory lung-impedance (dEELI) and global inhomogeneity (GI) index at the end of APP compared with supine baseline. Data were reported as median (IQR). RESULTS: All patients (n = 10) were male and age was 64 (47-73) years. There were no changes in global or regional TIV, CoV or GI-index during the intervention. dEELI increased from supine reference value 0 to 1.51 (0.32-3.62) 60 minutes after APP (median difference 1.51 (95% CI 0.19-5.16), p = 0.04) and returned to near baseline values after supine repositioning. Seven patients (70%) showed an increase >0.20 in dEELI during APP. The other EIT-variables did not change during APP compared with baseline. CONCLUSION: Awake prone positioning was associated with a transient lung recruiting effect without changes in ventilation distribution measured with EIT in patients with hypoxemic respiratory failure due to COVID-19.


Asunto(s)
COVID-19 , Insuficiencia Respiratoria , Humanos , Masculino , Persona de Mediana Edad , Anciano , Femenino , Posición Prona , Impedancia Eléctrica , Estudios Cruzados , Vigilia , Pulmón
13.
Ann Intensive Care ; 14(1): 149, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39312044

RESUMEN

BACKGROUND: Efficacy of inhaled therapy such as Nitric Oxide (iNO) during mechanical ventilation may depend on airway patency. We hypothesized that airway closure and lung collapse, countered by positive end-expiratory pressure (PEEP), influence iNO efficacy. This could support the role of an adequate PEEP titration for inhalation therapy. The main aim of this study was to assess the effect of iNO with PEEP set above or below the airway opening pressure (AOP) generated by airway closure, on hemodynamics and gas exchange in swine models of acute respiratory distress syndrome. Fourteen pigs randomly underwent either bilateral or asymmetrical two-hit model of lung injury. Airway closure and lung collapse were measured with electrical impedance tomography as well as ventilation/perfusion ratio (V/Q). After AOP detection, the effect of iNO (10ppm) was studied with PEEP set randomly above or below regional AOP. Respiratory mechanics, hemodynamics, and gas-exchange were recorded. RESULTS: All pigs presented airway closure (AOP > 0.5cmH2O) after injury. In bilateral injury, iNO was associated with an improved mean pulmonary pressure from 49 ± 8 to 42 ± 7mmHg; (p = 0.003), and ventilation/perfusion matching, caused by a reduction in pixels with low V/Q and shunt from 16%[IQR:13-19] to 9%[IQR:4-12] (p = 0.03) only at PEEP set above AOP. iNO had no effect on hemodynamics or gas exchange for PEEP below AOP (low V/Q 25%[IQR:16-30] to 23%[IQR:14-27]; p = 0.68). In asymmetrical injury, iNO improved pulmonary hemodynamics and ventilation/perfusion matching independently from the PEEP set. iNO was associated with improved oxygenation in all cases. CONCLUSIONS: In an animal model of bilateral lung injury, PEEP level relative to AOP markedly influences iNO efficacy on pulmonary hemodynamics and ventilation/perfusion match, independently of oxygenation.

14.
Front Physiol ; 15: 1399407, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39050483

RESUMEN

Background: The effects of obesity on pulmonary gas and blood distribution in patients with acute respiratory failure remain unknown. Dual-energy computed tomography (DECT) is a X-ray-based method used to study regional distribution of gas and blood within the lung. We hypothesized that 1) regional gas/blood mismatch can be quantified by DECT; 2) obesity influences the global and regional distribution of pulmonary gas and blood; 3) regardless of ventilation modality (invasive vs. non-invasive ventilation), patients' body mass index (BMI) has an impact on pulmonary gas/blood mismatch. Methods: This single-centre prospective observational study enrolled 118 hypoxic COVID-19 patients (92 male) in need of respiratory support and intensive care who underwent DECT. The cohort was divided into three groups according to BMI: 1. BMI<25 kg/m2 (non-obese), 2. BMI = 25-40 kg/m2 (overweight to obese), and 3. BMI>40 kg/m2 (morbidly obese). Gravitational analysis of Hounsfield unit distribution of gas and blood was derived from DECT and used to calculate regional gas/blood mismatch. A sensitivity analysis was performed to investigate the influence of the chosen ventilatory modality and BMI on gas/blood mismatch and adjust for other possible confounders (i.e., age and sex). Results: 1) Regional pulmonary distribution of gas and blood and their mismatch were quantified using DECT imaging. 2) The BMI>40 kg/m2 group had less hyperinflation in the non-dependent regions and more lung collapse in the dependent regions compared to the other BMI groups. In morbidly obese patients, gas and blood were more evenly distributed; therefore, the mismatch was lower than in other patients (30% vs. 36%, p < 0.05). 3) An increase in BMI of 5 kg/m2 was associated with a decrease in mismatch of 3.3% (CI: 3.67% to -2.93%, p < 0.05). Neither the ventilatory modality nor age and sex affected the gas/blood mismatch (p > 0.05). Conclusion: 1) In a hypoxic COVID-19 population needing intensive care, pulmonary gas/blood mismatch can be quantified at a global and regional level using DECT. 2) Obesity influences the global and regional distribution of gas and blood within the lung, and BMI>40 kg/m2 improves pulmonary gas/blood mismatch. 3) This is true regardless of the ventilatory mode and other possible confounders, i.e., age and sex. Trial Registration: Clinicaltrials.gov, identifier NCT04316884, NCT04474249.

15.
Intensive Care Med Exp ; 12(1): 77, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39225817

RESUMEN

BACKGROUND: Alveolar macrophages activation to the pro-inflammatory phenotype M1 is pivotal in the pathophysiology of Ventilator-Induced Lung Injury (VILI). Increased lung strain is a known determinant of VILI, but a direct correspondence between regional lung strain and macrophagic activation remains unestablished. [68Ga]Ga-DOTA-TATE is a Positron Emission Tomography (PET) radiopharmaceutical with a high affinity for somatostatin receptor subtype 2 (SSTR2), which is overexpressed by pro-inflammatory-activated macrophages. Aim of the study was to determine, in a porcine model of VILI, whether mechanical strain correlates topographically with distribution of activated macrophages detected by [68Ga]Ga-DOTA-TATE uptake. METHODS: Seven anesthetized pigs underwent VILI, while three served as control. Lung CT scans were acquired at incremental tidal volumes, simultaneously recording lung mechanics. [68Ga]Ga-DOTA-TATE was administered, followed by dynamic PET scans. Custom MatLab scripts generated voxel-by-voxel gas volume and strain maps from CT slices at para-diaphragmatic (Para-D) and mid-thoracic (Mid-T) levels. Analysis of regional Voxel-associated Normal Strain (VoStrain) and [68Ga]Ga-DOTA-TATE uptake was performed and a measure of the statistical correlation between these two variables was quantified using the linear mutual information (LMI) method. RESULTS: Compared to controls, the VILI group exhibited statistically significant higher VoStrain and Standardized Uptake Value Ratios (SUVR) both at Para-D and Mid-T levels. Both VoStrain and SUVR increased along the gravitational axis with an increment described by statistically different regression lines between VILI and healthy controls and reaching the peak in the dependent regions of the lung (for strain in VILI vs. control was at Para-D: 760 ± 210 vs. 449 ± 106; at Mid-T level 497 ± 373 vs. 193 ± 160; for SUVR, in VILI vs. control was at Para-D: 2.2 ± 1.3 vs. 1.3 ± 0.1; at Mid-T level 1.3 ± 1.0 vs. 0.6 ± 0.03). LMI in both Para-D and Mid-T was statistically significantly higher in VILI than in controls. CONCLUSIONS: In this porcine model of VILI, we found a topographical correlation between lung strain and [68Ga]Ga-DOTA-TATE uptake at voxel level, suggesting that mechanical alteration and specific activation of inflammatory cells are strongly linked in VILI. This study represents the first voxel-by-voxel examination of this relationship in a multi-modal imaging analysis.

16.
Orphanet J Rare Dis ; 18(1): 341, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37908000

RESUMEN

BACKGROUND: Sickle cell disease (SCD) is an inherited chronic life-threatening disorder with increasing prevalence in Europe. People living with SCD in Europe mainly belong to vulnerable minorities, have a lower level of health education and suffer from isolation compared to those living with other chronic conditions. As a result, SCD patients are much less likely to partner in the design of research related to their condition and are limited in their ability to influence the research agenda. Aiming to increase the influence of patient voice in the development of SCD-related research, we set out to develop patient centered actions in the frame of International Scientific Conferences in collaboration with the ERN-EuroBloodNet, Oxford Blood Group, Annual Sickle Cell Disease and Thalassaemia Conference (ASCAT), the European Hematology Association and the British Society of Hematology. RESULTS: Two events were organized: a one-day research prioritization workshop and a series of education sessions based on topics chosen by SCD patients and their families. Methodology and outcomes were analyzed in terms of influence on scientific, medical and patient communities. CONCLUSION: The ERN-EuroBloodNet workshops with patients at annual ASCAT conferences have provided an opportunity to enhance patient experience and empowerment in SCD in Europe, producing benefits for patients, caregivers, patient associations and health professionals. Future work should focus on delivering the research questions identified at this workshop and the opportunities to share information for patient education.


Asunto(s)
Anemia de Células Falciformes , Participación del Paciente , Humanos , Cuidadores , Calidad de Vida , Europa (Continente)
17.
Ann Intensive Care ; 13(1): 112, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37962748

RESUMEN

BACKGROUND: Early mobilisation (EM) is an intervention that may improve the outcome of critically ill patients. There is limited data on EM in COVID-19 patients and its use during the first pandemic wave. METHODS: This is a pre-planned subanalysis of the ESICM UNITE-COVID, an international multicenter observational study involving critically ill COVID-19 patients in the ICU between February 15th and May 15th, 2020. We analysed variables associated with the initiation of EM (within 72 h of ICU admission) and explored the impact of EM on mortality, ICU and hospital length of stay, as well as discharge location. Statistical analyses were done using (generalised) linear mixed-effect models and ANOVAs. RESULTS: Mobilisation data from 4190 patients from 280 ICUs in 45 countries were analysed. 1114 (26.6%) of these patients received mobilisation within 72 h after ICU admission; 3076 (73.4%) did not. In our analysis of factors associated with EM, mechanical ventilation at admission (OR 0.29; 95% CI 0.25, 0.35; p = 0.001), higher age (OR 0.99; 95% CI 0.98, 1.00; p ≤ 0.001), pre-existing asthma (OR 0.84; 95% CI 0.73, 0.98; p = 0.028), and pre-existing kidney disease (OR 0.84; 95% CI 0.71, 0.99; p = 0.036) were negatively associated with the initiation of EM. EM was associated with a higher chance of being discharged home (OR 1.31; 95% CI 1.08, 1.58; p = 0.007) but was not associated with length of stay in ICU (adj. difference 0.91 days; 95% CI - 0.47, 1.37, p = 0.34) and hospital (adj. difference 1.4 days; 95% CI - 0.62, 2.35, p = 0.24) or mortality (OR 0.88; 95% CI 0.7, 1.09, p = 0.24) when adjusted for covariates. CONCLUSIONS: Our findings demonstrate that a quarter of COVID-19 patients received EM. There was no association found between EM in COVID-19 patients' ICU and hospital length of stay or mortality. However, EM in COVID-19 patients was associated with increased odds of being discharged home rather than to a care facility. Trial registration ClinicalTrials.gov: NCT04836065 (retrospectively registered April 8th 2021).

18.
Lancet Haematol ; 10(8): e687-e694, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37451300

RESUMEN

Sickle cell disease is a hereditary multiorgan disease that is considered rare in the EU. In 2017, the Rare Diseases Plan was implemented within the EU and 24 European Reference Networks (ERNs) were created, including the ERN on Rare Haematological Diseases (ERN-EuroBloodNet), dedicated to rare haematological diseases. This EU initiative has made it possible to accentuate existing collaborations and create new ones. The project also made it possible to list all the needs of people with rare haematological diseases not yet covered health-care providers in the EU to allow optimised care of individuals with rare pathologies, including sickle cell disease. This Viewpoint is the result of joint work within 12 EU member states (ie, Belgium, Cyprus, Denmark, France, Germany, Greece, Ireland, Italy, Portugal, Spain, Sweden, and The Netherlands), all members of the ERN-EuroBloodNet. We describe the role of the ERN-EuroBloodNet to improve the overall approach to and the management of individuals with sickle cell disease in the EU through specific on the pooling of expertise, knowledge, and best practices; the development of training and education programmes; the strategy for systematic gathering and standardisation of clinical data; and its reuse in clinical research. Epidemiology and research strategies from ongoing implementation of the Rare Anaemia Disorders European Epidemiological Platform is depicted.


Asunto(s)
Anemia de Células Falciformes , Enfermedades Raras , Humanos , Países Bajos , Alemania , Grecia , Italia , Enfermedades Raras/epidemiología , Enfermedades Raras/terapia , Anemia de Células Falciformes/epidemiología , Anemia de Células Falciformes/terapia , Europa (Continente)/epidemiología
19.
Intensive Care Med ; 49(7): 727-759, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37326646

RESUMEN

The aim of these guidelines is to update the 2017 clinical practice guideline (CPG) of the European Society of Intensive Care Medicine (ESICM). The scope of this CPG is limited to adult patients and to non-pharmacological respiratory support strategies across different aspects of acute respiratory distress syndrome (ARDS), including ARDS due to coronavirus disease 2019 (COVID-19). These guidelines were formulated by an international panel of clinical experts, one methodologist and patients' representatives on behalf of the ESICM. The review was conducted in compliance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement recommendations. We followed the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) approach to assess the certainty of evidence and grade recommendations and the quality of reporting of each study based on the EQUATOR (Enhancing the QUAlity and Transparency Of health Research) network guidelines. The CPG addressed 21 questions and formulates 21 recommendations on the following domains: (1) definition; (2) phenotyping, and respiratory support strategies including (3) high-flow nasal cannula oxygen (HFNO); (4) non-invasive ventilation (NIV); (5) tidal volume setting; (6) positive end-expiratory pressure (PEEP) and recruitment maneuvers (RM); (7) prone positioning; (8) neuromuscular blockade, and (9) extracorporeal life support (ECLS). In addition, the CPG includes expert opinion on clinical practice and identifies the areas of future research.


Asunto(s)
COVID-19 , Síndrome de Dificultad Respiratoria , Adulto , Humanos , COVID-19/terapia , Respiración Artificial , Respiración con Presión Positiva , Síndrome de Dificultad Respiratoria/terapia , Cuidados Críticos
20.
J Crit Care ; 71: 154050, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35525226

RESUMEN

BACKGROUND: During the COVID-19 pandemic, intensive care units (ICU) introduced restrictions to in-person family visiting to safeguard patients, healthcare personnel, and visitors. METHODS: We conducted a web-based survey (March-July 2021) investigating ICU visiting practices before the pandemic, at peak COVID-19 ICU admissions, and at the time of survey response. We sought data on visiting policies and communication modes including use of virtual visiting (videoconferencing). RESULTS: We obtained 667 valid responses representing ICUs in all continents. Before the pandemic, 20% (106/525) had unrestricted visiting hours; 6% (30/525) did not allow in-person visiting. At peak, 84% (558/667) did not allow in-person visiting for patients with COVID-19; 66% for patients without COVID-19. This proportion had decreased to 55% (369/667) at time of survey reporting. A government mandate to restrict hospital visiting was reported by 53% (354/646). Most ICUs (55%, 353/615) used regular telephone updates; 50% (306/667) used telephone for formal meetings and discussions regarding prognosis or end-of-life. Virtual visiting was available in 63% (418/667) at time of survey. CONCLUSIONS: Highly restrictive visiting policies were introduced at the initial pandemic peaks, were subsequently liberalized, but without returning to pre-pandemic practices. Telephone became the primary communication mode in most ICUs, supplemented with virtual visits.


Asunto(s)
COVID-19 , Visitas a Pacientes , Comunicación , Cuidados Críticos , Familia , Humanos , Unidades de Cuidados Intensivos , Política Organizacional , Pandemias , Políticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA