Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nano Lett ; 22(1): 203-210, 2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-34928607

RESUMEN

The burgeoning field of twistronics, which concerns how changing the relative twist angles between two materials creates new optoelectronic properties, offers a novel platform for studying twist-angle dependent excitonic physics. Herein, by surveying a range of hexagonal phase transition metal dichalcogenides (TMD) twisted homobilayers, we find that 21.8 ± 1.0°-twisted (7a×7a) and 27.8 ± 1.0°-twisted (13a×13a) bilayers account for nearly 20% of the total population of twisted bilayers in solution-phase restacked bilayers and can be found also in chemical vapor deposition (CVD) samples. Examining the optical properties associated with these twisted angles, we found that 21.8 ± 1.0° twisted MoS2 bilayers exhibit an intense moiré exciton peak in the photoluminescence (PL) spectra, originating from the refolded Brillouin zones. Our work suggests that commensurately twisted TMD homobilayers with short commensurate wavelengths can have interesting optoelectronic properties that are different from the small twist angle counterparts.

2.
Nano Lett ; 21(7): 3262-3270, 2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33749268

RESUMEN

Twisting the angle between van der Waals stacked 2D layers has recently sparked great interest as a new strategy to tune the physical properties of the materials. The twist angle and associated strain profiles govern the electrical and optical properties of the twisted 2D materials, but their detailed atomic structures remain elusive. Herein, using combined atomic-resolution electron microscopy and density functional theory (DFT) calculations, we identified five unique types of moiré features in commensurately twisted 7a×7a transition metal dichalcogenide (TMD) bilayers. These stacking variants are distinguishable only when the moiré wavelength is short. Periodic lattice strain is observed in various commensurately twisted TMD bilayers. Assisted by Zernike polynomial as a hierarchical active-learning framework, a hexagon-shaped strain soliton network has been atomically unveiled in nearly commensurate twisted TMD bilayers. Unlike stacking-polytype-dependent properties in untwisted structures, the stacking variants have the same electronic structures that suggest twisted bilayer systems are invariant against interlayer gliding.

3.
Nano Lett ; 20(3): 1890-1895, 2020 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-32004008

RESUMEN

We report the control of the interplane magnetic exchange coupling in CaIrO3 perovskite thin films and superlattices with SrTiO3. By analyzing the anisotropic magneto-transport data, we demonstrate that a semimetallic paramagnetic CaIrO3 turns into a canted antiferromagnetic Mott insulator at reduced dimensions. The emergence of a biaxial magneto-crystalline anisotropy indicates the canted moment responding to the cubic symmetry. Extending to superlattices and probing oxygen octahedral rotation by half-integer X-ray Braggs diffraction, a more complete picture about the canted moment evolution with interplane coupling can be understood. Remarkably, a rotation of the canted moments' easy axes by 45° is also observed by a sign reversal of the in-plane strain. These results demonstrate the robustness of anisotropic magnetoresistance in revealing quasi two-dimensional canted antiferromagnets, as well as valuable insights about quadrupolar magnetoelastic coupling, relevant for designing future antiferromagnetic spintronic devices.

4.
Nano Lett ; 20(4): 2493-2499, 2020 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-32134679

RESUMEN

Using interlayer interaction to control functional heterostructures with atomic-scale designs has become one of the most effective interface-engineering strategies nowadays. Here, we demonstrate the effect of a crystalline LaFeO3 buffer layer on amorphous and crystalline LaAlO3/SrTiO3 heterostructures. The LaFeO3 buffer layer acts as an energetically favored electron acceptor in both LaAlO3/SrTiO3 systems, resulting in modulation of interfacial carrier density and hence metal-to-insulator transition. For amorphous and crystalline LaAlO3/SrTiO3 heterostructures, the metal-to-insulator transition is found when the LaFeO3 layer thickness crosses 3 and 6 unit cells, respectively. Such different critical LaFeO3 thicknesses are explained in terms of distinct characteristic lengths of the redox-reaction-mediated and polar-catastrophe-dominated charge transfer, controlled by the interfacial atomic contact and Thomas-Fermi screening effect, respectively. Our results not only shed light on the complex interlayer charge transfer across oxide heterostructures but also provide a new route to precisely tailor the charge-transfer process at a functional interface.

5.
Nano Lett ; 20(3): 2129-2136, 2020 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-32078769

RESUMEN

Valley pseudospin in two-dimensional (2D) transition-metal dichalcogenides (TMDs) allows optical control of spin-valley polarization and intervalley quantum coherence. Defect states in TMDs give rise to new exciton features and theoretically exhibit spin-valley polarization; however, experimental achievement of this phenomenon remains challenges. Here, we report unambiguous valley pseudospin of defect-bound localized excitons in CVD-grown monolayer MoS2; enhanced valley Zeeman splitting with an effective g-factor of -6.2 is observed. Our results reveal that all five d-orbitals and the increased effective electron mass contribute to the band shift of defect states, demonstrating a new physics of the magnetic responses of defect-bound localized excitons, strikingly different from that of A excitons. Our work paves the way for the manipulation of the spin-valley degrees of freedom through defects toward valleytronic devices.

6.
J Am Chem Soc ; 142(9): 4472-4480, 2020 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-32056433

RESUMEN

Covalent organic frameworks (COFs) are a promising category of porous materials possessing extensive chemical tunability, high porosity, ordered arrangements at a molecular level, and considerable chemical stability. Despite these advantages, the application of COFs as membrane materials for gas separation is limited by their relatively large pore apertures (typically >0.5 nm), which exceed the sieving requirements for most gases whose kinetic diameters are less than 0.4 nm. Herein, we report the fabrication of ultrathin two-dimensional (2D) membranes through layer-by-layer (LbL) assembly of two kinds of ionic covalent organic nanosheets (iCONs) with different pore sizes and opposite charges. Because of the staggered packing of iCONs with strong electrostatic interactions, the resultant membranes exhibit features of reduced aperture size, optimized stacking pattern, and compact dense structure without sacrificing thickness control, which are suitable for molecular sieving gas separation. One of the hybrid membranes, TpEBr@TpPa-SO3Na with a thickness of 41 nm, shows a H2 permeance of 2566 gas permeation units (GPUs) and a H2/CO2 separation factor of 22.6 at 423 K, surpassing the recent Robeson upper bound along with long-term hydrothermal stability. This strategy provides not only a high-performance H2 separation membrane candidate but also an inspiration for pore engineering of COF or 2D porous polymer membranes.

7.
Small ; 16(50): e2004683, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33191619

RESUMEN

Exploring exotic interface magnetism due to charge transfer and strong spin-orbit coupling has profound application in the future development of spintronic memory. Here, the emergence and tuning of topological Hall effect (THE) from a CaMnO3 /CaIrO3 /CaMnO3 trilayer structure are studied in detail, which suggests the presence of magnetic Skyrmion-like bubbles. First, by tilting the magnetic field direction, the evolution of the Hall signal suggests a transformation of Skyrmions into topologically-trivial stripe domains, consistent with behaviors predicted by micromagnetic simulations. Second, by varying the thickness of CaMnO3 , the optimal thicknesses for the THE signal emergence are found, which allow identification of the source of Dzyaloshinskii-Moriya interaction (DMI) and its competition with antiferromagnetic superexchange. Employing high-resolution transmission electron microscopy, randomly distributed stacking faults are identified only at the bottom interface and may avoid mutual cancellation of DMI. Last, a spin-transfer torque experiment also reveals a low threshold current density of ≈109 A m-2 for initiating the bubbles' motion. This discovery sheds light on a possible strategy for integrating Skyrmions with antiferromagnetic spintronics.

8.
Phys Rev Lett ; 125(14): 147003, 2020 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-33064530

RESUMEN

Infinite-layer Nd_{1-x}Sr_{x}NiO_{2} thin films with Sr doping level x from 0.08 to 0.3 are synthesized and investigated. We find a superconducting dome x between 0.12 and 0.235 accompanied by a weakly insulating behavior in both under- and overdoped regimes. The dome is akin to that in the electron-doped 214-type and infinite-layer cuprate superconductors. For x≥0.18, the normal state Hall coefficient (R_{H}) changes the sign from negative to positive as the temperature decreases. The temperature of the sign changes decreases monotonically with decreasing x from the overdoped side and approaches the superconducting dome at the midpoint, suggesting a reconstruction of the Fermi surface with the dopant concentration across the dome.

9.
Angew Chem Int Ed Engl ; 58(40): 14089-14094, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31270915

RESUMEN

Gas sensing technologies for smart cities require miniaturization, cost-effectiveness, low power consumption, and outstanding sensitivity and selectivity. On-chip, tailorable capacitive sensors integrated with metal-organic framework (MOF) films are presented, in which abundant coordinatively unsaturated metal sites are available for gas detection. The in situ growth of homogeneous Mg-MOF-74 films is realized with an appropriate metal-to-ligand ratio. The resultant sensors exhibit selective detection for benzene vapor and carbon dioxide (CO2 ) at room temperature. Postsynthetic modification of Mg-MOF-74 films with ethylenediamine decreases sensitivity toward benzene but increases selectivity to CO2 . The reduced porosity and blocked open metal sites caused by amine coordination account for a deterioration in the sensing performance for benzene (by ca. 60 %). The enhanced sensitivity for CO2 (by ca. 25 %) stems from a tailored amine-CO2 interaction. This study demonstrates the feasibility of tuning gas sensing properties by adjusting MOF-analyte interactions, thereby offering new perspectives for the development of MOF-based sensors.

10.
ACS Appl Mater Interfaces ; 14(6): 8557-8564, 2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35129325

RESUMEN

The controlled synthesis of large-scale ferroelectric domains with high uniformity is crucial for practical applications in next-generation nanoelectronics on the basis of their intriguing properties. Here, ultralong and highly uniform stripe domains in (110)-oriented BiFeO3 thin films are large-area synthesized through a pulsed laser deposition technique. Utilizing scanning transmission electron microscopy and piezoresponse force microscopy, we verified that the ferroelectric domains have one-dimensional 109° domains and the length of a domain is up to centimeter scale. More importantly, the ferroelectric displacement is directly determined on atomic-scale precision, further confirming the domain structure. We find that the unique one-dimensional ferroelectric domain significantly enhances the optical anisotropy. Furthermore, we demonstrate that the purely parallel domain patterns can be used to control photovoltaic current. These ultralong ferroelectric domains can be patterned into various functional devices, which may inspire research efforts to explore their properties and various applications.

11.
ACS Nano ; 15(12): 19089-19097, 2021 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-34697943

RESUMEN

Two-dimensional (2D) Fe-chalcogenides (e.g., FeS, FeSe, and FeTe, etc.) have sparked extensive interest due to their rich phase diagrams including superconductivity, magnetism, and topological state, as well as versatile applications in electronic devices and energy related fields. However, the phase-tunable synthesis and green transfer of such fascinating materials still remain challenging. Herein, we develop a temperature-mediated chemical vapor deposition (CVD) approach to grow ultrathin nonlayered hexagonal and layered tetragonal FeTe nanosheets on mica substrates, with their thicknesses down to ∼2.3 and ∼4.0 nm, respectively. Interestingly, we have observed exciting ferromagnetism with the Curie temperature approaching ∼300 K and high conductivity (∼1.96 × 105 S m-1) in 2D hexagonal FeTe. More significantly, we have designed a swift, high-efficiency, and etching-free method for the transfer of 2D FeTe nanosheets onto arbitrary substrates, and such a transfer strategy enables the cyclic utilization of growth substrates. These results should propel the further development of phase-tunable synthesis and green transfer of 2D Fe-chalcogenides, as well as their potential applications in spintronic devices.

12.
Adv Mater ; 33(29): e2101257, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34057259

RESUMEN

Metal-organic frameworks (MOFs) intrinsically lack fluidity and thus solution processability. Direct synthesis of MOFs exhibiting solution processability like polymers remains challenging but highly sought-after for multitudinous applications. Herein, a one-pot, surfactant-free, and scalable synthesis of highly stable MOF suspensions composed of exceptionally large (average area > 15 000 µm2 ) NUS-8 nanosheets with variable functionalities and excellent solution processability is presented. This is achieved by adding capping molecules during the synthesis, and by judicious controls of precursor concentration and MOF nanosheet-solvent interactions. The resulting 2D NUS-8 nanosheets with variable functionalities exhibit excellent solution processability. As such, relevant monoliths, aero- and xerogels, and large-area textured films with a great homogeneity, controllable thickness, and appreciable mechanical properties can be facilely fabricated. Additionally, from both the molecular- and chip-level it is demonstrated that capacitive sensors integrated with NUS-8 films functionalized with different terminal groups exhibit distinguishable sensing behaviors toward acetone due to their disparate host-guest interactions. It is envisioned that this simple approach will greatly facilitate the integration of MOFs in miniaturized electronic devices and benefit their mass production.

13.
Adv Sci (Weinh) ; 8(12): 2100220, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34194947

RESUMEN

The configurational entropy is an emerging descriptor in the functional materials genome. In thermoelectric materials, the configurational entropy helps tune the delicate trade-off between carrier mobility and lattice thermal conductivity, as well as the structural phase transition, if any. Taking GeTe as an example, low-entropy GeTe generally have high carrier mobility and distinguished zT > 2, but the rhombohedral-cubic phase transition restricts the applications. In contrast, despite cubic structure and ultralow lattice thermal conductivity, the degraded carrier mobility leads to a low zT in high-entropy GeTe. Herein, medium-entropy alloying is implemented to suppress the phase transition and achieve the cubic GeTe with ultralow lattice thermal conductivity yet decent carrier mobility. In addition, co-alloying of (Mn, Pb, Sb, Cd) facilitates multivalence bands convergence and band flattening, thereby yielding good Seebeck coefficients and compensating for decreased carrier mobility. For the first time, a state-of-the-art zT of 2.1 at 873 K and average zT ave of 1.3 between 300 and 873 K are attained in cubic phased Ge0.63Mn0.15Pb0.1Sb0.06Cd0.06Te. Moreover, a record-high Vickers hardness of 270 is attained. These results not only promote GeTe materials for practical applications, but also present a breakthrough in the burgeoning field of entropy engineering.

14.
ACS Appl Mater Interfaces ; 13(7): 8518-8527, 2021 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-33569955

RESUMEN

Platinum dichalcogenide (PtX2), an emergent group-10 transition metal dichalcogenide (TMD) has shown great potential in infrared photonic and optoelectronic applications due to its layer-dependent electronic structure with potentially suitable bandgap. However, a scalable synthesis of PtSe2 and PtTe2 atomic layers with controlled thickness still represents a major challenge in this field because of the strong interlayer interactions. Herein, we develop a facile cathodic exfoliation approach for the synthesis of solution-processable high-quality PtSe2 and PtTe2 atomic layers for high-performance infrared (IR) photodetection. As-exfoliated PtSe2 and PtTe2 bilayer exhibit an excellent photoresponsivity of 72 and 1620 mA W-1 at zero gate voltage under a 1540 nm laser illumination, respectively, approximately several orders of magnitude higher than that of the majority of IR photodetectors based on graphene, TMDs, and black phosphorus. In addition, our PtSe2 and PtTe2 bilayer device also shows a decent specific detectivity of beyond 109 Jones with remarkable air-stability (>several months), outperforming the mechanically exfoliated counterparts under the laser illumination with a similar wavelength. Moreover, a high yield of PtSe2 and PtTe2 atomic layers dispersed in solution also allows for a facile fabrication of air-stable wafer-scale IR photodetector. This work demonstrates a new route for the synthesis of solution-processable layered materials with the narrow bandgap for the infrared optoelectronic applications.

15.
ACS Appl Mater Interfaces ; 12(32): 36715-36722, 2020 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-32691586

RESUMEN

Interfacial compatibility between metal-organic framework (MOF) films and the underlying substrates determines the integrity of MOF films and their associated functions, and thus it has been gaining growing attention. Herein, we present a comparison of adhesion properties at the chip level of two disparate nickel (Ni)-MOF films, respectively, obtained by direct hydro/solvothermal growth and template-directed conversion approaches. We demonstrate that the on-chip delamination/corrugation of the films obtained by the direct growth approach can be circumvented by adopting the template-directed approach, which enables delicate dissolution of primarily grown nanoflaked nickel hydroxide (Ni(OH)2) films and thus triggers the controllable formation of Ni-MOF films. Successful on-chip conversions of Ni(OH)2 layers to different Ni-MOF thin films with good homogeneity, compactness, and appreciable affinity to the substrates are verified by multiple microscopic and spectroscopic techniques. Notably, the resultant Ni-MOF films do not show delamination even after activation with additional treatments, such as solvent soaking, nitrogen (N2) blowing for 1 h, and scotch-tape tests. As a demonstration of the application of MOF films, a Ni-NDC (NDC stands for 2,6-naphthalenedicarboxylate) MOF-coated sensor exhibits selective detection toward benzene vapor. This study highlights the importance of interfaces between MOF films and substrates and provides new perspectives for integrating MOF films onto microelectronic devices with robust adhesion for practical applications.

16.
ACS Sens ; 5(5): 1474-1481, 2020 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-32367715

RESUMEN

State-of-the-art chemical sensors based on covalent organic frameworks (COFs) are restricted to the transduction mechanism relying on luminescence quenching and/or enhancement. Herein, we present an alternative methodology via a combination of in situ-grown COF films with interdigitated electrodes utilized for capacitive benzene detection. The resultant COF-based sensors exhibit highly sensitive and selective detection at room temperature toward benzene vapor over carbon dioxide, methane, and propane. Their benzene detection limit can reach 340 ppb, slightly inferior to those of the metal oxide semiconductor-based sensors, but with reduced power consumption and increased selectivity. Such a sensing behavior can be attributed to the large dielectric constant of the benzene molecule, distinctive adsorptivity of the chosen COF toward benzene, and structural distortion induced by the custom-made interaction pair, which is corroborated by sorption measurements and density functional theory (DFT) calculations. This study provides new perspectives for fabricating COF-based sensors with specific functionality targeted for selective gas detection.


Asunto(s)
Estructuras Metalorgánicas , Benceno , Gases
17.
ACS Nano ; 14(7): 9011-9020, 2020 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-32579341

RESUMEN

Two-dimensional (2D) metallic transition metal dichalcogenides (MTMDCs) supply a versatile platform for investigating newfangled physical issues and developing potential applications in electronics/spintronics/electrocatalysis. Among these, NiTe2 (a type-II Dirac semimetal) possesses a Dirac point near its Fermi level. However, as-prepared 2D MTMDCs are mostly environmentally unstable, and little attention has been paid to synthesizing such materials. Herein, a general chemical vapor deposition (CVD) approach has been designed to prepare thickness-tunable and large-domain (∼1.5 mm) 1T-NiTe2 on an atomically flat mica substrate. Significantly, ultrahigh conductivity (∼1.15 × 106 S m-1) of CVD-synthesized 1T-NiTe2 and high catalytic activity in pH-universal hydrogen evolution reaction have been uncovered. More interestingly, the 2D 1T-NiTe2 maintains robust environmental stability for more than one year and even after a variety of harsh treatments. These results hereby fill an existing research gap in synthesizing environmentally stable 2D MTMDCs, making fundamental progress in developing 2D MTMDC-based devices/catalysts.

18.
ACS Nano ; 14(3): 3290-3298, 2020 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-32101687

RESUMEN

Reduced graphene oxide (rGO) has attracted significant interest in an array of applications ranging from flexible optoelectronics, energy storage, sensing, and very recently as membranes for water purification. Many of these applications require a reproducible, scalable process for the growth of large-area films of high optical and electronic quality. In this work, we report a one-step scalable method for the growth of reduced-graphene-oxide-like (rGO-like) thin films via pulsed laser deposition (PLD) of sp2 carbon in an oxidizing environment. By deploying an appropriate laser beam scanning technique, we are able to deposit wafer-scale uniform rGO-like thin films with ultrasmooth surfaces (roughness <1 nm). Further, in situ control of the growth environment during the PLD process allows us to tailor its hybrid sp2-sp3 electronic structure. This enables us to control its intrinsic optoelectronic properties and helps us achieve some of the lowest extinction coefficients and refractive index values (0.358 and 1.715, respectively, at 2.236 eV) as compared to chemically grown rGO films. Additionally, the transparency and conductivity metrics of our PLD grown thin films are superior to other p-type rGO films and conducting oxides. Unlike chemical methods, our growth technique is devoid of catalysts and is carried out at lower process temperatures. This would enable the integration of these thin films with a wide range of material heterostructures via direct growth.

19.
ACS Nano ; 14(4): 5036-5045, 2020 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-32267670

RESUMEN

Two-dimensional (2D) semiconducting transition metal dichalcogenides (TMDs) have emerged as attractive platforms in next-generation nanoelectronics and optoelectronics for reducing device sizes down to a 10 nm scale. To achieve this, the controlled synthesis of wafer-scale single-crystal TMDs with high crystallinity has been a continuous pursuit. However, previous efforts to epitaxially grow TMD films on insulating substrates (e.g., mica and sapphire) failed to eliminate the evolution of antiparallel domains and twin boundaries, leading to the formation of polycrystalline films. Herein, we report the epitaxial growth of wafer-scale single-crystal MoS2 monolayers on vicinal Au(111) thin films, as obtained by melting and resolidifying commercial Au foils. The unidirectional alignment and seamless stitching of the MoS2 domains were comprehensively demonstrated using atomic- to centimeter-scale characterization techniques. By utilizing onsite scanning tunneling microscope characterizations combined with first-principles calculations, it was revealed that the nucleation of MoS2 monolayer is dominantly guided by the steps on Au(111), which leads to highly oriented growth of MoS2 along the ⟨110⟩ step edges. This work, thereby, makes a significant step toward the practical applications of MoS2 monolayers and the large-scale integration of 2D electronics.

20.
ACS Nano ; 14(4): 4636-4645, 2020 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-32167276

RESUMEN

The "Zeeman effect" offers unique opportunities for magnetic manipulation of the spin degree of freedom (DOF). Recently, valley Zeeman splitting, referring to the lifting of valley degeneracy, has been demonstrated in two-dimensional transition metal dichalcogenides (TMDs) at liquid helium temperature. However, to realize the practical applications of valley pseudospins, the valley DOF must be controllable by a magnetic field at room temperature, which remains a significant challenge. Magnetic doping in TMDs can enhance the Zeeman splitting; however, to achieve this experimentally is not easy. Here, we report unambiguous magnetic manipulation of valley Zeeman splitting at 300 K (geff = -6.4) and 10 K (geff = -11) in a CVD-grown Fe-doped MoS2 monolayer; the effective Landé geff factor can be tuned to -20.7 by increasing the Fe dopant concentration, which represents an approximately 5-fold enhancement as compared to undoped MoS2. Our measurements and calculations reveal that the enhanced splitting and geff factors are due to the Heisenberg exchange interaction of the localized magnetic moments (Fe 3d electrons) with MoS2 through the d-orbital hybridization.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA