Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phytother Res ; 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38761036

RESUMEN

Enhancement of malignant cell immunogenicity to relieve immunosuppression of lung cancer microenvironment is essential in lung cancer treatment. In previous study, we have demonstrated that dihydroartemisinin (DHA), a kind of phytopharmaceutical, is effective in inhibiting lung cancer cells and boosting their immunogenicity, while the initial target of DHA's intracellular action is poorly understood. The present in-depth analysis aims to reveal the influence of DHA on the highly expressed TOM70 in the mitochondrial membrane of lung cancer. The affinity of DHA and TOM70 was analyzed by microscale thermophoresis (MST), pronase stability, and thermal stability. The functions and underlying mechanism were investigated using western blots, qRT-PCR, flow cytometry, and rescue experiments. TOM70 inhibition resulted in mtDNA damage and translocation to the cytoplasm from mitochondria due to the disruption of mitochondrial homeostasis. Further ex and in vivo findings also showed that the cGAS/STING/NLRP3 signaling pathway was activated by mtDNA and thereby malignant cells underwent pyroptosis, leading to enhanced immunogenicity of lung cancer cells in the presence of DHA. Nevertheless, DHA-induced mtDNA translocation and cGAS/STING/NLRP3 mobilization were synchronously attenuated when TOM70 was replenished. Finally, DHA was demonstrated to possess potent anti-lung cancer efficacy in vitro and in vivo. Taken together, these data confirm that TOM70 is an important target for DHA to disturb mitochondria homeostasis, which further activates STING and arouses pyroptosis to strengthen immunogenicity against lung cancer thereupon. The present study provides vital clues for phytomedicine-mediated anti-tumor therapy.

2.
J Nanobiotechnology ; 20(1): 230, 2022 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-35568865

RESUMEN

BACKGROUND: Chemodynamic therapy (CDT) relying on intracellular iron ions and H2O2 is a promising therapeutic strategy due to its tumor selectivity, which is limited by the not enough metal ions or H2O2 supply of tumor microenvironment. Herein, we presented an efficient CDT strategy based on Chinese herbal monomer-dihydroartemisinin (DHA) as a substitute for the H2O2 and recruiter of iron ions to amplify greatly the reactive oxygen species (ROS) generation for synergetic CDT-ferroptosis therapy. RESULTS: The DHA@MIL-101 nanoreactor was prepared and characterized firstly. This nanoreactor degraded under the acid tumor microenvironment, thereby releasing DHA and iron ions. Subsequent experiments demonstrated DHA@MIL-101 significantly increased intracellular iron ions through collapsed nanoreactor and recruitment effect of DHA, further generating ROS thereupon. Meanwhile, ROS production introduced ferroptosis by depleting glutathione (GSH), inactivating glutathione peroxidase 4 (GPX4), leading to lipid peroxide (LPO) accumulation. Furthermore, DHA also acted as an efficient ferroptosis molecular amplifier by direct inhibiting GPX4. The resulting ROS and LPO caused DNA and mitochondria damage to induce apoptosis of malignant cells. Finally, in vivo outcomes evidenced that DHA@MIL-101 nanoreactor exhibited prominent anti-cancer efficacy with minimal systemic toxicity. CONCLUSION: In summary, DHA@MIL-101 nanoreactor boosts CDT and ferroptosis for synergistic cancer therapy by molecular amplifier DHA. This work provides a novel and effective approach for synergistic CDT-ferroptosis with Chinese herbal monomer-DHA and Nanomedicine.


Asunto(s)
Ferroptosis , Neoplasias , Artemisininas , Línea Celular Tumoral , Glutatión , Humanos , Peróxido de Hidrógeno , Hierro , Nanomedicina , Neoplasias/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , Microambiente Tumoral
3.
Mol Pharm ; 18(9): 3601-3615, 2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34388342

RESUMEN

Chlorin e6 (Ce6) is a promising photosensitizer for tumor photodynamic therapy (PDT). However, the efficacy of Ce6 PDT is limited by Ce6's poor water solubility, rapid blood clearance, and inadequate accumulation in the tumor tissue. This problem is tackled in this work, wherein functionalized superparamagnetic iron oxide nanoparticles (IO-NPs) were used as carriers to deliver Ce6 to melanoma. The IO-NPs were coated with polyglycerol (PG) to afford good aqueous solubility. The chemotherapeutic agent doxorubicin (DOX) was attached to the PG coating via the hydrazone bond to afford affinity to the cell membrane and thereby promote the cell uptake. The hydrophobic nature of DOX also induced the aggregation of IO-NPs to form nanoclusters. Ce6 was then loaded onto the IO nanoclusters through physical adsorption and coordination with surface iron atoms, yielding the final composites IO-PG-DOX-Ce6. In vitro experiments showed that IO-PG-DOX-Ce6 markedly increased Ce6 uptake in mouse melanoma cells, leading to much-enhanced photocytotoxicity characterized by intensified reactive oxygen species production, loss of viability, DNA damage, and stimulation of tumor cell immunogenicity. In vivo experiments corroborated the in vitro findings and demonstrated prolonged blood clearance of IO-PG-DOX-Ce6. Importantly, IO-PG-DOX-Ce6 markedly increased the Ce6 distribution and retention in mouse subcutaneous melanoma grafts and significantly improved the efficacy of Ce6-mediated PDT. No apparent vital organ damage was observed at the same time. In conclusion, the IO-PG-DOX NPs provide a simple and safe delivery platform for efficient tumor enrichment of Ce6, thereby enhancing antimelanoma PDT.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Clorofilidas/administración & dosificación , Melanoma/tratamiento farmacológico , Sistema de Administración de Fármacos con Nanopartículas/química , Neoplasias Cutáneas/tratamiento farmacológico , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/química , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Línea Celular Tumoral , Clorofilidas/química , Clorofilidas/farmacocinética , Modelos Animales de Enfermedad , Doxorrubicina/administración & dosificación , Femenino , Humanos , Nanopartículas Magnéticas de Óxido de Hierro/química , Melanoma/patología , Ratones , Fotoquimioterapia , Neoplasias Cutáneas/patología , Solubilidad , Distribución Tisular
4.
Dig Dis Sci ; 60(12): 3631-41, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26173505

RESUMEN

BACKGROUND: Administration of trastuzumab, a fully humanized monoclonal antibody targeted to the human epidermal growth factor receptor 2 (HER2, p185), has improved outcomes for patients with HER2-positive gastric cancer (GC), but some relevant issues remain to be investigated and will emerge with new anti-GC drugs. Gastrin is a major gastrointestinal hormone proven to have an inhibitory effect on GC in vitro and in vivo. AIM: To explore the sympathetic role of trastuzumab and gastrin on inhibition of GC. METHODS: The HER2-positive and HER2-negative GC cell lines were treated with trastuzumab, gastrin, or their combination in vitro and in xenograft model. The synergistical role of trastuzumab and gastrin and related mechanisms were investigated. RESULTS: We found the synergistic inhibitory effects of trastuzumab and gastrin on HER2-negative GC cells through the gastrin/cholecystokinin B receptor (CCKBR) pathway. Trastuzumab upregulated CCKBR protein levels but could not initiate its signal transduction, whereas gastrin increased the levels and activation of CCKBR. Molecular experiments indicated that trastuzumab and gastrin co-treatment synergistically enhanced the stability of CCKBR. Moreover, their combined treatment synergistically arrested GC cells at G0/G1 phase, down-regulated levels of GC-related proteins, including anion exchanger 1 (AE1), cyclin D1, ß-catenin, and cytoplasmic p16, and promoted nuclear translocation of p16. In addition, combination treatment upregulated AE2 levels, which are reduced in GC tissues. The in vivo synergistic anti-GC effect of combined treatment was confirmed in xenograft experiments. CONCLUSIONS: Trastuzumab plus gastrin inhibit growth of Her2-negative GC by targeting cytoplasmic AE1 and p16.


Asunto(s)
Antineoplásicos/farmacología , Gastrinas/metabolismo , Receptor de Colecistoquinina B/metabolismo , Receptor ErbB-2/metabolismo , Neoplasias Gástricas/tratamiento farmacológico , Trastuzumab/farmacología , Animales , Línea Celular Tumoral , Citometría de Flujo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Concentración de Iones de Hidrógeno , Inmunohistoquímica , Ratones , Neoplasias Experimentales/tratamiento farmacológico , Receptor de Colecistoquinina B/genética , Receptor ErbB-2/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patología
5.
Sci Rep ; 14(1): 7733, 2024 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565963

RESUMEN

B-Myb has received considerable attention for its critical tumorigenic function of supporting DNA repair. However, its modulatory effects on chemotherapy and immunotherapy have rarely been reported in colorectal cancer. Bortezomib (BTZ) is a novel compound with chemotherapeutic and immunotherapeutic effects, but it fails to work in colorectal cancer with high B-Myb expression. The present study was designed to investigate whether B-Myb deletion in colorectal cancer could potentiate the immune efficacy of BTZ against colorectal cancer and to clarify the underlying mechanism. Stable B-Myb knockdown was induced in colorectal cancer cells, which increased apoptosis of the cancer cells relative to the control group in vitro and in vivo. We found that BTZ exhibited more favourable efficacy in B-Myb-defective colorectal cancer cells and tumor-bearing mice. BTZ treatment led to differential expression of genes enriched in the p53 signaling pathway promoted more powerful downstream DNA damage, and arrested cell cycle in B-Myb-defective colorectal cancer. In contrast, recovery of B-Myb in B-Myb-defective colorectal cancer cells abated BTZ-related DNA damage, cell cycle arrest, and anticancer efficacy. Moreover, BTZ promoted DNA damage-associated enhancement of immunogenicity, as indicated by potentiated expression of HMGB1 and HSP90 in B-Myb-defective cells, thereby driving M1 polarization of macrophages. Collectively, B-Myb deletion in colorectal cancer facilitates the immunogenic death of cancer cells, thereby further promoting the immune efficacy of BTZ by amplifying DNA damage. The present work provides an effective molecular target for colorectal cancer immunotherapy with BTZ.


Asunto(s)
Antineoplásicos , Neoplasias Colorrectales , Animales , Ratones , Bortezomib/farmacología , Bortezomib/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Muerte Celular Inmunogénica , Línea Celular Tumoral , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Apoptosis
6.
Sci Rep ; 14(1): 11704, 2024 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-38778121

RESUMEN

Chemotherapeutic agents can inhibit the proliferation of malignant cells due to their cytotoxicity, which is limited by collateral damage. Dihydroartemisinin (DHA), has a selective anti-cancer effect, whose target and mechanism remain uncovered. The present work aims to examine the selective inhibitory effect of DHA as well as the mechanisms involved. The findings revealed that the Lewis cell line (LLC) and A549 cell line (A549) had an extremely rapid proliferation rate compared with the 16HBE cell line (16HBE). LLC and A549 showed an increased expression of NRAS compared with 16HBE. Interestingly, DHA was found to inhibit the proliferation and facilitate the apoptosis of LLC and A549 with significant anti-cancer efficacy and down-regulation of NRAS. Results from molecular docking and cellular thermal shift assay revealed that DHA could bind to epidermal growth factor receptor (EGFR) molecules, attenuating the EGF binding and thus driving the suppressive effect. LLC and A549 also exhibited obvious DNA damage in response to DHA. Further results demonstrated that over-expression of NRAS abated DHA-induced blockage of NRAS. Moreover, not only the DNA damage was impaired, but the proliferation of lung cancer cells was also revitalized while NRAS was over-expression. Taken together, DHA could induce selective anti-lung cancer efficacy through binding to EGFR and thereby abolishing the NRAS signaling pathway, thus leading to DNA damage, which provides a novel theoretical basis for phytomedicine molecular therapy of malignant tumors.


Asunto(s)
Artemisininas , Proliferación Celular , Daño del ADN , Receptores ErbB , GTP Fosfohidrolasas , Neoplasias Pulmonares , Proteínas de la Membrana , Transducción de Señal , Receptores ErbB/metabolismo , Humanos , Proliferación Celular/efectos de los fármacos , Artemisininas/farmacología , Daño del ADN/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , GTP Fosfohidrolasas/metabolismo , Animales , Apoptosis/efectos de los fármacos , Simulación del Acoplamiento Molecular , Células A549 , Ratones , Antineoplásicos/farmacología , Línea Celular Tumoral , Unión Proteica
7.
Photodiagnosis Photodyn Ther ; 45: 103945, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38135108

RESUMEN

OBJECTIVE: Prompt and effective wound repair is an essential strategy to promote recovery and prevent infection in patients with various types of trauma. Platelets can release a variety of growth factors upon activation to facilitate revascularization and tissue repair, provided that their activation is uncontrollable. The present study is designed to explore the selective activation of platelets by photodynamic and photothermal effects (PDE/PTE) as well as the trauma repair mediated by PDE/PTE. MATERIALS AND METHODS: In the current research, platelets were extracted from the blood of mice. Indocyanine green (ICG) was applied to induce PDE/PTE. The uptake of ICG by platelets was detected by laser confocal microscopy and flow cytometry. The cellular integrity was measured by microscopy. The reactive oxygen species (ROS) generation and temperature of platelets were assayed by 2,7-Dichlorodihydrofluorescein diacetate (DCFH-DA) and temperature detector. The activation of platelets was measured by western blots (WB), dynamic light scattering (DLS), and scanning electron microscopy (SEM). The release of growth factor was detected by enzyme-linked immuno sorbent assay (Elisa), wherein the in vitro cell proliferation was investigated by 5-Ethynyl-2'-deoxyuridine (EDU) assay. The wound infection rates model and histological examination were constructed to assay the ICG-loaded platelet-mediated wound repair. RESULTS: Platelets could load with ICG, a kind of photodynamic and photothermal agent, as carriers and remain intact. Near-infrared (NIR) laser irradiation of ICG-loaded platelets (ICG@PLT) facilitated higher temperature and ROS generation, which immediately activated ICG@PLT, as characterized by increased membrane p-selectin (CD62p), cyclooxygenase-2 (COX-2), thromboxane A2 receptor (TXA2R) expression, elevated hydrated particle size, and prominent aggregation in platelets. Further investigation revealed that massive insulin-like growth factor (IGF) and platelet-derived growth factor (PDGF) were released from the activated ICG@PLT, which also promoted the proliferation of endothelial cells and keratinocytes in co-culture. In consequence, activated platelets and increased neovascularization could be observed in rats with wound infection treated by ICG@PLT in the presence of NIR. More impressively, the hydrogel containing ICG@PLT accelerated wound healing and suppressed inflammation under NIR, exhibiting excellent wound repair properties. CONCLUSION: Taken together, the current work identified that platelets could be activated by PDE/PTE and thereby release growth factor, potentiating wound repair in a controlled manner.


Asunto(s)
Fotoquimioterapia , Infección de Heridas , Humanos , Ratones , Ratas , Animales , Verde de Indocianina/farmacología , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacología , Especies Reactivas de Oxígeno/metabolismo , Células Endoteliales/metabolismo , Cicatrización de Heridas , Péptidos y Proteínas de Señalización Intercelular , Línea Celular Tumoral
8.
Adv Healthc Mater ; 12(28): e2301561, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37567571

RESUMEN

Infiltration of tumor-associated macrophages (TAM) characterized by an M2 phenotype is an overriding feature in malignant tumors. Reprogramming TAM is the most cutting-edge strategy for cancer therapy. In the present study, an iron-based metal-organic framework (MOF) nanoreactor loaded with dihydroartemisinin (DHA) is developed, which provides high uptake by TAM and retains their viability, thus effectively addressing the inefficiency of the DHA at low concentrations. Impressively, DHA@MIL-101 can selectively accumulate in tumor tissues and remodel TAM to the M1 phenotype. The results of RNA sequencing further suggest that this nanoreactor may regulate ferroptosis, a DNA damage signaling pathway in TAM. Indeed, the outcomes confirm that DHA@MIL-101 triggers ferroptosis in TAM. In addition, the findings reveal that DNA damage induced by DHA nanoreactors activates the intracellular cGAS sensor, resulting in the binding of STING to IRF3 and thereby up-regulating the immunogenicity. In contrast, blocking ferroptosis impairs DHA@MIL-101-induced activation of STING signaling and phenotypic remodeling. Finally, it is shown that DHA nanoreactors deploy anti-tumor immunotherapy through ferroptosis-mediated TAM reprogramming. Taken together, immune efficacy is achieved through TAM's remodeling by delivering DHA and iron ions into TAM using nanoreactors, providing a novel approach for combining phytopharmaceuticals with nanocarriers to regulate the immune microenvironment.


Asunto(s)
Ferroptosis , Macrófagos , Inmunoterapia , Hierro , Nanotecnología , Microambiente Tumoral
9.
Int Immunopharmacol ; 115: 109661, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36608440

RESUMEN

Suppression of the immune microenvironment is an important endogenous contributor to treatment failure in lung cancer. Photodynamic therapy (PDT) is widely used in the treatment of malignant tumors owing to its photo-selectivity and minimal side effects. Some studies have shown the ability of photodynamic action not only to cause photo-cytotoxicity to tumor cells but also to induce immunogenic cell death (ICD). However, the mechanism by which PDT enhances tumor immunogenicity is poorly understood. The present study aimed to explore the immunogenicity effect of PDT on lung cancer and to reveal the underlying mechanism. First, we searched for effective conditions for PDT-induced apoptosis in lung cancer cells. Just as expected, chlorin e6 (Ce6) PDT could enhance the immunogenicity of lung cancer cells alongside the induction of apoptosis, characterized by up-regulation of CRT, HSP90, HMGB1 and MHC-I. Further results showed the generation of ROS by Ce6 PDT under the above conditions, which is an oxidative damaging agent. Simultaneously, PDT induced endoplasmic reticulum (ER) stress in cells, as evidenced by enhanced Tht staining and up-regulated CHOP and GRP78 expression. Moreover, PDT led to DNA damage response (DDR) as well. However, the redox inhibitor NAC abolished the ER stress and DDR caused by PDT. More importantly, NAC also attenuated PDT-induced improvement of immunogenicity in lung cancer. On this basis, the PDT-induced CRT up-regulation was found to be attenuated in response to inhibition of ER stress. In addition, PDT-induced increase in HMGB1 and HSP90 release was blocked by inhibition of DDR. In summary, Ce6 PDT could produce ROS under certain conditions, which leads to ER stress that promotes CRT translocation to the cell membrane, and the resulting DNA damage causes the expression and release of nuclear HMGB1 and HSP90, thereby enhancing the immunogenicity of lung cancer. This current study elucidates the mechanism of PDT in ameliorating the immunogenicity of lung cancer, providing a rationale for PDT in regulating the immune microenvironment for the treatment of malignant tumors.


Asunto(s)
Proteína HMGB1 , Neoplasias Pulmonares , Fotoquimioterapia , Humanos , Fotoquimioterapia/métodos , Especies Reactivas de Oxígeno , Muerte Celular Inmunogénica , Neoplasias Pulmonares/tratamiento farmacológico , Estrés Oxidativo , Estrés del Retículo Endoplásmico , Daño del ADN , Oxidación-Reducción , Línea Celular Tumoral , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Microambiente Tumoral
10.
Photodiagnosis Photodyn Ther ; 42: 103558, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37030434

RESUMEN

OBJECTIVE: Photodynamic therapy (PDT) may be an effective therapeutic strategy for colorectal cancer at an early stage. However, malignant cells' resistance to photodynamic agents can lead to treatment failure. MYBL2 (B-Myb) is an oncogene in colorectal carcinogenesis and development, for which little research has focused on its effect on drug resistance. MATERIALS AND METHODS: In the present work, a colorectal cancer cell line with a stable knockdown of MYBL2 (ShB-Myb) was constructed first. Chlorin e6 (Ce6) was utilized to induced PDT. The anti-cancer efficacy was measured by CCK-8, PI staining, and Western blots. The drug uptake of Ce6 was assayed by flow cytometry and confocal microscopy. The ROS generation was detected by the CellROX probe. DDSB and DNA damage were assayed through comet experiment and Western blots. The over-expression of MYBL2 was conducted by MYBL2 plasmid. RESULTS: The findings indicated that the viability of ShB-Myb treated with Ce6-PDT was not decreased compared to control SW480 cells (ShNC), which were resistant to PDT. Further investigation revealed reduced photosensitizer enrichment and mitigated oxidative DNA damage in colorectal cancer cells with depressed MYBL2. It turned out that SW480 cells knocking down MYBL2 showed phosphorylation of NF-κB and led to up-regulation of ABCG2 expression thereupon. When MYBL2 was replenished back in MYBL2-deficient colorectal cancer cells, phosphorylation of NF-κB was blocked and ABCG2 expression up-regulation was suppressed. Additionally, replenishment of MYBL2 also increased the enrichment of Ce6 and the efficacy of PDT. CONCLUSION: In summary, MYBL2 absence in colorectal cancer contributes to drug resistance by activating NF-κB to up-regulate ABCG2 and thereby leading to photosensitizer Ce6 efflux. This study provides a novel theoretical basis and strategy for how to effectively improve the anti-tumor efficacy of PDT.


Asunto(s)
Clorofilidas , Neoplasias Colorrectales , Fotoquimioterapia , Porfirinas , Humanos , Fármacos Fotosensibilizantes/farmacología , Fotoquimioterapia/métodos , Regulación hacia Arriba , FN-kappa B/metabolismo , Neoplasias Colorrectales/tratamiento farmacológico , Porfirinas/farmacología , Línea Celular Tumoral , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Proteínas de Neoplasias , Transactivadores/metabolismo , Proteínas de Ciclo Celular/metabolismo
11.
Phytomedicine ; 112: 154682, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36739636

RESUMEN

BACKGROUND: The immunosuppressive microenvironment of lung cancer serves as an important endogenous contributor to treatment failure. The present study aimed to demonstrate the promotive effect of DHA on immunogenic cell death (ICD) in lung cancer as well as the mechanism. METHODS: The lewis lung cancer cells (LLC), A549 cells and LLC-bearing mice were applied as the lung cancer model. The apoptosis, ferroptosis assay, western blotting, immunofluorescent staining, qPCR, comet assay, flow cytometry, confocal microscopy, transmission electron microscopy and immunohistochemistry were conducted to analyze the functions and the underlying mechanism. RESULTS: An increased apoptosis rate and immunogenicity were detected in DHA-treated LLC and tumor grafts. Further findings showed DHA caused lipid peroxide (LPO) accumulation, thereby initiating ferroptosis. DHA stimulated cellular endoplasmic reticulum (ER) stress and DNA damage simultaneously. However, the ER stress and DNA damage induced by DHA could be abolished by ferroptosis inhibitors, whose immunogenicity enhancement was synchronously attenuated. In contrast, the addition of exogenous iron ions further improved the immunogenicity induced by DHA accompanied by enhanced ER stress and DNA damage. The enhanced immunogenicity could be abated by ER stress and DNA damage inhibitors as well. Finally, DHA activated immunocytes and exhibited excellent anti-cancer efficacy in LLC-bearing mice. CONCLUSIONS: In summary, the current study demonstrates that DHA triggers ferroptosis, facilitating the ICD of lung cancer thereupon. This work reveals for the first time the effect and underlying mechanism by which DHA induces ICD of cancer cells, providing novel insights into the regulation of the immune microenvironment for cancer immunotherapy by Chinese medicine phytopharmaceuticals.


Asunto(s)
Carcinoma Pulmonar de Lewis , Ferroptosis , Neoplasias Pulmonares , Animales , Ratones , Neoplasias Pulmonares/tratamiento farmacológico , Carcinoma Pulmonar de Lewis/tratamiento farmacológico , Estrés del Retículo Endoplásmico , Inmunoterapia , Daño del ADN , Microambiente Tumoral
12.
Ann Vasc Surg ; 26(2): 259-67, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22192237

RESUMEN

OBJECTIVES: To obtain the morphological and biomechanical remodeling of portal veins in swine with portal hypertension (PHT), so as to provide some mechanical references and theoretical basis for clinical practice about PHT. METHODS: Twenty white pigs were used in this study, 14 of them were subjected to both carbon tetrachloride- and pentobarbital-containing diet to induce experimental liver cirrhosis and PHT, and the remaining animals served as the normal controls. The morphological remodeling of portal veins was observed. Endothelial nitric oxide synthase expression profile in the vessel wall was assessed at both mRNA and protein level. The biomechanical changes of the hepatic portal veins were evaluated through assessing the following indicators: the incremental elastic modulus, pressure-strain elastic modulus, volume elastic modulus, and the incremental compliance. RESULTS: The swine PHT model was successfully established. The percentages for the microstructural components and the histological data significantly changed in the experimental group. Endothelial nitric oxide synthase expression was significantly downregulated in the portal veins of the experimental group. Three incremental elastic moduli (the incremental elastic modulus, pressure-strain elastic modulus, and volume elastic modulus) of the portal veins from PHT animals were significantly larger than those of the controls (P < 0.05), whereas the incremental compliance of hepatic portal vein decreased. CONCLUSIONS: Our study suggests that the morphological and biomechanical properties of swine hepatic portal veins change significantly during the PHT process, which may play a critical role in the development of PHT and serve as potential therapeutic targets during clinical practice.


Asunto(s)
Hipertensión Portal/patología , Hipertensión Portal/fisiopatología , Vena Porta/patología , Vena Porta/fisiopatología , Animales , Fenómenos Biomecánicos , Tetracloruro de Carbono , Adaptabilidad , Regulación hacia Abajo , Módulo de Elasticidad , Femenino , Regulación Enzimológica de la Expresión Génica , Hipertensión Portal/etiología , Hipertensión Portal/genética , Hipertensión Portal/metabolismo , Cirrosis Hepática Experimental/inducido químicamente , Cirrosis Hepática Experimental/complicaciones , Masculino , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Pentobarbital , Presión Portal , Vena Porta/diagnóstico por imagen , Vena Porta/metabolismo , ARN Mensajero/metabolismo , Porcinos , Factores de Tiempo , Ultrasonografía
13.
Front Pharmacol ; 13: 837784, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35308251

RESUMEN

The tumor-associated macrophage (TAM) serves as an immunosuppressive agent in the malignant tumor microenvironment, facilitating the development and metastasis of lung cancer. The photodynamic effect destabilizes cellular homeostasis owing to the generation of reactive oxygen species (ROS), resulting in the enhanced pro-inflammatory function of immunocytes. In our previous study, the Ce6-mediated photodynamic effect was found to have kept the viability of macrophages and to remodel them into the M1 phenotype. However, the mechanism remains unrevealed. The present study now explores the mechanism of photodynamic therapy (PDT)-mediated reprogramming of macrophages. As expected, Ce6-mediated PDT was capable of generating reactive oxygen species, which was continuously degraded, causing "low intensity" damage to DNA and thereby triggering subsequent DNA damage response in macrophages. The autophagy was thus observed in Ce6-treated macrophages and was shown to protect cells from being photodynamically apoptotic. More importantly, Ce6 PDT could activate the stimulator of interferon genes (STING) molecule, a sensor of DNA damage, which could activate the downstream nuclear factor kappa-B (NF-κB) upon activation, mediating the polarization of macrophages towards the M1 phenotype thereupon. In addition, inhibition of ROS induced by PDT attenuated the DNA damage, STING activation, and M1-phenotype reprogramming. Furthermore, the silence of the STING weakened Ce6 treatment-mediated M1 remodeling of macrophages as well. Altogether, these findings indicate the Ce6-induced photodynamic effect polarizes macrophages into an M1 phenotype through oxidative DNA damage and subsequent activation of the STING. This work reveals the crucial mechanism by which photodynamic therapy regulates the macrophage phenotype and also provides a novel intervenable signaling target for remodeling macrophages into the M1 phenotype.

14.
Photodiagnosis Photodyn Ther ; 37: 102645, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34823034

RESUMEN

OBJECTIVE: Photodynamic therapy (PDT) is a promising strategy for the treatment of malignant tumors due to its high selectivity, limited-toxicity, and non-invasiveness. However, PDT can also induce DNA damage and subsequent repair response, which may reduce the efficacy of PDT. In the present study, we sought to explore the effect of chlorin e6 (Ce6)-mediated PDT on DNA damage and DNA damage response (DDR) in lung cancer cells. In addition, the effect of PDT combined with ATM inhibitor on molecules of DDR and the possibility of improving the efficacy of PDT were further investigated. MATERIALS AND METHODS: In the in vitro study, lewis cells were submitted to Ce6 treatment (2, 4, 8, 16, 32 µg/mL). To determine the concentration of Ce6, uptake and toxicity of Ce6 mediated PDT were detected using flow cytometry (FACS), Confocal microscopy, and CCK-8. In the subsequent research, 8 µg/mL of Ce6 was the treatment condition for inducing PDT. The different post-irradiation placement times were further grouped under this condition (2, 4, 6, 12 h). Cellular reactive oxygen species (ROS), damage of DNA were measured by DCFH-DA probe, comet assay respectively. Then the expression of p-ATM, p53, and γ-H2A.X proteins related to DNA damage response, was detected by WB. The efficacy of Ce6 induced PDT was also demonstrated by Annexin-V/PI staining as well as the expression of PCNA, cleaved-caspase-3. On this basis, ATM inhibitor was applied to treat lewis cells combined with Ce6 (2, 4 h) to investigate whether the efficacy of PDT induced by Ce6 can be improved after the ATM-related DDR was blocked. The cell viability, apoptosis, and expression of associated proteins were assayed. RESULTS: At 2-4 h after PDT treatment, ROS was dramatically elevated in lewis cells, DNA double-strand breaks (DDSB) occurred, as well as up-regulation of DDR proteins γ-H2A.X, p-ATM, and p53. At the same time, lewis cells did not undergo significant apoptosis. After ATM inhibition, the DDR was significantly blocked within 2-4 h after Ce6 induced PDT, along with a pronounced decrease in cell viability followed by a prominent increase of apoptosis. CONCLUSION: Ce6-mediated PDT generates ROS in a short period time, thus inducing DNA damage, ATM-related DDR as well as promoting resistance of lung cancer cells to PDT. Combining ATM inhibitor with PDT could effectively inhibit the DDR induced by PDT, thereby enhancing the efficacy. This study reveals a new resistance mechanism of PDT and proposes an intervention strategy.


Asunto(s)
Clorofilidas , Neoplasias Pulmonares , Fotoquimioterapia , Porfirinas , Proteínas de la Ataxia Telangiectasia Mutada , Línea Celular Tumoral , Daño del ADN , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Porfirinas/farmacología
15.
J Cancer Res Clin Oncol ; 148(4): 867-879, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34997349

RESUMEN

BACKGROUND: Non-small-cell lung cancer (NSCLC) is the most common malignant lung tumor and is difficult to be eradicated due to its immunosuppressive microenvironment. Chlorin e6 (Ce6)-mediated photodynamic therapy (PDT) could improve immunogenicity while destroying malignant tumor cells. However, the clinic application of Ce6-mediated PDT is limited by Ce6's poor water solubility and insufficient accumulation in lung cancer. To address this issue, Ce6 was loaded onto functionalized iron oxide nanoparticles linked with glucose to improve the distribution of Ce6 in lung cancer. MATERIALS AND RESULTS: The results of transmission electron microscopy (TEM), UV-Vis spectrophotometry, dynamic light scattering and near-infrared (NIR) spectroscopy confirmed the successful preparation of the composites. Confocal and flow cytometry showed IO-PG-GLU-Ce6 significantly enhanced the uptake of Ce6 by lung cancer cells and produced more reactive oxygen species (ROS) under NIR light irradiation. In addition, the detection of cell viability, proliferation and apoptosis indicated IO-PG-GLU-Ce6 achieved stronger photo-toxicity to lung cancer cells. Moreover, IO-PG-GLU-Ce6 treatment effectively damaged the DNA of lung cancer cells and thereby activated STING, up-regulated the expression of IFN-ß, HMGB1 and HSP90, indicating augmented immunogenicity of lung cancer cells. Further results of in vivo, organ imaging and tissue fluorescence sections demonstrated IO-PG-GLU-Ce6 significantly improved the distribution of Ce6 in tumor tissues of lung cancer-bearing mice as well. Finally, the findings of in vivo study and immunohistochemistry confirmed the better efficacy of IO-PG-GLU-Ce6. HE staining results of vital organs suggested that the composites were less toxic. CONCLUSION: In conclusion, Ce6 loaded by functionalized iron oxide nanoparticles linked with glucose exhibited both target photodynamic efficacy and the ability to enhance its immunogenicity in lung cancer. This study provides a promising strategy for augment of the targeting delivery of Ce6 and its mediated photodynamic and immunotherapy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Clorofilidas , Neoplasias Pulmonares , Nanopartículas , Fotoquimioterapia , Porfirinas , Animales , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Línea Celular Tumoral , Clorofilidas/uso terapéutico , Glucosa , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Nanopartículas Magnéticas de Óxido de Hierro , Ratones , Nanopartículas/química , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacología , Porfirinas/química , Porfirinas/farmacología , Microambiente Tumoral
16.
Eur J Pharmacol ; 919: 174797, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35122867

RESUMEN

Photodynamic therapy (PDT) is noninvasive, low toxicity, and photo-selective, but may be resisted by malignant cells. A previous study found chlorin e6 (Ce6) mediated PDT showed drug resistance in lung cancer cells (LLC), which may be associated with PDT-induced DNA damage response (DDR). DDR may up-regulate glutathione peroxidase 4 (GPX4), which in turn degrade ROS induced by PDT. However, dihydroartemisinin (DHA) was found to down-regulate GPX4. Accordingly, the DHA was hypothesized to improve the resistance to PDT. The present work explores the mechanism of Ce6 mediated drug resistance and reveals whether DHA can enhance the efficacy of PDT by suppressing GPX4. The in vitro experiments found Ce6 treatment did not inhibit the viability of LLC within 6 h without inducing significant apoptosis, suggesting LLC were resistant to PDT. Further investigation demonstrated PDT could damage DNA and up-regulate GPX4, thus degrading the generated ROS. DHA effectively inhibited the viability of LLC and induced apoptosis. Importantly, DHA displayed a prominent inhibitory effect on the GPX4 expression and thereby triggered ferroptosis. Combining DHA with Ce6 for treatment of LLC resulted in the suppressed GPX4 and elevated ROS. Finally, the findings showed DHA combined with Ce6 exhibited superb anti-lung cancer efficacy. In summary, Ce6 PDT damages DNA, up-regulates GPX4 to degrade ROS, thereby inducing drug resistance. Down-regulation of GPX4 by DHA-triggered ferroptosis significantly enhances the efficacy of PDT. This study provides an outstanding theoretical basis for the regulation of the intratumoral redox system and improving PDT efficacy against lung cancer by herbal monomer DHA.


Asunto(s)
Artemisininas/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Fármacos Fotosensibilizantes/farmacología , Apoptosis/efectos de los fármacos , Artemisininas/uso terapéutico , Línea Celular Tumoral/efectos de los fármacos , Clorofilidas/metabolismo , Ferroptosis/efectos de los fármacos , Humanos , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Fotoquimioterapia , Fármacos Fotosensibilizantes/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo
17.
Drug Deliv ; 29(1): 937-949, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35319321

RESUMEN

The present work aims to prove the concept of tumor-targeted drug delivery mediated by platelets. Doxorubicin (DOX) attached to nanodiamonds (ND-DOX) was investigated as the model payload drug of platelets. In vitro experiments first showed that ND-DOX could be loaded in mouse platelets in a dose-dependent manner with a markedly higher efficiency and capacity than free DOX. ND-DOX-loaded platelets (Plt@ND-DOX) maintained viability and ND-DOX could be stably held in the platelets for at least 4 hr. Next, mouse Lewis lung cancer cells were found to activate Plt@ND-DOX and thereby stimulate cargo unloading of Plt@ND-DOX. The unloaded ND-DOX was taken up by co-cultured cancer cells which consequently exhibited loss of viability, proliferation suppression and apoptosis. In vivo, Plt@ND-DOX displayed significantly prolonged blood circulation time over ND-DOX and DOX in mice, and Lewis tumor grafts demonstrated infiltration, activation and cargo unloading of Plt@ND-DOX in the tumor tissue. Consequently, Plt@ND-DOX effectively reversed the growth of Lewis tumor grafts which exhibited significant inhibition of cell proliferation and apoptosis. Importantly, Plt@ND-DOX displayed a markedly higher therapeutic potency than free DOX but without the severe systemic toxicity associated with DOX. Our findings are concrete proof of platelets as efficient and efficacious carriers for tumor-targeted nano-drug delivery with the following features: 1) large loading capacity and high loading efficiency, 2) good tolerance of cargo drug, 3) stable cargo retention and no cargo unloading in the absence of stimulation, 4) prolonged blood circulation time, and 5) excellent tumor distribution and tumor-activated drug unloading leading to high therapeutic potency and few adverse effects. Platelets hold great potential as efficient and efficacious carriers for tumor-targeted nano-drug delivery.


Asunto(s)
Nanodiamantes , Neoplasias , Animales , Plaquetas , Supervivencia Celular , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Ratones , Nanodiamantes/uso terapéutico , Neoplasias/tratamiento farmacológico
18.
Front Pharmacol ; 13: 949835, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36034842

RESUMEN

Lung cancer recruits tumor-associated macrophages (TAMs) massively, whose predominantly pro-tumor M2 phenotype leads to immunosuppression. Dihydroartemisinin (DHA) has been proven to remodel TAM into an anti-tumor M1 phenotype at certain concentrations in the present study, which was hypothesized to facilitate anti-lung cancer immunotherapy. However, how DHA remodels the TAM phenotype has not yet been uncovered. Our previous work revealed that DHA could trigger ferroptosis in lung cancer cells, which may also be observed in TAM thereupon. Sequentially, in the current study, DHA was found to remodel TAM into the M1 phenotype in vitro and in vivo. Simultaneously, DHA was observed to trigger ferroptosis in TAM and cause the DNA damage response and NF-κB activation. Conversely, the DHA-induced DNA damage response and NF-κB activation in TAM were attenuated after the inhibition of ferroptosis in TAM using an inhibitor of ferroptosis. Importantly, a ferroptosis inhibitor could also abolish the DHA-induced phenotypic remodeling of TAM toward the M1 phenotype. In a nutshell, this work demonstrates that DHA-triggered ferroptosis of TAM results in DNA damage, which could activate downstream NF-κB to remodel TAM into an M1 phenotype, providing a novel strategy for anti-lung cancer immunotherapy. This study offers a novel strategy and theoretical basis for the use of traditional Chinese medicine monomers to regulate the anti-tumor immune response, as well as a new therapeutic target for TAM phenotype remodeling.

19.
Int Immunopharmacol ; 100: 108164, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34562845

RESUMEN

Photodynamic therapy (PDT) is an emerging anti-tumor strategy.Photosensitizer chlorin e6 (Ce6) can induce photodynamic effect to selectively damage lung cancer cells.In order to further improve its tumor targeting ability, macrophages can be applied as carrier to deliver Ce6 to lung cancer.Tumor associated macrophages (TAM) are important immunocytes in lung cancer immune microenvironment. TAM play crucial role in tumor promotion due to the Immunosuppressive property, reprogramming phenotype of TAM therefore has become a promising strategy.Based on this, in the present study, we suppose that TAM can be used as carrier to deliver Ce6 to lung cancer and be reprogrammed to M1 phenotype by photodynamic action to mediate anti-lung cancer efficacy.The results showed TAM could load with Ce6 and keep viability in the absence of near infrared irradiation (NIR).Moreover, Its viability decreased little within 10 h after NIR.Ce6-loaded TAM could deliver Ce6 to lung cancer cells and retain some drugs in TAM per se.After NIR, phagocytosis of macrophages was enhanced. The expressions of GBP5, iNOS and MHC-II was up-regulated, which indicated TAM were polarized to M1 phenotype.Finally, the study also found the reprogrammed macrophages could inhibit the proliferation and promote the apoptosis of lung cancer cells.These results suggested that macrophages could deliver Ce6 to lung cancer and exhibit anti-lung cancer effect through photodynamic reprogramming.This study provides a novel approach for combining photodynamic action with anti-tumor immunotherapy.


Asunto(s)
Carcinoma Pulmonar de Lewis/tratamiento farmacológico , Clorofilidas/farmacología , Inmunoterapia , Neoplasias Pulmonares/tratamiento farmacológico , Fotoquimioterapia , Fármacos Sensibilizantes a Radiaciones/farmacología , Macrófagos Asociados a Tumores/metabolismo , Animales , Apoptosis , Carcinoma Pulmonar de Lewis/inmunología , Carcinoma Pulmonar de Lewis/metabolismo , Carcinoma Pulmonar de Lewis/patología , Línea Celular Tumoral , Proliferación Celular , Clorofilidas/metabolismo , Técnicas de Cocultivo , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Ratones , Fagocitosis , Fenotipo , Células RAW 264.7 , Fármacos Sensibilizantes a Radiaciones/metabolismo , Microambiente Tumoral , Macrófagos Asociados a Tumores/inmunología
20.
Indian J Hematol Blood Transfus ; 35(4): 625-634, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31741613

RESUMEN

Leukemia is one of the most aggressive hematological malignancies. Leukemia stem cells account for the poor prognosis and relapse of the disease. Decades of investigations have been performed to figure out how to eradicate the leukemia stem cells. It has also been known that cancer cells especially solid cancer cells use energy differently than most of the cell types. The same thing happens to leukemia. Since there are metabolic differences between the hematopoietic stem cells and their immediate descendants, we aim at manipulating the energy sources with which that could have an effect on leukemia stem cells while sparing the normal blood cells. In this review we summarize the metabolic characteristics of distinct leukemias such as acute myeloid leukemia, chronic myeloid leukemia, T cell lymphoblastic leukemia, B-cell lymphoblastic leukemia, chronic lymphocytic leukemia and other leukemia associated hematological malignancies such as multiple myeloma and myelodysplastic syndrome. A better understanding of the metabolic profiles in distinct leukemias might provide novel perspectives and shed light on novel metabolic targeting strategies towards the clinical treatment of leukemias.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA