Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Circulation ; 148(8): 703-728, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37458106

RESUMEN

Vaping and electronic cigarette (e-cigarette) use have grown exponentially in the past decade, particularly among youth and young adults. Cigarette smoking is a risk factor for both cardiovascular and pulmonary disease. Because of their more limited ingredients and the absence of combustion, e-cigarettes and vaping products are often touted as safer alternative and potential tobacco-cessation products. The outbreak of e-cigarette or vaping product use-associated lung injury in the United States in 2019, which led to >2800 hospitalizations, highlighted the risks of e-cigarettes and vaping products. Currently, all e-cigarettes are regulated as tobacco products and thus do not undergo the premarket animal and human safety studies required of a drug product or medical device. Because youth prevalence of e-cigarette and vaping product use was as high as 27.5% in high school students in 2019 in the United States, it is critical to assess the short-term and long-term health effects of these products, as well as the development of interventional and public health efforts to reduce youth use. The objectives of this scientific statement are (1) to describe and discuss e-cigarettes and vaping products use patterns among youth and adults; (2) to identify harmful and potentially harmful constituents in vaping aerosols; (3) to critically assess the molecular, animal, and clinical evidence on the acute and chronic cardiovascular and pulmonary risks of e-cigarette and vaping products use; (4) to describe the current evidence of e-cigarettes and vaping products as potential tobacco-cessation products; and (5) to summarize current public health and regulatory efforts of e-cigarettes and vaping products. It is timely, therefore, to review the short-term and especially the long-term implications of e-cigarettes and vaping products on cardiopulmonary health. Early molecular and clinical evidence suggests various acute physiological effects from electronic nicotine delivery systems, particularly those containing nicotine. Additional clinical and animal-exposure model research is critically needed as the use of these products continues to grow.


Asunto(s)
Sistema Cardiovascular , Sistemas Electrónicos de Liberación de Nicotina , Productos de Tabaco , Vapeo , Adolescente , Adulto Joven , Animales , Humanos , Estados Unidos/epidemiología , Vapeo/efectos adversos , American Heart Association , Nicotina
2.
Stroke ; 54(4): 1099-1109, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36912143

RESUMEN

BACKGROUND: Cholinergic cells originating from the nuclei of the basal forebrain (BF) are critical for supporting various memory processes, yet BF cholinergic cell viability has not been explored in the context of focal cerebral ischemia. In the present study, we examined cell survival within several BF nuclei in rodents following transient middle cerebral artery occlusion. We tested the hypothesis that a previously established neuroprotective therapy-resveratrol preconditioning-would rescue BF cell loss, deficits in cholinergic-related memory performance, and hippocampal synaptic dysfunction after focal cerebral ischemia. METHODS: Adult (2-3-month old) male Sprague-Dawley rats or wild-type C57Bl/6J mice were injected intraperitoneally with a single dose of resveratrol or vehicle and subjected to transient middle cerebral artery occlusion using the intraluminal suture method 2 days later. Histopathological, behavioral, and electrophysiological outcomes were measured 1-week post-reperfusion. Animals with reduction in cerebral blood flow <30% of baseline were excluded. RESULTS: Cholinergic cell loss was observed in the medial septal nucleus and diagonal band of Broca following transient middle cerebral artery occlusion. This effect was prevented by resveratrol preconditioning, which also ameliorated transient middle cerebral artery occlusion-induced deficits in cognitive performance and hippocampal long-term potentiation. CONCLUSIONS: We demonstrate for the first time that focal cerebral ischemia induces cholinergic cell death within memory-relevant nuclei of the BF. The preservation of cholinergic cell viability may provide a mechanism by which resveratrol preconditioning improves memory performance and preserves functionality of memory-processing brain structures after focal cerebral ischemia.


Asunto(s)
Infarto de la Arteria Cerebral Media , Trastornos de la Memoria , Fármacos Neuroprotectores , Resveratrol , Animales , Ratones , Ratas , Isquemia Encefálica , Muerte Celular/efectos de los fármacos , Resveratrol/farmacología , Cognición
3.
Stroke ; 54(6): e251-e271, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37009740

RESUMEN

BACKGROUND: Preservation of brain health has emerged as a leading public health priority for the aging world population. Advances in neurovascular biology have revealed an intricate relationship among brain cells, meninges, and the hematic and lymphatic vasculature (the neurovasculome) that is highly relevant to the maintenance of cognitive function. In this scientific statement, a multidisciplinary team of experts examines these advances, assesses their relevance to brain health and disease, identifies knowledge gaps, and provides future directions. METHODS: Authors with relevant expertise were selected in accordance with the American Heart Association conflict-of-interest management policy. They were assigned topics pertaining to their areas of expertise, reviewed the literature, and summarized the available data. RESULTS: The neurovasculome, composed of extracranial, intracranial, and meningeal vessels, as well as lymphatics and associated cells, subserves critical homeostatic functions vital for brain health. These include delivering O2 and nutrients through blood flow and regulating immune trafficking, as well as clearing pathogenic proteins through perivascular spaces and dural lymphatics. Single-cell omics technologies have unveiled an unprecedented molecular heterogeneity in the cellular components of the neurovasculome and have identified novel reciprocal interactions with brain cells. The evidence suggests a previously unappreciated diversity of the pathogenic mechanisms by which disruption of the neurovasculome contributes to cognitive dysfunction in neurovascular and neurodegenerative diseases, providing new opportunities for the prevention, recognition, and treatment of these conditions. CONCLUSIONS: These advances shed new light on the symbiotic relationship between the brain and its vessels and promise to provide new diagnostic and therapeutic approaches for brain disorders associated with cognitive dysfunction.


Asunto(s)
Disfunción Cognitiva , Accidente Cerebrovascular , Estados Unidos , Humanos , American Heart Association , Accidente Cerebrovascular/terapia , Encéfalo , Cognición
4.
Stroke ; 53(5): 1432-1437, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35467998

RESUMEN

Local and systemic inflammation contribute significantly to stroke risk factors as well as determining stroke impact and outcome. Previously being considered as an immuno-privileged domain, the central nervous system is now recognized for multiple and complex interactions with the immune system in health and disease. The sterile inflammatory response emerging after ischemic stroke is a major pathophysiological hallmark and considered to be a promising therapeutic target. Even (mal)adaptive immune responses following stroke, potentially contributing to long-term impact and outcome, are increasingly discussed. However, the complex interaction between the central nervous and the immune system are only partially understood, placing neuroimmunological investigations at the forefront of preclinical and clinical research. This Focused Update summarizes current knowledge in stroke neuroimmunology across all relevant disciplines and discusses major advances as well as recent mechanistic insights. Specifically, neuroimmunological processes and neuroinflammation following ischemic are discussed in the context of blood-brain barrier dysfunction, microglia activation, thromboinflammation, and sex differences in poststroke neuroimmunological responses. The Focused Update further highlights advances in neuroimaging and experimental treatments to visualize and counter neuroinflammatory consequences of ischemic stroke.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Trombosis , Femenino , Humanos , Inflamación , Masculino , Accidente Cerebrovascular/terapia
5.
Stroke ; 53(10): 3182-3191, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36069183

RESUMEN

BACKGROUND: Spontaneous intracerebral hemorrhage (sICH) is the deadliest stroke subtype with no effective therapies. Limiting hematoma expansion is a promising therapeutic approach. Red blood cell-derived microparticles (RMPs) are novel hemostatic agents. Therefore, we studied the potential of RMPs in limiting hematoma growth and improving outcomes post-sICH. METHODS: sICH was induced in rats by intrastriatal injection of collagenase. RMPs were prepared from human RBCs by high-pressure extrusion. Behavioral and hematoma/lesion volume assessment were done post-sICH. The optimal dose, dosing regimen, and therapeutic time window of RMP therapy required to limit hematoma growth post-sICH were determined. We also evaluated the effect of RMPs on long-term behavioral and histopathologic outcomes post-sICH. RESULTS: RMP treatment limited hematoma growth following sICH. Hematoma volume (mm3) for vehicle- and RMP- (2.66×1010 particles/kg) treated group was 143±8 and 86±4, respectively. The optimal RMP dosing regimen that limits hematoma expansion was identified. RMPs limit hematoma volume when administered up to 4.5-hour post-sICH. Hematoma volume in the 4.5-hour post-sICH RMP treatment group was lower by 24% when compared with the control group. RMP treatment also improved long-term histopathologic and behavioral outcomes post-sICH. CONCLUSIONS: Our results demonstrate that RMP therapy limits hematoma growth and improves outcomes post-sICH in a rodent model. Therefore, RMPs have the potential to limit hematoma growth in sICH patients.


Asunto(s)
Micropartículas Derivadas de Células , Hemostáticos , Animales , Hemorragia Cerebral/diagnóstico por imagen , Hemorragia Cerebral/tratamiento farmacológico , Eritrocitos , Hematoma/diagnóstico por imagen , Hematoma/tratamiento farmacológico , Hemostáticos/uso terapéutico , Humanos , Ratas
6.
Int J Mol Sci ; 23(24)2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36555717

RESUMEN

Smoking-derived nicotine (N) and oral contraceptive (OC) synergistically exacerbate ischemic brain damage in females, and the underlying mechanisms remain elusive. In a previous study, we showed that N + OC exposure altered brain glucose metabolism in females. Since lipid metabolism complements glycolysis, the current study aims to examine the metabolic fingerprint of fatty acids in the brain of female rats exposed to N+/-OC. Adolescent and adult Sprague-Dawley female rats were randomly (n = 8 per group) exposed to either saline or N (4.5 mg/kg) +/-OC (combined OC or placebo delivered via oral gavage) for 16-21 days. Following exposure, brain tissue was harvested for unbiased metabolomic analysis (performed by Metabolon Inc., Morrisville, NC, USA) and the metabolomic profile changes were complemented with Western blot analysis of key enzymes in the lipid pathway. Metabolomic data showed significant accumulation of fatty acids and phosphatidylcholine (PC) metabolites in the brain. Adolescent, more so than adult females, exposed to N + OC showed significant increases in carnitine-conjugated fatty acid metabolites compared to saline control animals. These changes in fatty acyl carnitines were accompanied by an increase in a subset of free fatty acids, suggesting elevated fatty acid ß-oxidation in the mitochondria to meet energy demand. In support, ß-hydroxybutyrate was significantly lower in N + OC exposure groups in adolescent animals, implying a complete shunting of acetyl CoA for energy production via the TCA cycle. The reported changes in fatty acids and PC metabolism due to N + OC could inhibit post-translational palmitoylation of membrane proteins and synaptic vesicle formation, respectively, thus exacerbating ischemic brain damage in female rats.


Asunto(s)
Anticonceptivos Orales , Nicotina , Humanos , Ratas , Femenino , Animales , Ratas Sprague-Dawley , Ácidos Grasos/metabolismo , Encéfalo/metabolismo , Metabolismo de los Lípidos , Oxidación-Reducción
7.
Int J Mol Sci ; 23(23)2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36499494

RESUMEN

Spontaneous intracerebral hemorrhage (sICH) is a disabling stroke sub-type, and tobacco use is a prominent risk factor for sICH. We showed that chronic nicotine exposure enhances bleeding post-sICH. Reduction of hematoma growth is a promising effective therapy for sICH in smoking subjects. Red-blood-cell-derived microparticles (RMPs) are hemostatic agents that limit hematoma expansion following sICH in naïve rats. Considering the importance of testing the efficacy of experimental drugs in animal models with a risk factor for a disease, we tested RMP efficacy and the therapeutic time window in limiting hematoma growth post-sICH in rats exposed to nicotine. Young rats were chronically treated with nicotine using osmotic pumps. sICH was induced in rats using an injection of collagenase in the right striatum. Vehicle/RMPs were administered intravenously. Hematoma volume and neurological impairment were quantified ≈24 h after sICH. Hematoma volumes in male and female nicotine-exposed rats that were treated with RMPs at 2 h post-sICH were significantly lower by 26 and 31% when compared to their respective control groups. RMP therapy was able to limit hematoma volume when administered up to 4.5 h post-sICH in animals of both sexes. Therefore, RMPs may limit hematoma growth in sICH patients exposed to tobacco use.


Asunto(s)
Micropartículas Derivadas de Células , Nicotina , Masculino , Femenino , Ratas , Animales , Nicotina/efectos adversos , Resultado del Tratamiento , Hemorragia Cerebral/terapia , Hematoma/etiología
8.
Front Neuroendocrinol ; 59: 100861, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32781196

RESUMEN

Menopause, an inevitable event in a woman's life, significantly increases risk of bone resorption and diseases such as Alzheimer's, vascular dementia, cardiac arrest, and stroke. The sole role of bones, as traditionally regarded, is to provide structural support for skeletal muscles and allow for ambulation, however this concept is becoming quickly outdated. New literature has emerged that suggests the bone cell-derived hormone osteocalcin (OCN) plays a pivotal role in cognition. OCN levels are correlated with bone mass density and bone turnover, and thus are strongly influenced by the changes associated with menopause. The goal of the current review is to discuss potential gaps in our knowledge of OCN and cognition, discrepancies in methods of OCN quantification, and therapies to enhance circulating OCN. A discussion on implementing exercise or low frequency vibration interventions at the menopausal transition to reduce risk and severity of neurological diseases and associated cognitive decline is included.


Asunto(s)
Encéfalo/fisiología , Cognición/fisiología , Disfunción Cognitiva/fisiopatología , Menopausia/fisiología , Osteocalcina/sangre , Ovario/fisiología , Femenino , Humanos , Menopausia/sangre
9.
Int J Mol Sci ; 20(14)2019 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-31331067

RESUMEN

Neurodegenerative diseases are among the leading causes of mortality and disability worldwide. However, current therapeutic approaches have failed to reach significant results in their prevention and cure. Protein Kinase Cs (PKCs) are kinases involved in the pathophysiology of neurodegenerative diseases, such as Alzheimer's Disease (AD) and cerebral ischemia. Specifically ε, δ, and γPKC are associated with the endogenous mechanism of protection referred to as ischemic preconditioning (IPC). Existing modulators of PKCs, in particular of εPKC, such as ψεReceptor for Activated C-Kinase (ψεRACK) and Resveratrol, have been proposed as a potential therapeutic strategy for cerebrovascular and cognitive diseases. PKCs change in expression during aging, which likely suggests their association with IPC-induced reduction against ischemia and increase of neuronal loss occurring in senescent brain. This review describes the link between PKCs and cerebrovascular and cognitive disorders, and proposes PKCs modulators as innovative candidates for their treatment. We report original data showing εPKC reduction in levels and activity in the hippocampus of old compared to young rats and a reduction in the levels of δPKC and γPKC in old hippocampus, without a change in their activity. These data, integrated with other findings discussed in this review, demonstrate that PKCs modulators may have potential to restore age-related reduction of endogenous mechanisms of protection against neurodegeneration.


Asunto(s)
Encéfalo/metabolismo , Neuroprotección , Proteína Quinasa C/metabolismo , Factores de Edad , Envejecimiento/metabolismo , Animales , Biomarcadores , Susceptibilidad a Enfermedades , Desarrollo de Medicamentos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Terapia Molecular Dirigida , Enfermedades del Sistema Nervioso/diagnóstico , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Enfermedades del Sistema Nervioso/etiología , Enfermedades del Sistema Nervioso/metabolismo , Proteína Quinasa C/química , Proteína Quinasa C/genética , Transducción de Señal/efectos de los fármacos
11.
Int J Mol Sci ; 19(5)2018 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-29710856

RESUMEN

Smoking is a preventable risk factor for stroke and smoking-derived nicotine exacerbates post-ischemic damage via inhibition of estrogen receptor beta (ER-β) signaling in the brain of female rats. ER-β regulates inflammasome activation in the brain. Therefore, we hypothesized that chronic nicotine exposure activates the inflammasome in the brain, thus exacerbating ischemic brain damage in female rats. To test this hypothesis, adult female Sprague-Dawley rats (6⁻7 months old) were exposed to nicotine (4.5 mg/kg/day) or saline for 16 days. Subsequently, brain tissue was collected for immunoblot analysis. In addition, another set of rats underwent transient middle cerebral artery occlusion (tMCAO; 90 min) with or without nicotine exposure. One month after tMCAO, histopathological analysis revealed a significant increase in infarct volume in the nicotine-treated group (64.24 ± 7.3 mm³; mean ± SEM; n = 6) compared to the saline-treated group (37.12 ± 7.37 mm³; n = 7, p < 0.05). Immunoblot analysis indicated that nicotine increased cortical protein levels of caspase-1, apoptosis-associated speck-like protein containing a CARD (ASC) and pro-inflammatory cytokines interleukin (IL)-1β by 88% (p < 0.05), 48% (p < 0.05) and 149% (p < 0.05), respectively, when compared to the saline-treated group. Next, using an in vitro model of ischemia in organotypic slice cultures, we tested the hypothesis that inhibition of nicotine-induced inflammasome activation improves post-ischemic neuronal survival. Accordingly, slices were exposed to nicotine (100 ng/mL; 14⁻16 days) or saline, followed by treatment with the inflammasome inhibitor isoliquiritigenin (ILG; 24 h) prior to oxygen-glucose deprivation (OGD; 45 min). Quantification of neuronal death demonstrated that inflammasome inhibition significantly decreased nicotine-induced ischemic neuronal death. Overall, this study shows that chronic nicotine exposure exacerbates ischemic brain damage via activation of the inflammasome in the brain of female rats.


Asunto(s)
Receptor beta de Estrógeno/metabolismo , Infarto de la Arteria Cerebral Media/metabolismo , Inflamasomas/metabolismo , Nicotina/farmacología , Agonistas Nicotínicos/farmacología , Fumar/efectos adversos , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Femenino , Inflamasomas/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
12.
Stroke ; 48(11): 3117-3125, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-29018134

RESUMEN

BACKGROUND AND PURPOSE: Resveratrol, at least in part via SIRT1 (silent information regulator 2 homologue 1) activation, protects against cerebral ischemia when administered 2 days before injury. However, it remains unclear if SIRT1 activation must occur, and in which brain cell types, for the induction of neuroprotection. We hypothesized that neuronal SIRT1 is essential for resveratrol-induced ischemic tolerance and sought to characterize the metabolic pathways regulated by neuronal Sirt1 at the cellular level in the brain. METHODS: We assessed infarct size and functional outcome after transient 60 minute middle cerebral artery occlusion in control and inducible, neuronal-specific SIRT1 knockout mice. Nontargeted primary metabolomics analysis identified putative SIRT1-regulated pathways in brain. Glycolytic function was evaluated in acute brain slices from adult mice and primary neuronal-enriched cultures under ischemic penumbra-like conditions. RESULTS: Resveratrol-induced neuroprotection from stroke was lost in neuronal Sirt1 knockout mice. Metabolomics analysis revealed alterations in glucose metabolism on deletion of neuronal Sirt1, accompanied by transcriptional changes in glucose metabolism machinery. Furthermore, glycolytic ATP production was impaired in acute brain slices from neuronal Sirt1 knockout mice. Conversely, resveratrol increased glycolytic rate in a SIRT1-dependent manner and under ischemic penumbra-like conditions in vitro. CONCLUSIONS: Our data demonstrate that resveratrol requires neuronal SIRT1 to elicit ischemic tolerance and identify a novel role for SIRT1 in the regulation of glycolytic function in brain. Identification of robust neuroprotective mechanisms that underlie ischemia tolerance and the metabolic adaptations mediated by SIRT1 in brain are crucial for the translation of therapies in cerebral ischemia and other neurological disorders.


Asunto(s)
Isquemia Encefálica/metabolismo , Glucólisis/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Sirtuina 1/metabolismo , Estilbenos/farmacología , Accidente Cerebrovascular/metabolismo , Animales , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/genética , Modelos Animales de Enfermedad , Ratones , Ratones Noqueados , Neuronas/metabolismo , Resveratrol , Sirtuina 1/genética , Accidente Cerebrovascular/genética , Accidente Cerebrovascular/patología
13.
Stroke ; 48(8): 2306-2309, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28663509

RESUMEN

BACKGROUND AND PURPOSE: Preclinical studies suggest that exercise can enhance cognition after cerebral ischemia but often use long training regiments and test cognition during or acutely after training. The cognitive changes may result from enhanced physical fitness and may only provide acute benefit. We sought to determine whether a short period of exercise after cerebral ischemia could improve cognitive outcomes when measured days after completion of exercise training in 2 cerebral ischemia models. METHODS: Focal or global cerebral ischemia was induced in Sprague-Dawley rats. Rats recovered (3-4 days) then were subject to no exercise (0 m/min), mild (6 m/min), moderate (10 m/min), or heavy (15-18 m/min) treadmill exercise (5-6 days). Cognition was tested 8 to 10 days after the last exercise session with hippocampal-dependent contextual fear conditioning. RESULTS: A short training period of moderate exercise enhanced cognitive function for a week after exercise completion in both models of cerebral ischemia. CONCLUSIONS: Utilization of this exercise paradigm can further the elucidation of exercise-mediated factors involved in cognitive recovery independent of changes in physical fitness.


Asunto(s)
Cognición/fisiología , Modelos Animales de Enfermedad , Ataque Isquémico Transitorio/terapia , Condicionamiento Físico Animal/fisiología , Animales , Ataque Isquémico Transitorio/fisiopatología , Ataque Isquémico Transitorio/psicología , Masculino , Condicionamiento Físico Animal/métodos , Condicionamiento Físico Animal/psicología , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley
14.
J Neuroinflammation ; 14(1): 21, 2017 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-28115020

RESUMEN

Stroke is one of the leading causes of death worldwide. A strong inflammatory response characterized by activation and release of cytokines, chemokines, adhesion molecules, and proteolytic enzymes contributes to brain damage following stroke. Stroke outcomes are worse among diabetics, resulting in increased mortality and disabilities. Diabetes involves chronic inflammation manifested by reactive oxygen species generation, expression of proinflammatory cytokines, and activation/expression of other inflammatory mediators. It appears that increased proinflammatory processes due to diabetes are further accelerated after cerebral ischemia, leading to increased ischemic damage. Hypoglycemia is an intrinsic side effect owing to glucose-lowering therapy in diabetics, and is known to induce proinflammatory changes as well as exacerbate cerebral damage in experimental stroke. Here, we present a review of available literature on the contribution of neuroinflammation to increased cerebral ischemic damage in diabetics. We also describe the role of hypoglycemia in neuroinflammation and cerebral ischemic damage in diabetics. Understanding the role of neuroinflammatory mechanisms in worsening stroke outcome in diabetics may help limit ischemic brain injury and improve clinical outcomes.


Asunto(s)
Diabetes Mellitus/fisiopatología , Encefalitis/etiología , Accidente Cerebrovascular/complicaciones , Animales , Encéfalo/metabolismo , Citocinas/metabolismo , Humanos , Accidente Cerebrovascular/patología
15.
J Neurochem ; 136(3): 492-6, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26490364

RESUMEN

Periodic treatments with estrogen receptor subtype-ß (ER-ß) agonist reduce post-ischemic hippocampal injury in ovariectomized rats. However, the underlying mechanism of how ER-ß agonists protect the brain remains unknown. Global cerebral ischemia activates the innate immune response, and a key component of the innate immune response is the inflammasome. This study tests the hypothesis that ER-ß regulates inflammasome activation in the hippocampus, thus reducing ischemic hippocampal damage in reproductively senescent female rats that received periodic ER-ß agonist treatments. First, we determined the effect of hippocampal ER-ß silencing on the expression of the inflammasome proteins caspase 1, apoptosis-associated speck-like protein containing a CARD (ASC), and interleukin (IL)-1ß. Silencing of ER-ß attenuated 17ß-estradiol mediated decrease in caspase 1, ASC, and IL-1ß. Next, we tested the hypothesis that periodic ER-ß agonist treatment reduces inflammasome activation and ischemic damage in reproductively senescent female rats. Periodic ER-ß agonist treatments significantly decreased inflammasome activation and increased post-ischemic live neuronal counts by 32% (p < 0.05) as compared to the vehicle-treated, reproductively senescent rats. Current findings demonstrated that ER-ß activation regulates inflammasome activation and protects the brain from global ischemic damage in reproductively senescent female rats. Further investigation on the role of a periodic ER-ß agonist regimen to reduce the innate immune response in the brain could help reduce the incidence and the impact of global cerebral ischemia in post-menopausal women. We propose that estrogen receptor subtype-ß (ER-ß) activation regulates inflammasome activation and protects the brain from global ischemic damage in reproductively senescent female rats.


Asunto(s)
Envejecimiento , Isquemia Encefálica/complicaciones , Receptor beta de Estrógeno/metabolismo , Hipocampo/metabolismo , Inflamasomas/metabolismo , Transducción de Señal/fisiología , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/patología , Proteínas Adaptadoras de Señalización CARD , Caspasa 1/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Hipocampo/efectos de los fármacos , Hipocampo/patología , Inmunidad Innata/efectos de los fármacos , NAD/farmacología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Oligodesoxirribonucleótidos Antisentido/farmacología , Ovariectomía , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos
16.
Basic Res Cardiol ; 111(6): 70, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27766474

RESUMEN

To commemorate the auspicious occasion of the 30th anniversary of IPC, leading pioneers in the field of cardioprotection gathered in Barcelona in May 2016 to review and discuss the history of IPC, its evolution to IPost and RIC, myocardial reperfusion injury as a therapeutic target, and future targets and strategies for cardioprotection. This article provides an overview of the major topics discussed at this special meeting and underscores the huge importance and impact, the discovery of IPC has made in the field of cardiovascular research.


Asunto(s)
Precondicionamiento Isquémico Miocárdico , Daño por Reperfusión Miocárdica , Animales , Humanos
17.
Stroke ; 46(6): 1626-32, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25908459

RESUMEN

BACKGROUND AND PURPOSE: Nuclear erythroid 2 related factor 2 (Nrf2) is an astrocyte-enriched transcription factor that has previously been shown to upregulate cellular antioxidant systems in response to ischemia. Although resveratrol preconditioning (RPC) has emerged as a potential neuroprotective therapy, the involvement of Nrf2 in RPC-induced neuroprotection and mitochondrial reactive oxygen species production after cerebral ischemia remains unclear. The goal of our study was to study the contribution of Nrf2 to RPC and its effects on mitochondrial function. METHODS: We used rodent astrocyte cultures and an in vivo stroke model with RPC. An Nrf2 DNA binding ELISA and protein analysis via Western blotting of downstream Nrf2 targets were performed to determine RPC-induced activation of Nrf2 in rat and mouse astrocytes. After RPC, mitochondrial function was determined by measuring reactive oxygen species production and mitochondrial respiration in both wild-type and Nrf2-/- mice. Infarct volume was measured to determine neuroprotection, whereas protein levels were measured by immunoblotting. RESULTS: We report that Nrf2 is activated by RPC in rodent astrocyte cultures, and that loss of Nrf2 reduced RPC-mediated neuroprotection in a mouse model of focal cerebral ischemia. In addition, we observed that wild-type and Nrf2-/- cortical mitochondria exhibited increased uncoupling and reactive oxygen species production after RPC treatments. Finally, Nrf2-/- astrocytes exhibited decreased mitochondrial antioxidant expression and were unable to upregulate cellular antioxidants after RPC treatment. CONCLUSIONS: Nrf2 contributes to RPC-induced neuroprotection through maintaining mitochondrial coupling and antioxidant protein expression.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Isquemia Encefálica/prevención & control , Factor 2 Relacionado con NF-E2/metabolismo , Fármacos Neuroprotectores/farmacología , Estilbenos/farmacología , Animales , Antioxidantes/metabolismo , Astrocitos/metabolismo , Astrocitos/patología , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Células Cultivadas , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Mitocondrias/patología , Factor 2 Relacionado con NF-E2/genética , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Resveratrol
19.
Stroke ; 46(8): 2293-8, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26159789

RESUMEN

BACKGROUND AND PURPOSE: Prophylactic treatments that afford neuroprotection against stroke may emerge from the field of preconditioning. Resveratrol mimics ischemic preconditioning, reducing ischemic brain injury when administered 2 days before global ischemia in rats. This protection is linked to silent information regulator 2 homologue 1 (Sirt1) and enhanced mitochondrial function possibly through its repression of uncoupling protein 2. Brain-derived neurotrophic factor (BDNF) is another neuroprotective protein associated with Sirt1. In this study, we sought to identify the conditions of resveratrol preconditioning (RPC) that most robustly induce neuroprotection against focal ischemia in mice. METHODS: We tested 4 different RPC paradigms against a middle cerebral artery occlusion model of stroke. Infarct volume and neurological score were calculated 24 hours after middle cerebral artery occlusion. Sirt1-chromatin binding was evaluated by ChIP-qPCR. Percoll gradients were used to isolate synaptic fractions, and changes in protein expression were determined via Western blot analysis. BDNF concentration was measured using a BDNF-specific ELISA assay. RESULTS: Although repetitive RPC induced neuroprotection from middle cerebral artery occlusion, strikingly one application of RPC 14 days before middle cerebral artery occlusion showed the most robust protection, reducing infarct volume by 33% and improving neurological score by 28%. Fourteen days after RPC, Sirt1 protein was increased 1.5-fold and differentially bound to the uncoupling protein 2 and BDNF promoter regions. Accordingly, synaptic uncoupling protein 2 level decreased by 23% and cortical BDNF concentration increased 26%. CONCLUSIONS: RPC induces a novel extended window of ischemic tolerance in the brain that lasts for at least 14 days. Our data suggest that this tolerance may be mediated by Sirt1 through upregulation of BDNF and downregulation of uncoupling protein 2.


Asunto(s)
Isquemia Encefálica/prevención & control , Encéfalo/efectos de los fármacos , Fármacos Neuroprotectores/administración & dosificación , Estilbenos/administración & dosificación , Animales , Encéfalo/patología , Isquemia Encefálica/patología , Esquema de Medicación , Masculino , Ratones , Ratones Endogámicos C57BL , Resveratrol , Factores de Tiempo
20.
J Bioenerg Biomembr ; 47(1-2): 101-10, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25262285

RESUMEN

There is extensive evidence that ischemic/reperfusion mediated mitochondrial dysfunction is a major contributor to ischemic damage. However data also indicates that mild ischemic stress induces mitochondrial dependent activation of ischemic preconditioning. Ischemic preconditioning is a neuroprotective mechanism which is activated upon a brief sub-injurious ischemic exposure and is sufficient to provide protection against a subsequent lethal ischemic insult. Current research demonstrates that mitochondria are not only the inducers of but are also an important target of ischemic preconditioning mediated protection. Numerous proteins and signaling pathways are activated by ischemic preconditioning which protect the mitochondria against ischemic damage. In this review we examine some of the proteins activated by ischemic precondition which counteracts the deleterious effects of ischemia/reperfusion thereby maintaining normal mitochondrial activity and lead to ischemic tolerance.


Asunto(s)
Isquemia Encefálica/metabolismo , Precondicionamiento Isquémico , Mitocondrias/metabolismo , Animales , Isquemia Encefálica/patología , Isquemia Encefálica/prevención & control , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA