Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Planta ; 250(6): 1927-1940, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31529400

RESUMEN

MAIN CONCLUSION: Andean tomatoes differed from the wild ancestor in the metabolic composition and the expression of genes related with mitochondrial functions, and environmental stresses, making them potentially suitable for breeding programmes. Traditional landraces or "criollo" tomatoes (Solanum lycopersicum L.) from Andean areas of Argentina, selected for their fruit quality, were analysed in this study. We explored the metabolome and transcriptome of the ripe fruit in nine landrace accessions representing the seven genetic groups and compared them to the mature fruit of the wild progenitor Solanum pimpinellifolium. The content of branched- (isoleucine and valine) and aromatic (phenylalanine and tryptophan) amino acids, citrate and sugars were significantly different in the fruit of several "criollo" tomatoes compared to S. pimpinellifolium. The transcriptomic profile of the ripe fruit showed several genes significantly and highly regulated in all varieties compared to S. pimpinellifolium, like genes encoding histones and mitochondrial proteins. Additionally, network analysis including transcripts and metabolites identified major hubs with the largest number of connections such as constitutive photomorphogenic protein 1 (a RING finger-type ubiquitin E3 ligase), five Zn finger transcription factors, ascorbate peroxidase, acetolactate synthase, and sucrose non-fermenting 1 kinase. Co-expression analysis of these genes revealed a potential function in acquiring tomato fruit quality during domestication.


Asunto(s)
Frutas/metabolismo , Solanum lycopersicum/metabolismo , Perfilación de la Expresión Génica , Genes de Plantas/genética , Solanum lycopersicum/genética , Espectroscopía de Resonancia Magnética , Metabolómica , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN de Planta/genética
2.
Metabolomics ; 14(5): 57, 2018 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-30830349

RESUMEN

INTRODUCTION: The process of tomato (Solanum lycopersicum) breeding has affected negatively the fruit organoleptic properties and this is evident when comparing modern cultivars with heirloom varieties. Flavor of tomato fruit is determined by a complex combination of volatile and nonvolatile metabolites that is not yet understood. OBJECTIVES: The aim of this work was to provide an alternative approach to exploring the relationship between tomato odour/taste and volatile organic compounds (VOCs). METHODS: VOC composition and organoleptic properties of seven Andean tomato landraces along with an edible wild species (Solanum pimpinellifolium) and four commercial varieties were characterized. Six hedonic traits were analyzed by a semitrained sensory panel to describe the organoleptic properties. Ninety-four VOCs were analyzed by headspace solid phase microextraction/gas chromatography-mass spectrometry (HS/SPME/GC-MS). The relationship between sensory data and VOCs was explored using an Artificial Neural Networks model (Kohonen Self Organizing Maps, omeSOM). RESULTS AND CONCLUSION: The results showed a strong preference by panelists for tomatoes of landraces than for commercial varieties and wild species. The predictive analysis by omeSOM showed 15 VOCs significantly associated to the typical and atypical tomato odour and taste. Moreover, omeSOM was used to predict the relationship of VOC ratios with sensory data. A total of 108 VOC ratios out of 8837 VOC ratios were predicted to be contributing to the typical and atypical tomato odour and taste. The metabolic origin of these flavor-associated VOCs and the metabolic point or target for breeding strategies were discussed.


Asunto(s)
Solanum lycopersicum/química , Solanum lycopersicum/metabolismo , Compuestos Orgánicos Volátiles/análisis , Adulto , Colombia , Femenino , Aromatizantes/análisis , Frutas/química , Cromatografía de Gases y Espectrometría de Masas/métodos , Humanos , Solanum lycopersicum/fisiología , Masculino , Persona de Mediana Edad , Redes Neurales de la Computación , Odorantes , Fitomejoramiento , Análisis de Componente Principal/métodos , Microextracción en Fase Sólida/métodos , Gusto/fisiología , Compuestos Orgánicos Volátiles/metabolismo
3.
J Sci Food Agric ; 98(11): 4128-4134, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29393974

RESUMEN

BACKGROUND: The fruits of most commercial tomato cultivars (Solanum lycopersicum L.) are deficient in flavour. In contrast, traditional 'criollo' tomato varieties are appreciated for fruit of excellent organoleptic quality. Small farmers from the Andean valleys in Argentina have maintained their own tomato varieties, which were selected mainly for flavour. This work aims to correlate the chemical composition of the fruit with the sensory attributes of eight heirloom tomato varieties. The long-term goal is to identify potential candidate genes capable of altering the chemicals involved in flavour. RESULTS: A sensory analysis was conducted and the metabolomics of fruit were determined. The data revealed that defined tomato aroma and sourness correlated with citrate and several volatile organic compounds (VOC), such as α-terpineol, p-menth-1-en-9-al, linalool and 3,6-dimethyl-2,3,3a,4,5,7a-hexahydrobenzofuran (DMHEX), a novel volatile recently identified in tomato. Two sensory attributes - sweetness and a not-acidic taste - correlated with the characteristic tomato taste, and also with fructose, glucose, and two VOCs, benzaldehyde, and 2-methyl-2-octen-4-one. CONCLUSIONS: These data provide new evidence of the complex chemical combination that induced the flavour and aroma of the good-tasting 'criollo' tomato fruit. That is, the compounds that correlated with defined tomato aroma and acidic taste did not correlate with sweetness, or with characteristic tomato taste. © 2018 Society of Chemical Industry.


Asunto(s)
Solanum lycopersicum/química , Adulto , Argentina , Carotenoides/química , Carotenoides/metabolismo , Femenino , Aromatizantes/química , Aromatizantes/metabolismo , Frutas/química , Frutas/clasificación , Frutas/economía , Frutas/metabolismo , Humanos , Solanum lycopersicum/clasificación , Solanum lycopersicum/economía , Solanum lycopersicum/metabolismo , Masculino , Metaboloma , Persona de Mediana Edad , Odorantes/análisis , Gusto , Compuestos Orgánicos Volátiles/química , Compuestos Orgánicos Volátiles/metabolismo , Adulto Joven
4.
J Econ Entomol ; 106(3): 1386-94, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23865206

RESUMEN

Honey bees are the main pollinators of onion crops for seed production, but owing to low attractiveness of flowers, pollination is often inadequate. Pollination problems result in low seed yields. This problem is accentuated when male sterile lines (MSL) are used to produce hybrid onion seeds. In this study, the effect of floral attributes and nectar composition on the preference of honey bees of four MSLs and one onion open pollinated cultivar were assessed. The chemical composition of nectar was described through the analysis of sugars, trace elements, volatile organic compounds, and phenol compounds. The samples studied showed qualitative and quantitative differences in the analyzed traits of flowers and nectar among the different lines. Furthermore, field observations showed a great difference on the number of bee visits and seed yield among the onion lines analyzed. For the first time, this study demonstrates that there are marked differences in the chemical composition of nectar and floral morphology between open pollinated and MSLs and also within MSLs. In addition, these differences were correlated with the number of visits and seed yield. Therefore, it would be possible to select indirectly the most promising productive MSL using simple determinations of chemical compounds or floral morphological characters.


Asunto(s)
Allium/anatomía & histología , Allium/fisiología , Abejas/fisiología , Flores/anatomía & histología , Néctar de las Plantas/metabolismo , Polinización , Allium/genética , Animales , Cruzamiento , Cromatografía Líquida de Alta Presión , Electroforesis Capilar , Cromatografía de Gases y Espectrometría de Masas , Espectrometría de Masas , Infertilidad Vegetal , Reproducción , Microextracción en Fase Sólida
5.
PhytoKeys ; 194: 75-93, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35586321

RESUMEN

Calibrachoa Cerv., Fabiana Ruiz & Pav., and Petunia Juss. form a clade within tribe Petunieae (Solanaceae). Phylogenetic studies of Petunieae, either as part of a family-wide analysis or focusing on the genera Calibrachoa and Petunia, have either left Fabiana unsampled or included only a single species. These studies have found conflicting relationships among the three genera with all three possible topologies obtained. Petuniapatagonica (Speg.) Millán, originally described in the genus Nierembergia Ruiz & Pav., is morphologically distinct within Petunia and geographically disjunct from other members of the genus. For the first time, in this study we include multiple species of Fabiana, Calibrachoa, and Petunia, including P.patagonica. Using three chloroplast DNA regions and the nuclear gene GBSSI, or "waxy," our results provide strong support for a sister group relationship between Calibrachoa and Fabiana and for the placement of P.patagonica within Fabiana. Since there is already a species Fabianapatagonica Speg., we provide the new name Fabianaaustralis Alaria nom. nov. to replace Petuniapatagonica.

6.
Plants (Basel) ; 11(15)2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35956486

RESUMEN

Tomato (Solanum lycopersicum L.) is a vegetable with worldwide importance. Its wild or close related species are reservoirs of genes with potential use for the generation of varieties tolerant or resistant to specific biotic and abiotic factors. The objective was to determine the geographic distribution, ecological descriptors, and patterns of diversity and adaptation of 1296 accessions of native tomato from Mexico. An environmental information system was created with 21 climatic variables with a 1 km2 spatial resolution. Using multivariate techniques (Principal Component Analysis, PCA; Cluster Analysis, CA) and Geographic Information Systems (GIS), the most relevant variables for accession distribution were identified, as well as the groups formed according to the environmental similarity among these. PCA determined that with the first three PCs (Principal Components), it is possible to explain 84.1% of the total variation. The most relevant information corresponded to seasonal variables of temperature and precipitation. CA revealed five statistically significant clusters. Ecological descriptors were determined and described by classifying accessions in Physiographic Provinces. Temperate climates were the most frequent among tomato accessions. Finally, the potential distribution was determined with the Maxent model with 10 replicates by cross-validation, identifying areas with a high probability of tomato presence. These results constitute a reliable source of useful information for planning accession sites collection and identifying accessions that are vulnerable or susceptible to conservation programs.

7.
Plants (Basel) ; 10(5)2021 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-33922706

RESUMEN

Conservation and sustainable use of species diversity require a description of the environment where they develop. The objectives were to determine ecological descriptors and climatic diversity of areas along the distribution range of 12 species of wild tomatoes (Solanum sect. Lycopersicon) and four wild species of phylogenetically related groups (Solanum sect. Juglandifolia and sect. Lycopersicoides), as well as their ecological similarity in Latin America. With 4228 selected tomato accessions and an environmental information system (EIS) composed of 21 climatic variables, diversity patterns of the distribution areas were identified for each species, as well as ecological descriptors through the use of geographic information systems (GIS). The contribution of climatic variables to the species geographical distribution was identified by principal component analysis (PCA), and similarity in species distribution as a function of the variables identified with cluster analysis (CA). Climatic characteristics and the environmental amplitude of wild tomatoes and related species along their distributional range were satisfactorily determined by ecological descriptors. Eleven climate types were identified, predominantly BSk (arid, steppe, cold), BWh (arid, desert, hot), and Cfb (temperate, no dry season, warm summer). PCA determined 10 most important variables were the most important for the geographical distribution. Six groups of species were identified according to CA and climatic distribution similarity. This approach has shown promissory applications for biodiversity conservation of valuable genetic resources for tomato crop breeding.

8.
Food Chem ; 206: 146-55, 2016 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-27041310

RESUMEN

Potential nutraceutical properties of hydrophilic antioxidants in fruits of tomato landraces collected in Andean valleys were characterised. Antioxidant metabolites were measured by HPLC-DAD-MS/MS in mature fruits and their biological activities were assessed by in vitro and in vivo methods. In vitro antioxidant capacities were established by TEAC and FRAP methods. For in vivo biological activities we used a procedure based on Caenorhabditis elegans subjected to thermal stress. In addition, Saccharomyces cerevisiae was also used as a rapid screening system to evaluate tomato antioxidant capacity. All tomato accessions displayed significant differences regarding metabolic composition, biological activity and antioxidant capacity. Metabolite composition was associated with geographical origin and fruit size. Antioxidant activities showed significant association with phenolic compounds, such as caffeoylquinic acids, ferulic acid-O-hexosides and rutin. Combination of in vitro and in vivo methods applied here allowed evaluation of the variability in nutraceutical properties of tomato landraces, which could be applied to other fruits or food products.


Asunto(s)
Antioxidantes/análisis , Frutas/química , Solanum lycopersicum/química , Animales , Antioxidantes/farmacología , Caenorhabditis elegans/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Ácidos Cumáricos/análisis , Ácidos Cumáricos/farmacología , Ácido Quínico/análogos & derivados , Ácido Quínico/análisis , Ácido Quínico/farmacología , Rutina/análisis , Rutina/farmacología , Saccharomyces cerevisiae/efectos de los fármacos , América del Sur , Espectrometría de Masas en Tándem
9.
Data Brief ; 7: 1258-68, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27222844

RESUMEN

Data provide information about a tomato collection composed of accessions from the Andean Valley, commercial accessions and wild species. Antioxidant metabolites were measured in mature fruits of this collection, and their biological activities were assessed by both in vitro and in vivo methods. In this work, the parameters used to identify and quantify polyphenols compounds in tomato fruit by liquid chromatography coupled to diode array detector and quadrupole time of flight mass spectrometer are described. Moreover, data supporting a procedure to characterize the properties of tomato fruits to revert death by thermal stress in Caenorhabditis elegans are explained in detail. Lastly, principal component analysis and hierarchical cluster analysis of metabolites composition, antioxidant activities (in vivo and in vitro), tomato traits and geographical origin of the tomatoes collection are shown. The data presented here are related to the research article entitled "Hydrophilic antioxidants from Andean Tomato Landraces assessed by their bioactivities in vitro and in vivo" [1].

10.
Nat Commun ; 5: 3027, 2014 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-24967512

RESUMEN

Vitamin E (VTE) content is a low heritability nutritional trait for which the genetic determinants are poorly understood. Here, we focus on a previously detected major tomato VTE quantitative trait loci (QTL; mQTL(9-2-6)) and identify the causal gene as one encoding a 2-methyl-6-phytylquinol methyltransferase (namely VTE3(1)) that catalyses one of the final steps in the biosynthesis of γ- and α-tocopherols, which are the main forms of VTE. By reverse genetic approaches, expression analyses, siRNA profiling and DNA methylation assays, we demonstrate that mQTL(9-2-6) is an expression QTL associated with differential methylation of a SINE retrotransposon located in the promoter region of VTE3(1). Promoter DNA methylation can be spontaneously reverted leading to different epialleles affecting VTE3(1) expression and VTE content in fruits. These findings indicate therefore that naturally occurring epialleles are responsible for regulation of a nutritionally important metabolic QTL and provide direct evidence of a role for epigenetics in the determination of agronomic traits.


Asunto(s)
Alelos , Solanum lycopersicum/metabolismo , Vitamina E/metabolismo , Metilación de ADN , Solanum lycopersicum/genética , Proteínas de Plantas/genética , Sitios de Carácter Cuantitativo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA