Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 81(19): 6577-88, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26162887

RESUMEN

Fungus-growing termites rely on symbiotic microorganisms to help break down plant material and to obtain nutrients. Their fungal cultivar, Termitomyces, is the main plant degrader and food source for the termites, while gut bacteria complement Termitomyces in the degradation of foodstuffs, fixation of nitrogen, and metabolism of amino acids and sugars. Due to the community complexity and because these typically anaerobic bacteria can rarely be cultured, little is known about the physiological capabilities of individual bacterial members of the gut communities and their associations with the termite host. The bacterium Trabulsiella odontotermitis is associated with fungus-growing termites, but this genus is generally understudied, with only two described species. Taking diverse approaches, we obtained a solid phylogenetic placement of T. odontotermitis among the Enterobacteriaceae, investigated the physiology and enzymatic profiles of T. odontotermitis isolates, determined the localization of the bacterium in the termite gut, compared draft genomes of two T. odontotermitis isolates to those of their close relatives, and examined the expression of genes relevant to host colonization and putative symbiont functions. Our findings support the hypothesis that T. odontotermitis is a facultative symbiont mainly located in the paunch compartment of the gut, with possible roles in carbohydrate metabolism and aflatoxin degradation, while displaying adaptations to association with the termite host, such as expressing genes for a type VI secretion system which has been demonstrated to assist bacterial competition, colonization, and survival within hosts.


Asunto(s)
Enterobacteriaceae/fisiología , Isópteros/microbiología , Termitomyces/crecimiento & desarrollo , Animales , Enterobacteriaceae/clasificación , Enterobacteriaceae/genética , Enterobacteriaceae/aislamiento & purificación , Microbioma Gastrointestinal , Genoma Fúngico , Isópteros/fisiología , Datos de Secuencia Molecular , Filogenia , Simbiosis , Termitomyces/clasificación , Termitomyces/genética , Termitomyces/fisiología
2.
BMC Genomics ; 15: 508, 2014 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-24952641

RESUMEN

BACKGROUND: A wealth of genome sequences has provided thousands of genes of unknown function, but identification of functions for the large numbers of hypothetical genes in phytopathogens remains a challenge that impacts all research on plant-microbe interactions. Decades of research on the molecular basis of pathogenesis focused on a limited number of factors associated with long-known host-microbe interaction systems, providing limited direction into this challenge. Computational approaches to identify virulence genes often rely on two strategies: searching for sequence similarity to known host-microbe interaction factors from other organisms, and identifying islands of genes that discriminate between pathogens of one type and closely related non-pathogens or pathogens of a different type. The former is limited to known genes, excluding vast collections of genes of unknown function found in every genome. The latter lacks specificity, since many genes in genomic islands have little to do with host-interaction. RESULT: In this study, we developed a supervised machine learning approach that was designed to recognize patterns from large and disparate data types, in order to identify candidate host-microbe interaction factors. The soft rot Enterobacteriaceae strains Dickeya dadantii 3937 and Pectobacterium carotovorum WPP14 were used for development of this tool, because these pathogens are important on multiple high value crops in agriculture worldwide and more genomic and functional data is available for the Enterobacteriaceae than any other microbial family. Our approach achieved greater than 90% precision and a recall rate over 80% in 10-fold cross validation tests. CONCLUSION: Application of the learning scheme to the complete genome of these two organisms generated a list of roughly 200 candidates, many of which were previously not implicated in plant-microbe interaction and many of which are of completely unknown function. These lists provide new targets for experimental validation and further characterization, and our approach presents a promising pattern-learning scheme that can be generalized to create a resource to study host-microbe interactions in other bacterial phytopathogens.


Asunto(s)
Inteligencia Artificial , Enterobacteriaceae/genética , Interacciones Huésped-Patógeno , Pectobacterium carotovorum/genética , Enfermedades de las Plantas/microbiología , Biología Computacional/métodos , Genes Bacterianos , Genómica/métodos , Curva ROC , Reproducibilidad de los Resultados , Virulencia/genética , Factores de Virulencia/genética
3.
BMC Genomics ; 13: 110, 2012 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-22439737

RESUMEN

BACKGROUND: Dickeya dadantii and Pectobacterium atrosepticum are phytopathogenic enterobacteria capable of facultative anaerobic growth in a wide range of O2 concentrations found in plant and natural environments. The transcriptional response to O2 remains under-explored for these and other phytopathogenic enterobacteria although it has been well characterized for animal-associated genera including Escherichia coli and Salmonella enterica. Knowledge of the extent of conservation of the transcriptional response across orthologous genes in more distantly related species is useful to identify rates and patterns of regulon evolution. Evolutionary events such as loss and acquisition of genes by lateral transfer events along each evolutionary branch results in lineage-specific genes, some of which may have been subsequently incorporated into the O2-responsive stimulon. Here we present a comparison of transcriptional profiles measured using densely tiled oligonucleotide arrays for two phytopathogens, Dickeya dadantii 3937 and Pectobacterium atrosepticum SCRI1043, grown to mid-log phase in MOPS minimal medium (0.1% glucose) with and without O2. RESULTS: More than 7% of the genes of each phytopathogen are differentially expressed with greater than 3-fold changes under anaerobic conditions. In addition to anaerobic metabolism genes, the O2 responsive stimulon includes a variety of virulence and pathogenicity-genes. Few of these genes overlap with orthologous genes in the anaerobic stimulon of E. coli. We define these as the conserved core, in which the transcriptional pattern as well as genetic architecture are well preserved. This conserved core includes previously described anaerobic metabolic pathways such as fermentation. Other components of the anaerobic stimulon show variation in genetic content, genome architecture and regulation. Notably formate metabolism, nitrate/nitrite metabolism, and fermentative butanediol production, differ between E. coli and the phytopathogens. Surprisingly, the overlap of the anaerobic stimulon between the phytopathogens is also relatively small considering that they are closely related, occupy similar niches and employ similar strategies to cause disease. There are cases of interesting divergences in the pattern of transcription of genes between Dickeya and Pectobacterium for virulence-associated subsystems including the type VI secretion system (T6SS), suggesting that fine-tuning of the stimulon impacts interaction with plants or competing microbes. CONCLUSIONS: The small number of genes (an even smaller number if we consider operons) comprising the conserved core transcriptional response to O2 limitation demonstrates the extent of regulatory divergence prevalent in the Enterobacteriaceae. Our orthology-driven comparative transcriptomics approach indicates that the adaptive response in the eneterobacteria is a result of interaction of core (regulators) and lineage-specific (structural and regulatory) genes. Our subsystems based approach reveals that similar phenotypic outcomes are sometimes achieved by each organism using different genes and regulatory strategies.


Asunto(s)
Enterobacteriaceae/genética , Anaerobiosis/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Enterobacteriaceae/clasificación , Enterobacteriaceae/metabolismo , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica , Orden Génico , Redes y Vías Metabólicas/genética , Consumo de Oxígeno/genética , Filogenia , Transcripción Genética
4.
BMC Genomics ; 13: 533, 2012 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-23035691

RESUMEN

BACKGROUND: The broad ecological distribution of L. casei makes it an insightful subject for research on genome evolution and lifestyle adaptation. To explore evolutionary mechanisms that determine genomic diversity of L. casei, we performed comparative analysis of 17 L. casei genomes representing strains collected from dairy, plant, and human sources. RESULTS: Differences in L. casei genome inventory revealed an open pan-genome comprised of 1,715 core and 4,220 accessory genes. Extrapolation of pan-genome data indicates L. casei has a supragenome approximately 3.2 times larger than the average genome of individual strains. Evidence suggests horizontal gene transfer from other bacterial species, particularly lactobacilli, has been important in adaptation of L. casei to new habitats and lifestyles, but evolution of dairy niche specialists also appears to involve gene decay. CONCLUSIONS: Genome diversity in L. casei has evolved through gene acquisition and decay. Acquisition of foreign genomic islands likely confers a fitness benefit in specific habitats, notably plant-associated niches. Loss of unnecessary ancestral traits in strains collected from bacterial-ripened cheeses supports the hypothesis that gene decay contributes to enhanced fitness in that niche. This study gives the first evidence for a L. casei supragenome and provides valuable insights into mechanisms for genome evolution and lifestyle adaptation of this ecologically flexible and industrially important lactic acid bacterium. Additionally, our data confirm the Distributed Genome Hypothesis extends to non-pathogenic, ecologically flexible species like L. casei.


Asunto(s)
Adaptación Fisiológica/genética , Evolución Biológica , Genoma Bacteriano , Lacticaseibacillus casei/genética , Análisis por Conglomerados , Transferencia de Gen Horizontal , Islas Genómicas , Filogenia
5.
Nucleic Acids Res ; 38(Web Server issue): W321-5, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20529880

RESUMEN

chipD is a web server that facilitates design of DNA oligonucleotide probes for high-density tiling arrays, which can be used in a number of genomic applications such as ChIP-chip or gene-expression profiling. The server implements a probe selection algorithm that takes as an input, in addition to the target sequences, a set of parameters that allow probe design to be tailored to specific applications, protocols or the array manufacturer's requirements. The algorithm optimizes probes to meet three objectives: (i) probes should be specific; (ii) probes should have similar thermodynamic properties; and (iii) the target sequence coverage should be homogeneous and avoid significant gaps. The output provides in a text format, the list of probe sequences with their genomic locations, targeted strands and hybridization characteristics. chipD has been used successfully to design tiling arrays for bacteria and yeast. chipD is available at http://chipd.uwbacter.org/.


Asunto(s)
Análisis de Secuencia por Matrices de Oligonucleótidos , Sondas de Oligonucleótidos/química , Programas Informáticos , Algoritmos , Perfilación de la Expresión Génica , Internet , Rhodobacter sphaeroides/genética , Interfaz Usuario-Computador
6.
J Bacteriol ; 193(8): 2076-7, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21217001

RESUMEN

Dickeya dadantii is a plant-pathogenic enterobacterium responsible for the soft rot disease of many plants of economic importance. We present here the sequence of strain 3937, a strain widely used as a model system for research on the molecular biology and pathogenicity of this group of bacteria.


Asunto(s)
ADN Bacteriano/química , ADN Bacteriano/genética , Enterobacteriaceae/genética , Genoma Bacteriano , Enterobacteriaceae/aislamiento & purificación , Datos de Secuencia Molecular , Enfermedades de las Plantas/microbiología , Plantas/microbiología , Análisis de Secuencia de ADN
7.
Environ Microbiol ; 12(6): 1604-20, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20370821

RESUMEN

Pseudomonas savastanoi pv. savastanoi is a tumour-inducing pathogen of Olea europaea L. causing olive knot disease. Bioinformatic analysis of the draft genome sequence of strain NCPPB 3335, which encodes 5232 predicted coding genes on a total length of 5856 998 bp and a 57.12% G + C, revealed a large degree of conservation with Pseudomonas syringae pv. phaseolicola 1448A and P. syringae pv. tabaci 11528. However, NCPPB 3335 contains twelve variable genomic regions, which are absent in all previously sequenced P. syringae strains. Various features that could contribute to the ability of this strain to survive in a woody host were identified, including broad catabolic and transport capabilities for degrading plant-derived aromatic compounds, the duplication of sequences related to the biosynthesis of the phytohormone indoleacetic acid (iaaM, iaaH) and its amino acid conjugate indoleacetic acid-lysine (iaaL gene), and the repertoire of strain-specific putative type III secretion system effectors. Access to this seventh genome sequence belonging to the 'P. syringae complex' allowed us to identify 73 predicted coding genes that are NCPPB 3335-specific. Results shown here provide the basis for detailed functional analysis of a tumour-inducing pathogen of woody hosts and for the study of specific adaptations of a P. savastanoi pathovar.


Asunto(s)
Genoma Bacteriano , Tumores de Planta/microbiología , Pseudomonas/genética , Pseudomonas/patogenicidad , Virulencia/genética , Ácidos Indolacéticos/metabolismo , Secuencias Repetitivas Esparcidas , Datos de Secuencia Molecular , Olea/microbiología , Filogenia , Pseudomonas/clasificación , Pseudomonas/metabolismo
8.
Bioinformatics ; 25(16): 2071-3, 2009 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-19515959

RESUMEN

SUMMARY: Mauve Contig Mover provides a new method for proposing the relative order of contigs that make up a draft genome based on comparison to a complete or draft reference genome. A novel application of the Mauve aligner and viewer provides an automated reordering algorithm coupled with a powerful drill-down display allowing detailed exploration of results. AVAILABILITY: The software is available for download at http://gel.ahabs.wisc.edu/mauve.


Asunto(s)
Algoritmos , Mapeo Contig , Genoma , Alineación de Secuencia/métodos , Programas Informáticos , Análisis de Secuencia de ADN/métodos
9.
Nucleic Acids Res ; 36(Database issue): D519-23, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17999997

RESUMEN

ERIC, the Enteropathogen Resource Integration Center (www.ericbrc.org), is a new web portal serving as a rich source of information about enterobacteria on the NIAID established list of Select Agents related to biodefense-diarrheagenic Escherichia coli, Shigella spp., Salmonella spp., Yersinia enterocolitica and Yersinia pestis. More than 30 genomes have been completely sequenced, many more exist in draft form and additional projects are underway. These organisms are increasingly the focus of studies using high-throughput experimental technologies and computational approaches. This wealth of data provides unprecedented opportunities for understanding the workings of basic biological systems and discovery of novel targets for development of vaccines, diagnostics and therapeutics. ERIC brings information together from disparate sources and supports data comparison across different organisms, analysis of varying data types and visualization of analyses in human and computer-readable formats.


Asunto(s)
Bases de Datos Genéticas , Enterobacteriaceae/genética , Genoma Bacteriano , Proteínas Bacterianas/química , Proteínas Bacterianas/clasificación , Proteínas Bacterianas/genética , Investigación Biomédica , Bioterrorismo , Biología Computacional , Elementos Transponibles de ADN , Infecciones por Enterobacteriaceae/diagnóstico , Infecciones por Enterobacteriaceae/prevención & control , Infecciones por Enterobacteriaceae/terapia , Genómica , Internet , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteómica , Alineación de Secuencia , Programas Informáticos , Integración de Sistemas
10.
mBio ; 11(2)2020 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-32209682

RESUMEN

Pathogenicity islands and plasmids bear genes for pathogenesis of various Escherichia coli pathotypes. Although there is a basic understanding of the contribution of these virulence factors to disease, less is known about variation in regulatory networks in determining disease phenotypes. Here, we dissected a regulatory network directed by the conserved iron homeostasis regulator, ferric uptake regulator (Fur), in uropathogenic E. coli (UPEC) strain CFT073. Comparing anaerobic genome-scale Fur DNA binding with Fur-dependent transcript expression and protein levels of the uropathogen to that of commensal E. coli K-12 strain MG1655 showed that the Fur regulon of the core genome is conserved but also includes genes within the pathogenicity/genetic islands. Unexpectedly, regulons indicative of amino acid limitation and the general stress response were also indirectly activated in the uropathogen fur mutant, suggesting that induction of the Fur regulon increases amino acid demand. Using RpoS levels as a proxy, addition of amino acids mitigated the stress. In addition, iron chelation increased RpoS to the same levels as in the fur mutant. The increased amino acid demand of the fur mutant or iron chelated cells was exacerbated by aerobic conditions, which could be partly explained by the O2-dependent synthesis of the siderophore aerobactin, encoded by an operon within a pathogenicity island. Taken together, these data suggest that in the iron-poor environment of the urinary tract, amino acid availability could play a role in the proliferation of this uropathogen, particularly if there is sufficient O2 to produce aerobactin.IMPORTANCE Host iron restriction is a common mechanism for limiting the growth of pathogens. We compared the regulatory network controlled by Fur in uropathogenic E. coli (UPEC) to that of nonpathogenic E. coli K-12 to uncover strategies that pathogenic bacteria use to overcome iron limitation. Although iron homeostasis functions were regulated by Fur in the uropathogen as expected, a surprising finding was the activation of the stringent and general stress responses in the uropathogen fur mutant, which was rescued by amino acid addition. This coordinated global response could be important in controlling growth and survival under nutrient-limiting conditions and during transitions from the nutrient-rich environment of the lower gastrointestinal (GI) tract to the more restrictive environment of the urinary tract. The coupling of the response of iron limitation to increased demand for amino acids could be a critical attribute that sets UPEC apart from other E. coli pathotypes.


Asunto(s)
Proteínas Bacterianas/genética , Hierro/metabolismo , Regulón , Proteínas Represoras/genética , Escherichia coli Uropatógena/genética , Proteínas Bacterianas/metabolismo , ADN Bacteriano/genética , Regulación Bacteriana de la Expresión Génica , Genoma Bacteriano , Regiones Promotoras Genéticas , Unión Proteica , Proteínas Represoras/metabolismo , Escherichia coli Uropatógena/metabolismo , Factores de Virulencia/genética
11.
J Bacteriol ; 191(16): 5240-52, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19502398

RESUMEN

We have generated extreme ionizing radiation resistance in a relatively sensitive bacterial species, Escherichia coli, by directed evolution. Four populations of Escherichia coli K-12 were derived independently from strain MG1655, with each specifically adapted to survive exposure to high doses of ionizing radiation. D(37) values for strains isolated from two of the populations approached that exhibited by Deinococcus radiodurans. Complete genomic sequencing was carried out on nine purified strains derived from these populations. Clear mutational patterns were observed that both pointed to key underlying mechanisms and guided further characterization of the strains. In these evolved populations, passive genomic protection is not in evidence. Instead, enhanced recombinational DNA repair makes a prominent but probably not exclusive contribution to genome reconstitution. Multiple genes, multiple alleles of some genes, multiple mechanisms, and multiple evolutionary pathways all play a role in the evolutionary acquisition of extreme radiation resistance. Several mutations in the recA gene and a deletion of the e14 prophage both demonstrably contribute to and partially explain the new phenotype. Mutations in additional components of the bacterial recombinational repair system and the replication restart primosome are also prominent, as are mutations in genes involved in cell division, protein turnover, and glutamate transport. At least some evolutionary pathways to extreme radiation resistance are constrained by the temporally ordered appearance of specific alleles.


Asunto(s)
Evolución Molecular Dirigida , Escherichia coli/genética , Escherichia coli/efectos de la radiación , Radiación Ionizante , Cromatografía Líquida de Alta Presión , Electroforesis en Gel de Campo Pulsado , Escherichia coli/crecimiento & desarrollo , Mutación , Filogenia , Rec A Recombinasas/genética , Rec A Recombinasas/fisiología
12.
BMC Bioinformatics ; 10: 177, 2009 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-19515247

RESUMEN

BACKGROUND: The Enteropathogen Resource Integration Center (ERIC; http://www.ericbrc.org) has a goal of providing bioinformatics support for the scientific community researching enteropathogenic bacteria such as Escherichia coli and Salmonella spp. Rapid and accurate identification of experimental conclusions from the scientific literature is critical to support research in this field. Natural Language Processing (NLP), and in particular Information Extraction (IE) technology, can be a significant aid to this process. DESCRIPTION: We have trained a powerful, state-of-the-art IE technology on a corpus of abstracts from the microbial literature in PubMed to automatically identify and categorize biologically relevant entities and predicative relations. These relations include: Genes/Gene Products and their Roles; Gene Mutations and the resulting Phenotypes; and Organisms and their associated Pathogenicity. Evaluations on blind datasets show an F-measure average of greater than 90% for entities (genes, operons, etc.) and over 70% for relations (gene/gene product to role, etc). This IE capability, combined with text indexing and relational database technologies, constitute the core of our recently deployed text mining application. CONCLUSION: Our Text Mining application is available online on the ERIC website (http://www.ericbrc.org/portal/eric/articles). The information retrieval interface displays a list of recently published enteropathogen literature abstracts, and also provides a search interface to execute custom queries by keyword, date range, etc. Upon selection, processed abstracts and the entities and relations extracted from them are retrieved from a relational database and marked up to highlight the entities and relations. The abstract also provides links from extracted genes and gene products to the ERIC Annotations database, thus providing access to comprehensive genomic annotations and adding value to both the text-mining and annotations systems.


Asunto(s)
Indización y Redacción de Resúmenes , Biología Computacional/métodos , Enterobacteriaceae , Almacenamiento y Recuperación de la Información , Procesamiento de Lenguaje Natural , PubMed , Fenómenos Fisiológicos Bacterianos , Sistemas de Administración de Bases de Datos , Bases de Datos Factuales , Enterobacteriaceae/genética , Enterobacteriaceae/patogenicidad , Enterobacteriaceae/fisiología , Escherichia coli/genética , Escherichia coli/patogenicidad , Escherichia coli/fisiología , Internet , Salmonella/genética , Salmonella/patogenicidad , Salmonella/fisiología , Interfaz Usuario-Computador
13.
Appl Environ Microbiol ; 75(13): 4539-49, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19411432

RESUMEN

Pectobacterium species are enterobacterial plant-pathogenic bacteria that cause soft rot disease in diverse plant species. Previous epidemiological studies of Pectobacterium species have suffered from an inability to identify most isolates to the species or subspecies level. We used three previously described DNA-based methods, 16S-23S intergenic transcribed spacer PCR-restriction fragment length polymorphism analysis, multilocus sequence analysis (MLSA), and pulsed-field gel electrophoresis, to examine isolates from diseased stems and tubers and found that MLSA provided the most reliable classification of isolates. We found that strains belonging to at least two Pectobacterium clades were present in each field examined, although representatives of only three of five Pectobacterium clades were isolated. Hypersensitive response and DNA hybridization assays revealed that strains of both Pectobacterium carotovorum and Pectobacterium wasabiae lack a type III secretion system (T3SS). Two of the T3SS-deficient strains assayed lack genes adjacent to the T3SS gene cluster, suggesting that multiple deletions occurred in Pectobacterium strains in this locus, and all strains appear to have only six rRNA operons instead of the seven operons typically found in Pectobacterium strains. The virulence of most of the T3SS-deficient strains was similar to that of T3SS-encoding strains in stems and tubers.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas de Transporte de Membrana/deficiencia , Pectobacterium/clasificación , Pectobacterium/patogenicidad , Filogenia , Enfermedades de las Plantas/microbiología , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Espaciador Ribosómico , Electroforesis en Gel de Campo Pulsado , Genotipo , Datos de Secuencia Molecular , Familia de Multigenes , Pectobacterium/genética , Raíces de Plantas/microbiología , Tallos de la Planta/microbiología , Análisis de Secuencia de ADN , Eliminación de Secuencia , Virulencia
14.
BMC Microbiol ; 9 Suppl 1: S4, 2009 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-19278552

RESUMEN

Genome-informed identification and characterization of Type III effector repertoires in various bacterial strains and species is revealing important insights into the critical roles that these proteins play in the pathogenic strategies of diverse bacteria. However, non-systematic discipline-specific approaches to their annotation impede analysis of the accumulating wealth of data and inhibit easy communication of findings among researchers working on different experimental systems. The development of Gene Ontology (GO) terms to capture biological processes occurring during the interaction between organisms creates a common language that facilitates cross-genome analyses. The application of these terms to annotate type III effector genes in different bacterial species - the plant pathogen Pseudomonas syringae pv tomato DC3000 and animal pathogenic strains of Escherichia coli - illustrates how GO can effectively describe fundamental similarities and differences among different gene products deployed as part of diverse pathogenic strategies. In depth descriptions of the GO annotations for P. syringae pv tomato DC3000 effector AvrPtoB and the E. coli effector Tir are described, with special emphasis given to GO capability for capturing information about interacting proteins and taxa. GO-highlighted similarities in biological process and molecular function for effectors from additional pathosystems are also discussed.


Asunto(s)
Proteínas Bacterianas/metabolismo , Escherichia coli O157/metabolismo , Pseudomonas syringae/metabolismo , Terminología como Asunto , Escherichia coli O157/genética , Escherichia coli O157/patogenicidad , Interacciones Huésped-Patógeno , Enfermedades de las Plantas/microbiología , Pseudomonas syringae/genética , Pseudomonas syringae/patogenicidad , Vocabulario Controlado
15.
Artículo en Inglés | MEDLINE | ID: mdl-30801063

RESUMEN

In 2014, an outbreak of potato blackleg and soft rot disease emerged in North America and continues to impact potato production. Here, we report the annotated genome sequence of Dickeya dianthicola ME23, a strain hypothesized to be representative of the bacterial population responsible for this disease outbreak.

16.
Nucleic Acids Res ; 34(Database issue): D41-5, 2006 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-16381899

RESUMEN

ASAP is a comprehensive web-based system for community genome annotation and analysis. ASAP is being used for a large-scale effort to augment and curate annotations for genomes of enterobacterial pathogens and for additional genome sequences. New tools, such as the genome alignment program Mauve, have been incorporated into ASAP in order to improve display and analysis of related genomes. Recent improvements to the database and challenges for future development of the system are discussed. ASAP is available on the web at https://asap.ahabs.wisc.edu/asap/logon.php.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , Genoma Bacteriano , Genómica , Internet , Alineación de Secuencia , Programas Informáticos , Interfaz Usuario-Computador
17.
Nucleic Acids Res ; 34(1): 1-9, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16397293

RESUMEN

The goal of this group project has been to coordinate and bring up-to-date information on all genes of Escherichia coli K-12. Annotation of the genome of an organism entails identification of genes, the boundaries of genes in terms of precise start and end sites, and description of the gene products. Known and predicted functions were assigned to each gene product on the basis of experimental evidence or sequence analysis. Since both kinds of evidence are constantly expanding, no annotation is complete at any moment in time. This is a snapshot analysis based on the most recent genome sequences of two E.coli K-12 bacteria. An accurate and up-to-date description of E.coli K-12 genes is of particular importance to the scientific community because experimentally determined properties of its gene products provide fundamental information for annotation of innumerable genes of other organisms. Availability of the complete genome sequence of two K-12 strains allows comparison of their genotypes and mutant status of alleles.


Asunto(s)
Escherichia coli K12/genética , Proteínas de Escherichia coli/genética , Genoma Bacteriano , Congresos como Asunto , Conducta Cooperativa , Genómica , Terminología como Asunto
18.
BMC Genomics ; 8: 462, 2007 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-18088419

RESUMEN

BACKGROUND: The mosquito, Armigeres subalbatus, mounts a distinctively robust innate immune response when infected with the nematode Brugia malayi, a causative agent of lymphatic filariasis. In order to mine the transcriptome for new insight into the cascade of events that takes place in response to infection in this mosquito, 6 cDNA libraries were generated from tissues of adult female mosquitoes subjected to immune-response activation treatments that lead to well-characterized responses, and from aging, naïve mosquitoes. Expressed sequence tags (ESTs) from each library were produced, annotated, and subjected to comparative analyses. RESULTS: Six libraries were constructed and used to generate 44,940 expressed sequence tags, of which 38,079 passed quality filters to be included in the annotation project and subsequent analyses. All of these sequences were collapsed into clusters resulting in 8,020 unique sequence clusters or singletons. EST clusters were annotated and curated manually within ASAP (A Systematic Annotation Package for Community Analysis of Genomes) web portal according to BLAST results from comparisons to Genbank, and the Anopheles gambiae and Drosophila melanogaster genome projects. CONCLUSION: The resulting dataset is the first of its kind for this mosquito vector and provides a basis for future studies of mosquito vectors regarding the cascade of events that occurs in response to infection, and thereby providing insight into vector competence and innate immunity.


Asunto(s)
Culicidae/genética , Etiquetas de Secuencia Expresada , Biblioteca de Genes , Aedes/genética , Animales , Anopheles/genética , Brugia Malayi/inmunología , Brugia Malayi/patogenicidad , Culicidae/inmunología , Culicidae/parasitología , Bases de Datos de Ácidos Nucleicos , Drosophila melanogaster/genética , Filariasis Linfática/transmisión , Femenino , Genes de Insecto , Genoma de los Insectos , Humanos , Inmunidad Innata , Insectos Vectores/genética , Insectos Vectores/inmunología , Insectos Vectores/parasitología , Familia de Multigenes , Especificidad de la Especie
19.
Methods Mol Biol ; 396: 135-52, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-18025691

RESUMEN

During the course of evolution, genomes can undergo large-scale mutation events such as rearrangement and lateral transfer. Such mutations can result in significant variations in gene order and gene content among otherwise closely related organisms. The Mauve genome alignment system can successfully identify such rearrangement and lateral transfer events in comparisons of multiple microbial genomes even under high levels of recombination. This chapter outlines the main features of Mauve and provides examples that describe how to use Mauve to conduct a rigorous multiple genome comparison and study evolutionary patterns.


Asunto(s)
Evolución Biológica , Genoma Bacteriano , Alineación de Secuencia , Transferencia de Gen Horizontal , Filogenia , Yersinia pestis/genética
20.
Phytopathology ; 97(9): 1150-63, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18944180

RESUMEN

ABSTRACT Pectobacterium and Dickeya spp. are related broad-host-range entero-bacterial pathogens of angiosperms. A review of the literature shows that these genera each cause disease in species from at least 35% of angiosperm plant orders. The known host ranges of these pathogens partially overlap and, together, these two genera are pathogens of species from 50% of angiosperm plant orders. Notably, there are no reported hosts for either genus in the eudicots clade and no reported Dickeya hosts in the magnoliids or eurosids II clades, although Pectobacterium spp. are pathogens of at least one plant species in the magnoliids and at least one in each of the three eurosids II plant orders. In addition, Dickeya but not Pectobacterium spp. have been reported on a host in the rosids clade and, unlike Pectobacterium spp., have been reported on many Poales species. Natural disease among nonangiosperms has not been reported for either genus. Phylogenetic analyses of sequences concatenated from regions of seven housekeeping genes (acnA, gapA, icdA, mdh, mtlD, pgi, and proA) from representatives of these genera demonstrated that Dickeya spp. and the related tree pathogens, the genus Brenneria, are more diverse than Pectobacterium spp. and that the Pectobacterium strains can be divided into at least five distinct clades, three of which contain strains from multiple host plants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA