Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(16): e2210418120, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37040401

RESUMEN

The hypoxia-inducible factor 1-α (HIF-1α) enables cells to adapt and respond to hypoxia (Hx), and the activity of this transcription factor is regulated by several oncogenic signals and cellular stressors. While the pathways controlling normoxic degradation of HIF-1α are well understood, the mechanisms supporting the sustained stabilization and activity of HIF-1α under Hx are less clear. We report that ABL kinase activity protects HIF-1α from proteasomal degradation during Hx. Using a fluorescence-activated cell sorting (FACS)-based CRISPR/Cas9 screen, we identified HIF-1α as a substrate of the cleavage and polyadenylation specificity factor-1 (CPSF1), an E3-ligase which targets HIF-1α for degradation in the presence of an ABL kinase inhibitor in Hx. We show that ABL kinases phosphorylate and interact with CUL4A, a cullin ring ligase adaptor, and compete with CPSF1 for CUL4A binding, leading to increased HIF-1α protein levels. Further, we identified the MYC proto-oncogene protein as a second CPSF1 substrate and show that active ABL kinase protects MYC from CPSF1-mediated degradation. These studies uncover a role for CPSF1 in cancer pathobiology as an E3-ligase antagonizing the expression of the oncogenic transcription factors, HIF-1α and MYC.


Asunto(s)
Regulación de la Expresión Génica , Factores de Transcripción , Humanos , Proteínas Cullin/metabolismo , Hipoxia , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Genes abl , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Factor de Especificidad de Desdoblamiento y Poliadenilación/metabolismo
2.
Proc Natl Acad Sci U S A ; 117(52): 33486-33495, 2020 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-33318173

RESUMEN

Brain metastases are the most common intracranial tumors in adults and are associated with increased patient morbidity and mortality. Limited therapeutic options are currently available for the treatment of brain metastasis. Here, we report on the discovery of an actionable signaling pathway utilized by metastatic tumor cells whereby the transcriptional regulator Heat Shock Factor 1 (HSF1) drives a transcriptional program, divergent from its canonical role as the master regulator of the heat shock response, leading to enhanced expression of a subset of E2F transcription factor family gene targets. We find that HSF1 is required for survival and outgrowth by metastatic lung cancer cells in the brain parenchyma. Further, we identify the ABL2 tyrosine kinase as an upstream regulator of HSF1 protein expression and show that the Src-homology 3 (SH3) domain of ABL2 directly interacts with HSF1 protein at a noncanonical, proline-independent SH3 interaction motif. Pharmacologic inhibition of the ABL2 kinase using small molecule allosteric inhibitors, but not ATP-competitive inhibitors, disrupts this interaction. Importantly, knockdown as well as pharmacologic inhibition of ABL2 using allosteric inhibitors impairs expression of HSF1 protein and HSF1-E2F transcriptional gene targets. Collectively, these findings reveal a targetable ABL2-HSF1-E2F signaling pathway required for survival by brain-metastatic tumor cells.


Asunto(s)
Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Neoplasias Encefálicas/secundario , Factores de Transcripción del Choque Térmico/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Proteínas Tirosina Quinasas/metabolismo , Transcripción Genética , Regulación Alostérica , Animales , Línea Celular Tumoral , Supervivencia Celular , Factores de Transcripción E2F/metabolismo , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Ratones Desnudos , Regulación hacia Arriba/genética
3.
Proc Natl Acad Sci U S A ; 116(5): 1603-1612, 2019 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-30655340

RESUMEN

Current therapeutic interventions for the treatment of respiratory infections are hampered by the evolution of multidrug resistance in pathogens as well as the lack of effective cellular targets. Despite the identification of multiple region-specific lung progenitor cells, the identity of molecules that might be therapeutically targeted in response to infections to promote activation of progenitor cell types remains elusive. Here, we report that loss of Abl1 specifically in SCGB1A1-expressing cells leads to a significant increase in the proliferation and differentiation of bronchiolar epithelial cells, resulting in dramatic expansion of an SCGB1A1+ airway cell population that coexpresses SPC, a marker for type II alveolar cells that promotes alveolar regeneration following bacterial pneumonia. Furthermore, treatment with an Abl-specific allosteric inhibitor enhanced regeneration of the alveolar epithelium and promoted accelerated recovery of mice following pneumonia. These data reveal a potential actionable target that may be exploited for efficient recovery after pathogen-induced infections.


Asunto(s)
Pulmón/metabolismo , Pulmón/fisiopatología , Neumonía Bacteriana/metabolismo , Proteínas Proto-Oncogénicas c-abl/metabolismo , Regeneración/fisiología , Células Madre/metabolismo , Uteroglobina/metabolismo , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/fisiología , Animales , Bronquiolos/metabolismo , Bronquiolos/fisiopatología , Diferenciación Celular/fisiología , Línea Celular , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Neumonía Bacteriana/fisiopatología , Alveolos Pulmonares/metabolismo , Alveolos Pulmonares/fisiopatología , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/fisiopatología , Células Madre/fisiología
4.
Cell Commun Signal ; 19(1): 59, 2021 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-34022881

RESUMEN

The ABL kinases, ABL1 and ABL2, promote tumor progression and metastasis in various solid tumors. Recent reports have shown that ABL kinases have increased expression and/or activity in solid tumors and that ABL inactivation impairs metastasis. The therapeutic effects of ABL inactivation are due in part to ABL-dependent regulation of diverse cellular processes related to the epithelial to mesenchymal transition and subsequent steps in the metastatic cascade. ABL kinases target multiple signaling pathways required for promoting one or more steps in the metastatic cascade. These findings highlight the potential utility of specific ABL kinase inhibitors as a novel treatment paradigm for patients with advanced metastatic disease. Video abstract.


Asunto(s)
Transición Epitelial-Mesenquimal , Proteínas Proto-Oncogénicas c-abl/metabolismo , Citoesqueleto/metabolismo , Progresión de la Enfermedad , Humanos , Terapia Molecular Dirigida , Metástasis de la Neoplasia , Proteínas Proto-Oncogénicas c-abl/química
5.
J Cell Sci ; 129(1): 9-16, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26729027

RESUMEN

The Abelson tyrosine kinases were initially identified as drivers of leukemia in mice and humans. The Abl family kinases Abl1 and Abl2 regulate diverse cellular processes during development and normal homeostasis, and their functions are subverted during inflammation, cancer and other pathologies. Abl kinases can be activated by multiple stimuli leading to cytoskeletal reorganization required for cell morphogenesis, motility, adhesion and polarity. Depending on the cellular context, Abl kinases regulate cell survival and proliferation. Emerging data support important roles for Abl kinases in pathologies linked to inflammation. Among these are neurodegenerative diseases and inflammatory pathologies. Unexpectedly, Abl kinases have also been identified as important players in mammalian host cells during microbial pathogenesis. Thus, the use of Abl kinase inhibitors might prove to be effective in the treatment of pathologies beyond leukemia and solid tumors. In this Cell Science at a Glance article and in the accompanying poster, we highlight the emerging roles of Abl kinases in the regulation of cellular processes in normal cells and diverse pathologies ranging from cancer to microbial pathogenesis.


Asunto(s)
Enfermedad , Salud , Proteínas Proto-Oncogénicas c-abl/metabolismo , Animales , Supervivencia Celular , Citoesqueleto/metabolismo , Humanos , Proteínas Proto-Oncogénicas c-abl/química , Transducción de Señal
6.
Proc Natl Acad Sci U S A ; 110(30): 12432-7, 2013 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-23840065

RESUMEN

Endothelial dysfunction is associated with diverse cardiovascular pathologies. Here, we show a previously unappreciated role for the Abelson (Abl) family kinases (Abl and Arg) in endothelial function and the regulation of angiogenic factor pathways important for vascular homeostasis. Endothelial Abl deletion in Arg-null mice led to late-stage embryonic and perinatal lethality, with mutant mice displaying focal loss of vasculature and tissue necrosis. Loss of Abl kinases led to increased endothelial cell apoptosis both in vitro and in vivo, contributing to vascular dysfunction, infarction, and tissue damage. Mechanistically, we identify a unique dual role for Abl kinases in the regulation of angiopoietin/Tie2 protein kinase signaling. Endothelial Abl kinases modulate Tie2 expression and angiopoietin-1-mediated endothelial cell survival. These findings reveal a critical requirement for the Abl kinases in vascular development and function, which may have important implications for the clinical use of Abl kinase inhibitors.


Asunto(s)
Angiopoyetina 1/fisiología , Vasos Sanguíneos/fisiología , Supervivencia Celular/fisiología , Proteínas Tirosina Quinasas/metabolismo , Receptor TIE-2/fisiología , Apoptosis , Cardiomegalia/genética , Genes Letales , Humanos , Proteínas Tirosina Quinasas/genética , Fibrosis Pulmonar/genética , Transducción de Señal , Trombosis/genética
7.
J Immunol ; 189(11): 5382-92, 2012 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-23100514

RESUMEN

Phagocytosis of Ab-coated pathogens is mediated through FcγRs, which activate intracellular signaling pathways to drive actin cytoskeletal rearrangements. Abl and Arg define a family of nonreceptor tyrosine kinases that regulate actin-dependent processes in a variety of cell types, including those important in the adaptive immune response. Using pharmacological inhibition as well as dominant negative and knockout approaches, we demonstrate a role for the Abl family kinases in phagocytosis by macrophages and define a mechanism whereby Abl kinases regulate this process. Bone marrow-derived macrophages from mice lacking Abl and Arg kinases exhibit inefficient phagocytosis of sheep erythrocytes and zymosan particles. Treatment with the Abl kinase inhibitors imatinib and GNF-2 or overexpression of kinase-inactive forms of the Abl family kinases also impairs particle internalization in murine macrophages, indicating Abl kinase activity is required for efficient phagocytosis. Further, Arg kinase is present at the phagocytic cup, and Abl family kinases are activated by FcγR engagement. The regulation of phagocytosis by Abl family kinases is mediated in part by the spleen tyrosine kinase (Syk). Loss of Abl and Arg expression or treatment with Abl inhibitors reduced Syk phosphorylation in response to FcγR ligation. The link between Abl family kinases and Syk may be direct, as purified Arg kinase phosphorylates Syk in vitro. Further, overexpression of membrane-targeted Syk in cells treated with Abl kinase inhibitors partially rescues the impairment in phagocytosis. Together, these findings reveal that Abl family kinases control the efficiency of phagocytosis in part through the regulation of Syk function.


Asunto(s)
Macrófagos Peritoneales/enzimología , Macrófagos/enzimología , Fagocitosis/efectos de los fármacos , Proteínas Proto-Oncogénicas c-abl/inmunología , Receptores de IgG/inmunología , Animales , Benzamidas , Eritrocitos/inmunología , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Mesilato de Imatinib , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Péptidos y Proteínas de Señalización Intracelular/inmunología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos Peritoneales/efectos de los fármacos , Macrófagos Peritoneales/inmunología , Ratones , Fosforilación/efectos de los fármacos , Piperazinas/farmacología , Cultivo Primario de Células , Unión Proteica , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/inmunología , Proteínas Tirosina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-abl/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-abl/metabolismo , Pirimidinas/farmacología , Receptores de IgG/genética , Ovinos , Transducción de Señal/efectos de los fármacos , Quinasa Syk
8.
Proc Natl Acad Sci U S A ; 108(1): 149-54, 2011 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-21173240

RESUMEN

Dynamic signals linking the actin cytoskeleton and cell adhesion receptors are essential for morphogenesis during development and normal tissue homeostasis. Abi1 is a central regulator of actin polymerization through interactions with multiple protein complexes. However, the in vivo role of Abi1 remains to be defined. The α4 integrin adhesion receptor is associated with enhanced protrusive activity and regulation of directional cell migration. Among integrin subunits, α4 exhibits unique properties in that it predominantly accumulates at the leading edge of migrating cells; however, the pathways that link the actin-regulatory machinery to α4 at the leading edge have remained elusive. We generated Abi1 KO mice and found that loss of Abi1 phenocopies KO of α4. Mice lacking Abi1 or α4 exhibit midgestational lethality with abnormalities in placental and cardiovascular development. Notably, purified Abi1 protein binds directly to the α4 cytoplasmic tail and endogenous Abi1 colocalizes with phosphorylated α4 at the leading edge of spreading cells. Moreover, Abi1-deficient cells expressing α4 have impaired cell spreading, which is rescued by WT Abi1 but not an Abi1 mutant lacking the α4-binding site. These data reveal a direct link between the α4 integrin and actin polymerization and uncover a role for Abi1 in the regulation of morphogenesis in vivo. The Abi1-α4 interaction establishes a mechanistic paradigm for signaling between adhesion events and enhanced actin polymerization at the earliest stages of protrusion.


Asunto(s)
Actinas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Anomalías Cardiovasculares/embriología , Movimiento Celular/fisiología , Proteínas del Citoesqueleto/metabolismo , Integrina alfa4/metabolismo , Morfogénesis/genética , Placenta/embriología , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Southern Blotting , Anomalías Cardiovasculares/genética , Proteínas del Citoesqueleto/genética , Cartilla de ADN/genética , Femenino , Genotipo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Fluorescente , Placenta/anomalías , Polimerizacion , Embarazo
9.
Immunol Rev ; 228(1): 170-83, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19290927

RESUMEN

Stimulation of the T-cell antigen receptor (TCR) leads to the activation of signaling pathways that are essential for T-cell development and the response of mature T cells to antigens. The TCR has no intrinsic catalytic activity, but TCR engagement results in tyrosine phosphorylation of downstream targets by non-receptor tyrosine kinases. Three families of tyrosine kinases have long been recognized to play critical roles in TCR-dependent signaling. They are the Src, zeta-associated protein of 70 kDa, and Tec families of kinases. More recently, the Abelson (Abl) tyrosine kinases have been shown to be activated by TCR engagement and to be required for maximal TCR signaling. Using T-cell conditional knockout mice deficient for Abl family kinases, Abl (Abl1) and Abl-related gene (Arg) (Abl2), it was recently shown that loss of Abl kinases results in defective T-cell development and a partial block in the transition to the CD4(+)CD8(+) stage. Abl/Arg double null T cells exhibit impaired TCR-induced signaling, proliferation, and cytokine production. Moreover, conditional knockout mice lacking Abl and Arg in T cells exhibit impaired CD8(+) T-cell expansion in vivo upon Listeria monocytogenes infection. Thus, Abl kinase signaling is required for both T-cell development and mature T-cell function.


Asunto(s)
Proteínas Proto-Oncogénicas c-abl/inmunología , Proteínas Proto-Oncogénicas c-abl/metabolismo , Transducción de Señal , Linfocitos T/metabolismo , Animales , Humanos , Linfocitos T/citología , Linfocitos T/inmunología
10.
Cancers (Basel) ; 15(19)2023 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-37835395

RESUMEN

The Hippo pathway transcriptional co-activators, YES-associated protein (YAP) and Transcriptional Co-Activator with PDZ Binding Motif (TAZ), have both been linked to tumor progression and metastasis. These two proteins possess overlapping and distinct functions, and their activities lead to the expression of genes involved in multiple cellular processes, including cell proliferation, survival, and migration. The dysregulation of YAP/TAZ-dependent cellular processes can result in altered tumor growth and metastasis. In addition to their well-documented roles in the regulation of cancer cell growth, survival, migration, and invasion, the YAP/TAZ-dependent signaling pathways have been more recently implicated in cellular processes that promote metastasis and therapy resistance in several solid tumor types. This review highlights the role of YAP/TAZ signaling networks in the regulation of tumor cell plasticity mediated by hybrid and reversible epithelial-mesenchymal transition (EMT) states, and the promotion of cancer stem cell/progenitor phenotypes. Mechanistically, YAP and TAZ regulate these cellular processes by targeting transcriptional networks. In this review, we detail recently uncovered mechanisms whereby YAP and TAZ mediate tumor growth, metastasis, and therapy resistance, and discuss new therapeutic strategies to target YAP/TAZ function in various solid tumor types. Understanding the distinct and overlapping roles of YAP and TAZ in multiple cellular processes that promote tumor progression to metastasis is expected to enable the identification of effective therapies to treat solid tumors through the hyper-activation of YAP and TAZ.

11.
Cancer Res Commun ; 3(11): 2400-2411, 2023 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-37882674

RESUMEN

We have previously identified alveolar type II cell as the cell-of-origin of KrasG12D-induced lung adenocarcinoma using cell lineage-specific inducible Cre mouse models. Using gain-of-function and loss-of-function genetic models, we discovered that active Notch signaling and low Sox2 levels dictate the ability of type II cells to proliferate and progress into lung adenocarcinoma upon KrasG12D activation. Here, we examine the phenotype of type II cells after Kras activation and find evidence for proliferation of cells that coexpress type I and type II markers. Three-dimensional organoid culture and transplantation studies determine that these dual-positive cells are highly plastic and tumor initiating in vivo. RNA sequencing analysis reveals that these dual-positive cells are enriched in Ras/MAPK, EGFR, and Notch pathways. Furthermore, the proliferation of these cells requires active Notch signaling and is inhibited by genetic/chemical Sox2 upregulation. Our findings could provide new therapeutic strategies to target KRAS-activated lung adenocarcinomas. SIGNIFICANCE: Identification of progenitor like tumor-initiating cells in KRAS-mutant lung adenocarcinoma may allow development of novel targeted therapeutics.


Asunto(s)
Adenocarcinoma del Pulmón , Adenocarcinoma , Neoplasias Pulmonares , Ratones , Animales , Proteínas Proto-Oncogénicas p21(ras)/genética , Adenocarcinoma/genética , Neoplasias Pulmonares/genética , Plasticidad de la Célula , Proliferación Celular/genética , Adenocarcinoma del Pulmón/genética
12.
Neurooncol Adv ; 5(1): vdad095, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37781087

RESUMEN

Background: Medulloblastoma is the most common malignant pediatric brain tumor, and leptomeningeal dissemination (LMD) of medulloblastoma both portends a poorer prognosis at diagnosis and is incurable at recurrence. The biological mechanisms underlying LMD are unclear. The Abelson (ABL) tyrosine kinase family members, ABL1 and ABL2, have been implicated in cancer cell migration, invasion, adhesion, metastasis, and chemotherapy resistance, and are upstream mediators of the oncogene c-MYC in fibroblasts and lung cancer cells. However, their role in medulloblastoma has not yet been explored. The purpose of this work was to elucidate the role of ABL1/2 in medulloblastoma LMD. Methods: ABL1 and ABL2 mRNA expression of patient specimens was analyzed. shRNA knockdowns of ABL1/2 and pharmacologic inhibition of ABL1/2 were used for in vitro and in vivo analyses of medulloblastoma LMD. RNA sequencing of ABL1/2 genetic knockdown versus scrambled control medulloblastoma was completed. Results: ABL1/2 mRNA is highly expressed in human medulloblastoma and pharmacologic inhibition of ABL kinases resulted in cytotoxicity. Knockdown of ABL1/2 resulted in decreased adhesion of medulloblastoma cells to the extracellular matrix protein, vitronectin (P = .0013), and significantly decreased tumor burden in a mouse model of medulloblastoma LMD with improved overall survival (P = .0044). Furthermore, both pharmacologic inhibition of ABL1/2 and ABL1/2 knockdown resulted in decreased expression of c-MYC, identifying a putative signaling pathway, and genes/pathways related to oncogenesis and neurodevelopment were differentially expressed between ABL1/2 knockdown and control medulloblastoma cells. Conclusions: ABL1 and ABL2 have potential roles in medulloblastoma LMD upstream of c-MYC expression.

13.
bioRxiv ; 2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36711936

RESUMEN

Targeted therapies have revolutionized cancer chemotherapy. Unfortunately, most patients develop multifocal resistance to these drugs within a matter of months. Here, we used a high-throughput phenotypic small molecule screen to identify MCB-613 as a compound that selectively targets EGFR-mutant, EGFR inhibitor-resistant non-small cell lung cancer (NSCLC) cells harboring diverse resistance mechanisms. Subsequent proteomic and functional genomic screens involving MCB-613 identified its target in this context to be KEAP1, revealing that this gene is selectively essential in the setting of EGFR inhibitor resistance. In-depth molecular characterization demonstrated that (1) MCB-613 binds KEAP1 covalently; (2) a single molecule of MCB-613 is capable of bridging two KEAP1 monomers together; and, (3) this modification interferes with the degradation of canonical KEAP1 substrates such as NRF2. Surprisingly, NRF2 knockout sensitizes cells to MCB-613, suggesting that the drug functions through modulation of an alternative KEAP1 substrate. Together, these findings advance MCB-613 as a new tool for exploiting the selective essentiality of KEAP1 in drug-resistant, EGFR-mutant NSCLC cells.

14.
Cell Rep ; 40(9): 111268, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-36044842

RESUMEN

Patients with human epidermal growth factor receptor 2-positive (HER2+/ERBB2) breast cancer often present with brain metastasis. HER2-targeted therapies have not been successful to treat brain metastases in part due to poor blood-brain barrier (BBB) penetrance and emergence of resistance. Here, we report that Abelson (ABL) kinase allosteric inhibitors improve overall survival and impair HER2+ brain metastatic outgrowth in vivo. Mechanistically, ABL kinases phosphorylate the RNA-binding protein Y-box-binding protein 1 (YB-1). ABL kinase inhibition disrupts binding of YB-1 to the ERBB2 mRNA and impairs translation, leading to a profound decrease in HER2 protein levels. ABL-dependent tyrosine phosphorylation of YB-1 promotes HER2 translation. Notably, loss of YB-1 inhibits brain metastatic outgrowth and impairs expression of a subset of ABL-dependent brain metastatic targets. These data support a role for ABL kinases in the translational regulation of brain metastatic targets through YB-1 and offer a therapeutic target for HER2+ brain metastasis patients.


Asunto(s)
Neoplasias Encefálicas , Neoplasias de la Mama , Proteínas Proto-Oncogénicas c-abl , Proteína 1 de Unión a la Caja Y , Encéfalo/metabolismo , Neoplasias Encefálicas/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/secundario , Línea Celular Tumoral , Femenino , Humanos , Proteínas Proto-Oncogénicas c-abl/metabolismo , Receptor ErbB-2/metabolismo , Proteína 1 de Unión a la Caja Y/genética
15.
iScience ; 25(10): 105114, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36185377

RESUMEN

Epithelial cells of diverse tissues are characterized by the presence of a single apical domain. In the lung, electron microscopy studies have suggested that alveolar type-2 epithelial cells (AT2s) en face multiple alveolar sacs. However, apical and basolateral organization of the AT2s and their establishment during development and remodeling after injury repair remain unknown. Thick tissue imaging and electron microscopy revealed that a single AT2 can have multiple apical domains that enface multiple alveoli. AT2s gradually establish multi-apical domains post-natally, and they are maintained throughout life. Lineage tracing, live imaging, and selective cell ablation revealed that AT2s dynamically reorganize multi-apical domains during injury repair. Single-cell transcriptome signatures of residual AT2s revealed changes in cytoskeleton and cell migration. Significantly, cigarette smoke and oncogene activation lead to dysregulation of multi-apical domains. We propose that the multi-apical domains of AT2s enable them to be poised to support the regeneration of a large array of alveolar sacs.

16.
J Biol Chem ; 285(51): 40201-11, 2010 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-20937825

RESUMEN

The Abl tyrosine kinases, Abl and Arg, play a role in the regulation of the actin cytoskeleton by modulating cell-cell adhesion and cell motility. Deregulation of both the actin cytoskeleton and Abl kinases have been implicated in cancers. Abl kinase activity is elevated in a number of metastatic cancers and these kinases are activated downstream of several oncogenic growth factor receptor signaling pathways. However, the role of Abl kinases in regulation of the actin cytoskeleton during tumor progression and invasion remains elusive. Here we identify the Abl kinases as essential regulators of invadopodia assembly and function. We show that Abl kinases are activated downstream of the chemokine receptor, CXCR4, and are required for cancer cell invasion and matrix degradation induced by SDF1α, serum growth factors, and activated Src kinase. Moreover, Abl kinases are readily detected at invadopodia assembly sites and their inhibition prevents the assembly of actin and cortactin into organized invadopodia structures. We show that active Abl kinases form complexes with membrane type-1 matrix metalloproteinase (MT1-MMP), a critical invadopodia component required for matrix degradation. Further, loss of Abl kinase signaling induces internalization of MT1-MMP from the cell surface, promotes its accumulation in the perinuclear compartment and inhibits MT1-MMP tyrosine phosphorylation. Our findings reveal that Abl kinase signaling plays a critical role in invadopodia formation and function, and have far-reaching implications for the treatment of metastatic carcinomas.


Asunto(s)
Quimiocina CXCL12/metabolismo , Neoplasias/enzimología , Proteínas Proto-Oncogénicas c-abl/metabolismo , Animales , Línea Celular Tumoral , Extensiones de la Superficie Celular/enzimología , Extensiones de la Superficie Celular/genética , Quimiocina CXCL12/farmacología , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Humanos , Metaloproteinasa 14 de la Matriz/genética , Metaloproteinasa 14 de la Matriz/metabolismo , Ratones , Células 3T3 NIH , Invasividad Neoplásica/genética , Metástasis de la Neoplasia , Neoplasias/genética , Neoplasias/patología , Fosforilación/genética , Proteínas Proto-Oncogénicas c-abl/genética , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Transducción de Señal , Familia-src Quinasas/genética , Familia-src Quinasas/metabolismo
17.
Nat Cell Biol ; 5(4): 309-19, 2003 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-12652307

RESUMEN

The c-Abl tyrosine (Tyr) kinase is activated after platelet-derived-growth factor receptor (PDGFR) stimulation in a manner that is partially dependent on Src kinase activity. However, the activity of Src kinases alone is not sufficient for activation of c-Abl by PDGFR. Here we show that functional phospholipase C-gamma1 (PLC-gamma1) is required for c-Abl activation by PDGFR. Decreasing cellular levels of phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2) by PLC-gamma1-mediated hydrolysis or dephosphorylation by an inositol polyphosphate 5-phosphatase (Inp54) results in increased Abl kinase activity. c-Abl functions downstream of PLC-gamma1, as expression of kinase-inactive c-Abl blocks PLC-gamma1-induced chemotaxis towards PDGF-BB. PLC-gamma1 and c-Abl form a complex in cells that is enhanced by PDGF stimulation. After activation, c-Abl phosphorylates PLC-gamma1 and negatively modulates its function in vivo. These findings uncover a newly discovered functional interdependence between non-receptor Tyr kinase and lipid signalling pathways.


Asunto(s)
Células Eucariotas/enzimología , Fosfatidilinositol 4,5-Difosfato/metabolismo , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Proteínas Proto-Oncogénicas c-abl/metabolismo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Transducción de Señal/fisiología , Fosfolipasas de Tipo C/deficiencia , Animales , Sitios de Unión/genética , Células Cultivadas , Quimiotaxis/genética , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/farmacología , Regulación Enzimológica de la Expresión Génica/fisiología , Mutación/fisiología , Fosfatidilinositol 4,5-Difosfato/genética , Fosfolipasa C gamma , Fosforilación , Factor de Crecimiento Derivado de Plaquetas/genética , Estructura Terciaria de Proteína/genética , Proteínas Proto-Oncogénicas c-abl/genética , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Proteínas Recombinantes de Fusión/genética , Fosfolipasas de Tipo C/antagonistas & inhibidores , Fosfolipasas de Tipo C/genética
18.
Mol Cancer Ther ; 20(3): 455-466, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33402399

RESUMEN

Paget's "seed and soil" hypothesis of metastatic spread has acted as a foundation of the field for over a century, with continued evolution as mechanisms of the process have been elucidated. The central nervous system (CNS) presents a unique soil through this lens, relatively isolated from peripheral circulation and immune surveillance with distinct cellular and structural composition. Research in primary and metastatic brain tumors has demonstrated that this tumor microenvironment (TME) plays an essential role in the growth of CNS tumors. In each case, the cancerous cells develop complex and bidirectional relationships that reorganize the local TME and reprogram the CNS cells, including endothelial cells, pericytes, astrocytes, microglia, infiltrating monocytes, and lymphocytes. These interactions create a structurally and immunologically permissive TME with malignant processes promoting positive feedback loops and systemic consequences. Strategies to interrupt interactions with the native CNS components, on "salting the soil," to create an inhospitable environment are promising in the preclinical setting. This review aims to examine the general and specific pathways thus far investigated in brain metastases and related work in glioma to identify targetable mechanisms that may have general application across the spectrum of intracranial tumors.


Asunto(s)
Neoplasias Encefálicas/patología , Humanos , Metástasis de la Neoplasia , Microambiente Tumoral
19.
Cell Rep ; 37(4): 109880, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34706244

RESUMEN

Targeting mitochondrial metabolism has emerged as a treatment option for cancer patients. The ABL tyrosine kinases promote metastasis, and enhanced ABL signaling is associated with a poor prognosis in lung adenocarcinoma patients. Here we show that ABL kinase allosteric inhibitors impair mitochondrial integrity and decrease oxidative phosphorylation. To identify metabolic vulnerabilities that enhance this phenotype, we utilized a CRISPR/Cas9 loss-of-function screen and identified HMG-CoA reductase, the rate-limiting enzyme of the mevalonate pathway and target of statin therapies, as a top-scoring sensitizer to ABL inhibition. Combination treatment with ABL allosteric inhibitors and statins decreases metastatic lung cancer cell survival in vitro in a synergistic manner. Notably, combination therapy in mouse models of lung cancer brain metastasis and therapy resistance impairs metastatic colonization with a concomitant increase in animal survival. Thus, metabolic combination therapy might be effective to decrease metastatic outgrowth, leading to increased survival for lung cancer patients with advanced disease.


Asunto(s)
Apoptosis/efectos de los fármacos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Proteínas Oncogénicas v-abl/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal/efectos de los fármacos , Regulación Alostérica/efectos de los fármacos , Regulación Alostérica/genética , Animales , Apoptosis/genética , Línea Celular Tumoral , Sinergismo Farmacológico , Humanos , Neoplasias Pulmonares/enzimología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Ratones , Ratones Desnudos , Metástasis de la Neoplasia , Proteínas Oncogénicas v-abl/genética , Proteínas Oncogénicas v-abl/metabolismo , Transducción de Señal/genética , Ensayos Antitumor por Modelo de Xenoinjerto
20.
PLoS One ; 15(10): e0241423, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33119681

RESUMEN

Mesenchymal stem cells (MSCs) are recruited and activated by solid tumors and play a role in tumor progression and metastasis. Here we show that MSCs promote metastasis in a panel of non-small cell lung cancer (NSCLC) cells. MSCs elicit transcriptional alterations in lung cancer cells leading to increased expression of factors implicated in the epithelial-to-mesenchymal transition (EMT) and secreted proteins including matrix metalloproteinase-9 (MMP9). MSCs enhance secretion of enzymatically active MMP9 in a panel of lung adenocarcinoma cells. High expression of MMP9 is linked to low survival rates in lung adenocarcinoma patients. Notably, we found that ABL tyrosine kinases are activated in MSC-primed lung cancer cells and functional ABL kinases are required for MSC-induced MMP9 expression, secretion and proteolytic activity. Importantly, ABL kinases are required for MSC-induced NSCLC metastasis. These data reveal an actionable target for inhibiting MSC-induced metastatic activity of lung adenocarcinoma cells through disruption of an ABL kinase-MMP9 signaling axis activated in MSC-primed lung cancer cells.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/patología , Metaloproteinasa 9 de la Matriz/metabolismo , Células Madre Mesenquimatosas/patología , Proteínas Proto-Oncogénicas c-abl/metabolismo , Transducción de Señal , Animales , Línea Celular Tumoral , Transformación Celular Neoplásica , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Metástasis de la Neoplasia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA