Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 187(9): 2269-2287.e16, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38608703

RESUMEN

Knudson's "two-hit" paradigm posits that carcinogenesis requires inactivation of both copies of an autosomal tumor suppressor gene. Here, we report that the glycolytic metabolite methylglyoxal (MGO) transiently bypasses Knudson's paradigm by inactivating the breast cancer suppressor protein BRCA2 to elicit a cancer-associated, mutational single-base substitution (SBS) signature in nonmalignant mammary cells or patient-derived organoids. Germline monoallelic BRCA2 mutations predispose to these changes. An analogous SBS signature, again without biallelic BRCA2 inactivation, accompanies MGO accumulation and DNA damage in Kras-driven, Brca2-mutant murine pancreatic cancers and human breast cancers. MGO triggers BRCA2 proteolysis, temporarily disabling BRCA2's tumor suppressive functions in DNA repair and replication, causing functional haploinsufficiency. Intermittent MGO exposure incites episodic SBS mutations without permanent BRCA2 inactivation. Thus, a metabolic mechanism wherein MGO-induced BRCA2 haploinsufficiency transiently bypasses Knudson's two-hit requirement could link glycolysis activation by oncogenes, metabolic disorders, or dietary challenges to mutational signatures implicated in cancer evolution.


Asunto(s)
Proteína BRCA2 , Neoplasias de la Mama , Glucólisis , Piruvaldehído , Animales , Proteína BRCA2/metabolismo , Proteína BRCA2/genética , Ratones , Humanos , Femenino , Piruvaldehído/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Haploinsuficiencia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Mutación , Daño del ADN , Reparación del ADN , Línea Celular Tumoral
2.
Cell ; 169(6): 1105-1118.e15, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28575672

RESUMEN

Mutations truncating a single copy of the tumor suppressor, BRCA2, cause cancer susceptibility. In cells bearing such heterozygous mutations, we find that a cellular metabolite and ubiquitous environmental toxin, formaldehyde, stalls and destabilizes DNA replication forks, engendering structural chromosomal aberrations. Formaldehyde selectively depletes BRCA2 via proteasomal degradation, a mechanism of toxicity that affects very few additional cellular proteins. Heterozygous BRCA2 truncations, by lowering pre-existing BRCA2 expression, sensitize to BRCA2 haploinsufficiency induced by transient exposure to natural concentrations of formaldehyde. Acetaldehyde, an alcohol catabolite detoxified by ALDH2, precipitates similar effects. Ribonuclease H1 ameliorates replication fork instability and chromosomal aberrations provoked by aldehyde-induced BRCA2 haploinsufficiency, suggesting that BRCA2 inactivation triggers spontaneous mutagenesis during DNA replication via aberrant RNA-DNA hybrids (R-loops). These findings suggest a model wherein carcinogenesis in BRCA2 mutation carriers can be incited by compounds found pervasively in the environment and generated endogenously in certain tissues with implications for public health.


Asunto(s)
Proteína BRCA2/genética , Aberraciones Cromosómicas/efectos de los fármacos , Formaldehído/toxicidad , Inestabilidad Genómica/efectos de los fármacos , Toxinas Biológicas/toxicidad , Daño del ADN , Replicación del ADN/efectos de los fármacos , Proteínas de Unión al ADN/metabolismo , Haploinsuficiencia , Células HeLa , Humanos , Proteína Homóloga de MRE11 , Proteoma , Ribonucleasa H/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(39): e2112341119, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-36122224

RESUMEN

Urbanization is rapidly transforming much of Southeast Asia, altering the structure and function of the landscape, as well as the frequency and intensity of the interactions between people, animals, and the environment. In this study, we explored the impact of urbanization on zoonotic disease risk by simultaneously characterizing changes in the ecology of animal reservoirs (rodents), ectoparasite vectors (ticks), and pathogens across a gradient of urbanization in Kuching, a city in Malaysian Borneo. We sampled 863 rodents across rural, developing, and urban locations and found that rodent species diversity decreased with increasing urbanization-from 10 species in the rural location to 4 in the rural location. Notably, two species appeared to thrive in urban areas, as follows: the invasive urban exploiter Rattus rattus (n = 375) and the native urban adapter Sundamys muelleri (n = 331). R. rattus was strongly associated with built infrastructure across the gradient and carried a high diversity of pathogens, including multihost zoonoses capable of environmental transmission (e.g., Leptospira spp.). In contrast, S. muelleri was restricted to green patches where it was found at high densities and was strongly associated with the presence of ticks, including the medically important genera Amblyomma, Haemaphysalis, and Ixodes. Our analyses reveal that zoonotic disease risk is elevated and heterogeneously distributed in urban environments and highlight the potential for targeted risk reduction through pest management and public health messaging.


Asunto(s)
Garrapatas , Urbanización , Animales , Asia Sudoriental , Ciudades , Humanos , Murinae , Ratas , Zoonosis/epidemiología
4.
J Med Virol ; 94(3): 1146-1153, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34757638

RESUMEN

Malaysia has experienced three waves of coronavirus disease 2019 (COVID-19) as of March 31, 2021. We studied the associated molecular epidemiology and SARS-CoV-2 seroprevalence during the third wave. We obtained 60 whole-genome SARS-CoV-2 sequences between October 2020 and January 2021 in Kuala Lumpur/Selangor and analyzed 989 available Malaysian sequences. We tested 653 residual serum samples collected between December 2020 to April 2021 for anti-SARS-CoV-2 total antibodies, as a proxy for population immunity. The first wave (January 2020) comprised sporadic imported cases from China of early Pango lineages A and B. The second wave (March-June 2020) was associated with lineage B.6. The ongoing third wave (from September 2020) was propagated by a state election in Sabah. It is due to lineage B.1.524 viruses containing spike mutations D614G and A701V. Lineages B.1.459, B.1.470, and B.1.466.2 were likely imported from the region and confined to Sarawak state. Direct age-standardized seroprevalence in Kuala Lumpur/Selangor was 3.0%. The second and third waves were driven by super-spreading events and different circulating lineages. Malaysia is highly susceptible to further waves, especially as alpha (B.1.1.7) and beta (B.1.351) variants of concern were first detected in December 2020/January 2021. Increased genomic surveillance is critical.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Antivirales/genética , COVID-19/epidemiología , Humanos , Malasia/epidemiología , Filogenia , SARS-CoV-2/genética , Estudios Seroepidemiológicos
5.
Lab Invest ; 100(9): 1262-1275, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32601355

RESUMEN

Coxsackievirus A16 (CV-A16) is one of the major causes of mild and self-limiting hand-foot-and-mouth disease (HFMD) in young children, which may occasionally leads to serious neurological complications. In this study, we had developed a novel, consistent, orally infected CV-A16 HFMD hamster model with encephalomyelitis. Four groups of 7-day-old hamsters in a kinetic study were orally infected with mouse-adapted CV-A16 strains and sacrificed at 1-4 days post infection (dpi), respectively. Tissues were studied by light microscopy, immunohistochemistry to detect viral antigens, in situ hybridization to detect viral RNA, and by viral titration. In a separate transmission experiment, orally infected index hamsters were housed together with contact hamsters to investigate oral and fecal viral shedding by virus culture and reverse transcription polymerase chain reaction (RT-PCR). At severe infection/death endpoints, index and contact hamster infection were also histopathologically analyzed. In the kinetic study, infected hamsters developed signs of infection at 4 dpi. Viral antigens/RNA were localized to brainstem (medulla/pons; reticular formation and motor trigeminal nucleus) and spinal cord anterior horn neurons, oral squamous epithelia and epidermis from 3 to 4 dpi. Salivary and lacrimal glands, myocardium, brown adipose tissue, intestinal smooth muscle, and skeletal muscle infection was also demonstrated. Viremia at 1 dpi and increasing viral titers in various tissues were observed from 2 dpi. In the transmission study, all contact hamsters developed disease 3-5 days later than index hamsters, but demonstrated similar histopathological findings at endpoint. Viral culture and RT-PCR positive oral washes and feces confirmed viral shedding. Our hamster model, orally infected by the natural route for human infection, confirmed CV-A16 neurotropism and demonstrated squamous epitheliotropism reminiscent of HFMD, attributes not found in other animal models. It should be useful to investigate neuropathogenesis, model person-to-person transmission, and for testing antiviral drugs and vaccines.


Asunto(s)
Cricetinae/virología , Modelos Animales de Enfermedad , Encefalomielitis/virología , Enterovirus Humano A/fisiología , Enfermedad de Boca, Mano y Pie/virología , Boca/virología , Animales , Antígenos Virales/metabolismo , Niño , Encefalomielitis/diagnóstico , Enterovirus Humano A/genética , Enterovirus Humano A/metabolismo , Heces/virología , Enfermedad de Boca, Mano y Pie/diagnóstico , Humanos , Inmunohistoquímica , Hibridación in Situ , Boca/patología , Mucosa Bucal/patología , Mucosa Bucal/virología , ARN Viral/genética , Sensibilidad y Especificidad
6.
J Virol ; 92(6)2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29263272

RESUMEN

Coxsackievirus A16 (CV-A16) and enterovirus A71 (EV-A71) are closely related enteroviruses that cause the same hand, foot, and mouth disease (HFMD), but neurological complications occur only very rarely in CV-A16 compared to EV-A71 infections. To elucidate host responses that may be able to explain these differences, we performed transcriptomic analysis and real-time quantitative PCR (RT-qPCR) in CV-A16-infected neuroblastoma cells (SK-N-SH), and the results showed that the radical S-adenosylmethionine domain containing 2 (RSAD2) was the highest upregulated gene in the antimicrobial pathway. Increased RSAD2 expression was correlated with reduced viral replication, while RSAD2 knockdown cells were correlated with increased replication. EV-A71 replication showed no apparent correlation to RSAD2 expressions. Absent in melanoma 2 (AIM2), which is associated with pyroptotic cell death, was upregulated in EV-A71-infected neurons but not in CV-A16 infection, suggesting that the AIM2 inflammasome played a significant role in suppressing EV-A71 replication. Chimeric viruses derived from CV-A16 and EV-A71 but containing swapped 5' nontranslated regions (5' NTRs) showed that RSAD2 expression/viral replication and AIM2 expression/viral replication patterns may be linked to the 5' NTRs of parental viruses. Differences in secondary structure of internal ribosomal entry sites within the 5' NTR may be responsible for these findings. Overall, our results suggest that CV-A16 and EV-A71 elicit different host responses to infection, which may help explain the apparent lower incidence of CV-A16-associated neurovirulence in HFMD outbreaks compared to EV-A71 infection.IMPORTANCE Although coxsackievirus A16 (CV-A16) and enterovirus A17 (EV-A71) both cause hand, foot, and mouth disease, EV-A71 has emerged as a leading cause of nonpolio, enteroviral fatal encephalomyelitis among young children. The significance of our research is in the identification of the possible differing and novel mechanisms of CV-A16 and EV-A71 inhibition in neuronal cells that may impact viral neuropathogenesis. We further showed that viral 5' NTRs may play significant roles in eliciting different host response mechanisms.


Asunto(s)
Regiones no Traducidas 5' , Proteínas de Unión al ADN/metabolismo , Enterovirus Humano A/fisiología , Enterovirus Humano C/fisiología , Neuronas/metabolismo , Proteínas/metabolismo , Replicación Viral/fisiología , Línea Celular Tumoral , Proteínas de Unión al ADN/genética , Técnicas de Silenciamiento del Gen , Humanos , Neuronas/patología , Neuronas/virología , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH , Proteínas/genética
7.
Arch Virol ; 162(3): 727-737, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27878462

RESUMEN

Enterovirus A71 (EV-A71) and coxsackievirus A16 (CV-A16) are closely related enteroviruses that cause hand, foot and mouth disease (HFMD) in children. Serious neurological complications almost always occur in EV-A71 infection, but are rare in CV-A16 infection. Based on the hypothesis that this may be because EV-A71 infects neuronal cells more easily than CV-A16, we compared virus infection, replication and spread of EV-A71 and CV-A16 in SK-N-SH cells. We found that CV-A16 invariably showed significantly lower replication and caused less necrotic cell death in SK-N-SH cells, compared with EV-A71. This was not due to a lower proportion of CV-A16-infected cells, since both viruses showed similar proportions of infected cells at all time points analyzed. Furthermore, reduced replication of CV-A16 in SK-N-SH cells does not appear to be due to limited viral receptor availability, which might limit viral entry, because experiments with viral RNA-transfected cells showed the same results as for live virus infections. On the other hand, no differences were observed between EV-A71 and CV-A16 in RD cells and results were generally similar in RD cells for both viruses. Taken together, our findings suggest that the poor growth of CV-A16 and EV-A71in SK-N-SH cells, compared with RD cells, may be due to cell type-specific restrictions on viral replication and spread. Furthermore, the lower viral replication and necrotic cell death in CV-A16-infected SK-N-SH cells, compared with EV-A71-infected SK-N-SH cells, is consistent with the lower prevalence of neurotropism observed in CV-A16-associated HFMD outbreaks. Nonetheless, in vivo data and more extensive comparisons of different viral strains are essential to confirm our findings.


Asunto(s)
Enterovirus Humano A/fisiología , Enfermedad de Boca, Mano y Pie/virología , Neuronas/virología , Línea Celular , Replicación del ADN , Enterovirus , Enterovirus Humano A/química , Enterovirus Humano A/clasificación , Enterovirus Humano A/crecimiento & desarrollo , Humanos , Cinética , ARN Viral/genética , ARN Viral/metabolismo , Replicación Viral
8.
J Cell Sci ; 126(Pt 15): 3324-32, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-23690545

RESUMEN

In all eukaryotes tight control of mitogen-activated protein kinase (MAPK) activity plays an important role in modulating intracellular signalling in response to changing environments. The fission yeast MAPK Sty1 (also known as Spc1 or Phh1) is highly activated in response to a variety of external stresses. To avoid segregation of damaged organelles or chromosomes, strong Sty1 activation transiently blocks mitosis and cell division until such stresses have been dealt with. MAPK phosphatases dephosphorylate Sty1 to reduce kinase activity. Therefore, tight control of MAPK phosphatases is central for stress adaptation and for cell division to resume. In contrast to Pyp1, the fission yeast Pyp2 MAPK phosphatase is under environmental control. Pyp2 has a unique sequence (the linker region) between the catalytic domain and the N-terminal MAPK-binding site. Here we show that the Pyp2 linker region is a destabilisation domain. Furthermore, the linker region is highly phosphorylated to increase Pyp2 protein stability and this phosphorylation is Sty1 dependent. Our data suggests that Sty1 activation promotes Pyp2 phosphorylation to increase the stability of the phosphatase. This MAPK-dependent Pyp2 stabilisation allows cells to attenuate MAPK signalling and resume cell division, once stresses have been dealt with.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Secuencia de Aminoácidos , Proteínas de Ciclo Celular/genética , Sistema de Señalización de MAP Quinasas , Proteínas Quinasas Activadas por Mitógenos/genética , Datos de Secuencia Molecular , Fosforilación , Proteínas Tirosina Fosfatasas/genética , Proteínas de Schizosaccharomyces pombe/genética , Transducción de Señal
9.
Virol J ; 12: 85, 2015 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-26050791

RESUMEN

BACKGROUND: Hand foot and mouth disease (HFMD) is a disease of public health importance across the Asia-Pacific region. The disease is caused by enteroviruses (EVs), in particular enterovirus A71 (EV-A71). In EV-A71-associated HFMD, the infection is sometimes associated with severe manifestations including neurological involvement and fatal outcome. The availability of a robust diagnostic assay to distinguish EV-A71 from other EVs is important for patient management and outbreak response. METHODS: We developed and validated an internally controlled one-step single-tube real-time RT-PCR in terms of sensitivity, linearity, precision, and specificity for simultaneous detection of EVs and EV-A71. Subsequently, the assay was then applied on throat and rectal swabs sampled from 434 HFMD patients. RESULTS: The assay was evaluated using both plasmid DNA and viral RNA and has shown to be reproducible with a maximum assay variation of 4.41 % and sensitive with a limit of detection less than 10 copies of target template per reaction, while cross-reactivity with other EV serotypes was not observed. When compared against a published VP1 nested RT-PCR using 112 diagnostic throat and rectal swabs from 112 children with a clinical diagnosis of HFMD during 2014, the multiplex assay had a higher sensitivity and 100 % concordance with sequencing results which showed EVs in 77/112 (68.8 %) and EV-A71 in 7/112 (6.3 %). When applied to clinical diagnostics for 322 children, the assay detected EVs in throat swabs of 257/322 (79.8 %) of which EV-A71 was detected in 36/322 (11.2 %) children. The detection rate increased to 93.5 % (301/322) and 13.4 % (43/322) for EVs and EV-A71, respectively, when rectal swabs from 65 throat-negative children were further analyzed. CONCLUSION: We have successfully developed and validated a sensitive internally controlled multiplex assay for rapid detection of EVs and EV-A71, which is useful for clinical management and outbreak control of HFMD.


Asunto(s)
Infecciones por Enterovirus/diagnóstico , Enterovirus/aislamiento & purificación , Reacción en Cadena de la Polimerasa Multiplex/métodos , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Animales , Asia , Niño , Preescolar , Enterovirus/clasificación , Enterovirus/genética , Femenino , Humanos , Lactante , Masculino , Reacción en Cadena de la Polimerasa Multiplex/normas , Faringe/virología , Reacción en Cadena en Tiempo Real de la Polimerasa/normas , Recto/virología , Estándares de Referencia , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/normas , Sensibilidad y Especificidad
10.
Res Sq ; 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38405932

RESUMEN

Post-pregnancy breast cancer often carries a poor prognosis, posing a major clinical challenge. The increasing trend of later-life pregnancies exacerbates this risk, highlighting the need for effective chemoprevention strategies. Current options, limited to selective estrogen receptor modulators, aromatase inhibitors, or surgical procedures, offer limited efficacy and considerable side effects. Here, we report that cabergoline, a dopaminergic agonist, reduces the risk of breast cancer post-pregnancy in a Brca1/P53-deficient mouse model, with implications for human breast cancer prevention. We show that a single dose of cabergoline administered post-pregnancy significantly delayed the onset and reduced the incidence of breast cancer in Brca1/P53-deficient mice. Histological analysis revealed a notable acceleration in post-lactational involution over the short term, characterized by increased apoptosis and altered gene expression related to ion transport. Over the long term, histological changes in the mammary gland included a reduction in the ductal component, decreased epithelial proliferation, and a lower presence of recombinant Brca1/P53 target cells, which are precursors of tumors. These changes serve as indicators of reduced breast cancer susceptibility. Additionally, RNA sequencing identified gene expression alterations associated with decreased proliferation and mammary gland branching. Our findings highlight a mechanism wherein cabergoline enhances the protective effect of pregnancy against breast cancer by potentiating postlactational involution. Notably, a retrospective cohort study in women demonstrated a markedly lower incidence of post-pregnancy breast cancer in those treated with cabergoline compared to a control group. Our work underscores the importance of enhancing postlactational involution as a strategy for breast cancer prevention, and identifies cabergoline as a promising, low-risk option in breast cancer chemoprevention. This strategy has the potential to revolutionize breast cancer prevention approaches, particularly for women at increased risk due to genetic factors or delayed childbirth, and has wider implications beyond hereditary breast cancer cases.

11.
J Infect Dis ; 206(6): 881-92, 2012 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-22829643

RESUMEN

BACKGROUND: Enterovirus 71 (EV71) causes large outbreaks of hand, foot, and mouth disease (HFMD), with severe neurological complications and cardio-respiratory compromise, but the pathogenesis is poorly understood. METHODS: We measured levels of 30 chemokines and cytokines in serum and cerebrospinal fluid (CSF) samples from Malaysian children hospitalized with EV71 infection (n = 88), comprising uncomplicated HFMD (n = 47), meningitis (n = 8), acute flaccid paralysis (n = 1), encephalitis (n = 21), and encephalitis with cardiorespiratory compromise (n = 11). Four of the latter patients died. RESULTS: Both pro-inflammatory and anti-inflammatory mediator levels were elevated, with different patterns of mediator abundance in the CSF and vascular compartments. Serum concentrations of interleukin 1ß (IL-1ß), interleukin 1 receptor antagonist (IL-1Ra), and granulocyte colony-stimulating factor (G-CSF) were raised significantly in patients who developed cardio-respiratory compromise (P = .013, P = .004, and P < .001, respectively). Serum IL-1Ra and G-CSF levels were also significantly elevated in patients who died, with a serum G-CSF to interleukin 5 ratio of >100 at admission being the most accurate prognostic marker for death (P < .001; accuracy, 85.5%; sensitivity, 100%; specificity, 84.7%). CONCLUSIONS: Given that IL-1ß has a negative inotropic action on the heart, and that both its natural antagonist, IL-1Ra, and G-CSF are being assessed as treatments for acute cardiac impairment, the findings suggest we have identified functional markers of EV71-related cardiac dysfunction and potential treatment options.


Asunto(s)
Encefalitis Viral/etiología , Enterovirus Humano A , Factor Estimulante de Colonias de Granulocitos/sangre , Enfermedad de Boca, Mano y Pie/complicaciones , Proteína Antagonista del Receptor de Interleucina 1/sangre , Interleucina-1beta/sangre , Biomarcadores , Preescolar , Encefalitis Viral/sangre , Encefalitis Viral/líquido cefalorraquídeo , Encefalitis Viral/epidemiología , Femenino , Factor Estimulante de Colonias de Granulocitos/metabolismo , Enfermedad de Boca, Mano y Pie/sangre , Enfermedad de Boca, Mano y Pie/líquido cefalorraquídeo , Enfermedad de Boca, Mano y Pie/epidemiología , Humanos , Lactante , Malasia/epidemiología , Masculino , Pronóstico , Transcriptoma
12.
Vaccines (Basel) ; 11(8)2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37631931

RESUMEN

Hand, foot and mouth disease (HFMD) is a childhood disease caused by enterovirus A71 (EV-A71) and coxsackievirus A16 (CV-A16). Capsid loops are important epitopes for EV-A71 and CV-A16. Seven chimeric EV-A71 (ChiE71) involving VP1 BC (45.5% similarity), DE, EF, GH and HI loops, VP2 EF loop and VP3 GH loop (91.3% similarity) were substituted with corresponding CV-A16 loops. Only ChiE71-1-BC, ChiE71-1-EF, ChiE71-1-GH and ChiE71-3-GH were viable. EV-A71 and CV-A16 antiserum neutralized ChiE71-1-BC and ChiE71-1-EF. Mice immunized with inactivated ChiE71 elicited high IgG, IFN-γ, IL-2, IL-4 and IL-10. Neonatal mice receiving passive transfer of WT EV-A71, ChiE71-1-EF and ChiE71-1-BC immune sera had 100%, 80.0% and no survival, respectively, against lethal challenges with EV-A71, suggesting that the substituted CV-A16 loops disrupted EV-A71 immunogenicity. Passive transfer of CV-A16, ChiE71-1-EF and ChiE71-1-BC immune sera provided 40.0%, 20.0% and 42.9% survival, respectively, against CV-A16. One-day-old neonatal mice immunized with WT EV-A71, ChiE71-1-BC, ChiE71-1-EF and CV-A16 achieved 62.5%, 60.0%, 57.1%, and no survival, respectively, after the EV-A71 challenge. Active immunization using CV-A16 provided full protection while WT EV-A71, ChiE71-1-BC and ChiE71-1-EF immunization showed partial cross-protection in CV-A16 lethal challenge with survival rates of 50.0%, 20.0% and 40%, respectively. Disruption of a capsid loop could affect virus immunogenicity, and future vaccine design should include conservation of the enterovirus capsid loops.

13.
Nat Commun ; 14(1): 5206, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37626143

RESUMEN

Germline BRCA2 mutation carriers frequently develop luminal-like breast cancers, but it remains unclear how BRCA2 mutations affect mammary epithelial subpopulations. Here, we report that monoallelic Brca2mut/WT mammary organoids subjected to replication stress activate a transcriptional response that selectively expands Brca2mut/WT luminal cells lacking hormone receptor expression (HR-). While CyTOF analyses reveal comparable epithelial compositions among wildtype and Brca2mut/WT mammary glands, Brca2mut/WT HR- luminal cells exhibit greater organoid formation and preferentially survive and expand under replication stress. ScRNA-seq analysis corroborates the expansion of HR- luminal cells which express elevated transcript levels of Tetraspanin-8 (Tspan8) and Thrsp, plus pathways implicated in replication stress survival including Type I interferon responses. Notably, CRISPR/Cas9-mediated deletion of Tspan8 or Thrsp prevents Brca2mut/WT HR- luminal cell expansion. Our findings indicate that Brca2mut/WT cells activate a transcriptional response after replication stress that preferentially favours outgrowth of HR- luminal cells through the expression of interferon-responsive and mammary alveolar genes.


Asunto(s)
Células Epiteliales , Interferón Tipo I , Proliferación Celular , Ciclo Celular , Expresión Génica
14.
Microbiol Spectr ; 11(6): e0250723, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37831475

RESUMEN

IMPORTANCE: By employing a cost-effective approach for complete genome sequencing, the study has enabled the identification of novel enterovirus strains and shed light on the genetic exchange events during outbreaks. The success rate of genome sequencing and the scalability of the protocol demonstrate its practical utility for routine enterovirus surveillance. Moreover, the study's findings of recombinant strains of EVA71 and CVA2 contributing to epidemics in Malaysia and Taiwan emphasize the need for accurate detection and characterization of enteroviruses. The investigation of the whole genome and upstream ORF sequences has provided insights into the evolution and spread of enterovirus subgenogroups. These findings have important implications for the prevention, control, and surveillance of enteroviruses, ultimately contributing to the understanding and management of enterovirus-related illnesses.


Asunto(s)
Infecciones por Enterovirus , Enterovirus , Humanos , Análisis Costo-Beneficio , Genoma Viral , Enterovirus/genética , Secuenciación Completa del Genoma , Filogenia
15.
Multimed Tools Appl ; 82(11): 17415-17436, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36404933

RESUMEN

Traditionally, dengue is controlled by fogging, and the prime location for the control measure is at the patient's residence. However, when Malaysia was hit by the first wave of the Coronavirus disease (COVID-19), and the government-imposed movement control order, dengue cases have decreased by more than 30% from the previous year. This implies that residential areas may not be the prime locations for dengue-infected mosquitoes. The existing early warning system was focused on temporal prediction wherein the lack of consideration for spatial component at the microlevel and human mobility were not considered. Thus, we developed MozzHub, which is a web-based application system based on the bipartite network-based dengue model that is focused on identifying the source of dengue infection at a small spatial level (400 m) by integrating human mobility and environmental predictors. The model was earlier developed and validated; therefore, this study presents the design and implementation of the MozzHub system and the results of a preliminary pilot test and user acceptance of MozzHub in six district health offices in Malaysia. It was found that the MozzHub system is well received by the sample of end-users as it was demonstrated as a useful (77.4%), easy-to-operate system (80.6%), and has achieved adequate client satisfaction for its use (74.2%).

16.
Dev Cell ; 13(4): 566-79, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17925231

RESUMEN

Bub1 is a component of the spindle assembly checkpoint (SAC), a surveillance mechanism that ensures genome stability by delaying anaphase until all the chromosomes are stably attached to spindle microtubules via their kinetochores. To define Bub1's role in chromosome segregation, embryogenesis, and tissue homeostasis, we generated a mouse strain in which BUB1 can be inactivated by administration of tamoxifen, thereby bypassing the preimplantation lethality associated with the Bub1 null phenotype. We show that Bub1 is essential for postimplantation embryogenesis and proliferation of primary embryonic fibroblasts. Bub1 inactivation in adult males inhibits proliferation in seminiferous tubules, reducing sperm production and causing infertility. In culture, Bub1-deficient fibroblasts fail to align their chromosomes or sustain SAC function, yielding a highly aberrant mitosis that prevents further cell divisions. Centromeres in Bub1-deficient cells also separate prematurely; however, we show that this is a consequence of SAC dysfunction rather than a direct role for Bub1 in protecting centromeric cohesion.


Asunto(s)
Centrómero/fisiología , Infertilidad Masculina/genética , Proteínas Serina-Treonina Quinasas/fisiología , Espermatogénesis/fisiología , Huso Acromático/fisiología , Animales , Blastocisto/fisiología , Proliferación Celular , Células Cultivadas , Segregación Cromosómica , Pérdida del Embrión , Embrión de Mamíferos/citología , Embrión de Mamíferos/fisiología , Desarrollo Embrionario , Fibroblastos/fisiología , Cinetocoros/fisiología , Masculino , Ratones , Proteínas Serina-Treonina Quinasas/genética
17.
J Cell Sci ; 123(Pt 5): 653-9, 2010 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-20124418

RESUMEN

Bub1 was one of the first protein kinases identified as a component of the spindle-assembly checkpoint, a surveillance mechanism that delays anaphase onset until all chromosomes are stably attached to spindle microtubules. Whereas the kinase activity of Bub1 is not required for checkpoint function in yeast, its requirement in mammalian cells is still unclear. Using a complementation assay with bona fide BUB1-null mouse embryonic fibroblasts, we show that the kinase activity of Bub1 is not required for checkpoint function or chromosome alignment. Its activity is, however, required for centromeric localisation of Sgo1, a known protector of centromeric cohesion. Despite the absence of Sgo1 from mitotic centromeres in cells devoid of Bub1 activity, centromeric cohesion is still maintained until anaphase. An explanation for this comes from observations showing that Sgo1 is first recruited to centromeric heterochromatin in G2, but then becomes diffusely localised throughout the nucleus in early prophase, before returning to centromeres later in prophase. Importantly, whereas centromeric localisation of Sgo1 in prophase is dependent on the kinase activity of Bub1, its recruitment to centromeric heterochromatin in G2 is not. Rather, the localisation of Sgo1 in G2 is abolished when heterochromatin protein 1 is not bound to centromeric heterochromatin. Thus, it seems that Sgo1 sets up the centromeric protection mechanism in G2, but that its Bub1-dependent localisation to centromeres during mitosis is not required to maintain cohesion.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Fase G2/fisiología , Mitosis/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Células Cultivadas , Centrómero/metabolismo , Fase G2/genética , Heterocromatina/metabolismo , Immunoblotting , Ratones , Mitosis/genética , Mutagénesis Sitio-Dirigida , Proteínas Serina-Treonina Quinasas/genética , Transporte de Proteínas/genética , Transporte de Proteínas/fisiología
18.
Nat Commun ; 13(1): 890, 2022 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-35173169

RESUMEN

Hand, foot and mouth disease (HFMD) caused by Human Enterovirus A71 (HEVA71) infection is typically a benign infection. However, in minority of cases, children can develop severe neuropathology that culminate in fatality. Approximately 36.9% of HEVA71-related hospitalizations develop neurological complications, of which 10.5% are fatal. Yet, the mechanism by which HEVA71 induces these neurological deficits remain unclear. Here, we show that HEVA71-infected astrocytes release CXCL1 which supports viral replication in neurons by activating the CXCR2 receptor-associated ERK1/2 signaling pathway. Elevated CXCL1 levels correlates with disease severity in a HEVA71-infected mice model. In humans infected with HEVA71, high CXCL1 levels are only present in patients presenting neurological complications. CXCL1 release is specifically triggered by VP4 synthesis in HEVA71-infected astrocytes, which then acts via its receptor CXCR2 to enhance viral replication in neurons. Perturbing CXCL1 signaling or VP4 myristylation strongly attenuates viral replication. Treatment with AZD5069, a CXCL1-specific competitor, improves survival and lessens disease severity in infected animals. Collectively, these results highlight the CXCL1-CXCR2 signaling pathway as a potential target against HFMD neuropathogenesis.


Asunto(s)
Enfermedades del Sistema Nervioso Central/virología , Quimiocina CXCL1/metabolismo , Enterovirus Humano A/metabolismo , Enfermedad de Boca, Mano y Pie/patología , Receptores de Interleucina-8B/metabolismo , Animales , Astrocitos/metabolismo , Astrocitos/virología , Línea Celular , Enfermedades del Sistema Nervioso Central/patología , Modelos Animales de Enfermedad , Femenino , Células HEK293 , Enfermedad de Boca, Mano y Pie/virología , Humanos , Sistema de Señalización de MAP Quinasas/fisiología , Ratones , Ratones Endogámicos BALB C , Pirimidinas/farmacología , Ratas , Índice de Severidad de la Enfermedad , Sulfonamidas/farmacología
19.
Cancers (Basel) ; 14(4)2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35205709

RESUMEN

An elevated neutrophil-lymphocyte ratio negatively predicts the outcome of patients with cancer and is associated with cachexia, the terminal wasting syndrome. Here, using murine model systems of colorectal and pancreatic cancer we show that neutrophilia in the circulation and multiple organs, accompanied by extramedullary hematopoiesis, is an early event during cancer progression. Transcriptomic and metabolic assessment reveals that neutrophils in tumor-bearing animals utilize aerobic glycolysis, similar to cancer cells. Although pharmacological inhibition of aerobic glycolysis slows down tumor growth in C26 tumor-bearing mice, it precipitates cachexia, thereby shortening the overall survival. This negative effect may be explained by our observation that acute depletion of neutrophils in pre-cachectic mice impairs systemic glucose homeostasis secondary to altered hepatic lipid processing. Thus, changes in neutrophil number, distribution, and metabolism play an adaptive role in host metabolic homeostasis during cancer progression. Our findings provide insight into early events during cancer progression to cachexia, with implications for therapy.

20.
Int J Infect Dis ; 125: 216-226, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36336246

RESUMEN

OBJECTIVES: This study reported SARS-CoV-2 whole genome sequencing results from June 2021 to January 2022 from seven genome sequencing centers in Malaysia as part of the national surveillance program. METHODS: COVID-19 samples that tested positive by reverse transcription polymerase chain reaction and with cycle threshold values <30 were obtained throughout Malaysia. Sequencing of SARS-CoV-2 complete genomes was performed using Illumina, Oxford Nanopore, or Ion Torrent platforms. A total of 6163 SARS-CoV-2 complete genome sequences were generated over the surveillance period. All sequences were submitted to the Global Initiative on Sharing All Influenza Data database. RESULTS: From June 2021 to January 2022, Malaysia experienced the fourth wave of COVID-19 dominated by the Delta variant of concern, including the original B.1.617.2 lineage and descendant AY lineages. The B.1.617.2 lineage was identified as the early dominant circulating strain throughout the country but over time, was displaced by AY.59 and AY.79 lineages in Peninsular (west) Malaysia, and the AY.23 lineage in east Malaysia. In December 2021, pilgrims returning from Saudi Arabia facilitated the introduction and spread of the BA.1 lineage (Omicron variant of concern) in the country. CONCLUSION: The changing trends of circulating SARS-CoV-2 lineages were identified, with differences observed between west and east Malaysia. This initiative highlighted the importance of leveraging research expertise in the country to facilitate pandemic response and preparedness.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Malasia/epidemiología , COVID-19/epidemiología , Genómica , Pandemias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA