Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Opt Express ; 28(15): 22767-22790, 2020 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-32752533

RESUMEN

Multifold wave-particle quantum correlations are studied in strongly correlated three-photon emissions from the Mollow triplet via frequency engineering. The nonclassicality and the non-Gaussianity of the filtered field are discussed by correlating intensity signal and correlated balanced homodyne signals. Due to the non-Gaussian fluctuations in the Mollow triplet, new forms of the criterion of nonclassicality for non-Gaussian radiation are proposed by introducing intensity-dual quadrature correlation functions, which contain the information about strongly correlated three-photon emissions of the Mollow triplet. In addition, the time-dependent dynamics of non-Gaussian fluctuations of the filtered field is studied, which displays conspicuous asymmetry. Physically, the asymmetrical evolution of non-Gaussian fluctuations can be attributed to the different transition dynamics of the laser-dressed quantum emitter revealed by the past quantum state and conditional quantum state. Compared with the conventional three-photon intensity correlations that unilaterally reflect the particle properties of radiation, the multifold wave-particle correlation functions we proposed may convey more information about wave-particle duality of radiation, such as the quantum coherence of photon triplet and "which-path" in cascaded photon emissions in atomic systems.

2.
Opt Express ; 28(1): 379-393, 2020 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-32118966

RESUMEN

The intensity-amplitude correlation functions for a driven cavity QED system with two non-identical atoms are investigated in this paper. With the support of conditional homodyne detection, one can detect the time-dependent intensity-amplitude correlation functions experimentally. We find time-asymmetry in this correlation when the driving field is tuned to be resonant with the two-photon excitation state, which brings non-Gaussian fluctuations. The physical origin of these phenomena is the distinction of the third-order moment based on complete-collapse and partial-collapse, which corresponds to the measuring sequence of the intensity and amplitude. Finally, we also examined the nonclassical features of the system, which always exhibits photon bunching. The squeezing occurs in the region of weak driving and disappears with the increase of driving strength. Hence, a new classical inequality based on the technique of homodyne cross-correlation measurement is introduced to determine the nonclassicality of the non-Gaussian system in the region of unsqueezing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA