Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Chem Rev ; 124(8): 4822-4862, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38564710

RESUMEN

The synthesis of organic compounds efficiently via fewer steps but in higher yields is desirable as this reduces energy and reagent use, waste production, and thus environmental impact as well as cost. The reactivity of C-H bonds ortho to fluorine substituents in (poly)fluoroarenes with metal centers is enhanced relative to meta and para positions. Thus, direct C-H functionalization of (poly)fluoroarenes without prefunctionalization is becoming a significant area of research in organic chemistry. Novel and selective methodologies to functionalize (poly)fluorinated arenes by taking advantage of the reactivity of C-H bonds ortho to C-F bonds are continuously being developed. This review summarizes the reasons for the enhanced reactivity and the consequent developments in the synthesis of valuable (poly)fluoroarene-containing organic compounds.

2.
Inorg Chem ; 63(4): 1858-1866, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38226604

RESUMEN

The electronic structure and photophysics of two low spin metallocenes, decamethylmanganocene (MnCp*2) and decamethylrhenocene (ReCp*2), were investigated to probe their promise as photoredox reagents. Computational studies support the assignment of 2E2 ground state configurations and low energy ligand-to-metal charge transfer transitions for both complexes. Weak emission is observed at room temperature for ReCp*2 with τ = 1.8 ns in pentane, whereas MnCp*2 is not emissive. Calculation of the excited state reduction potentials for both metallocenes reveal their potential potency as excited state reductants (E°'([MnCp*2]+/0*) = -3.38 V and E°'([ReCp*2]+/0*) = -2.61 V vs Fc+/0). Comparatively, both complexes exhibit mild potentials for photo-oxidative processes (E°'([MnCp*2]0*/-) = -0.18 V and E°'([ReCp*2]0*/-) = -0.20 V vs Fc+/0). These results showcase the rich electronic structure of low spin d5 metallocenes and their promise as excited state reductants.

3.
Faraday Discuss ; 244(0): 62-76, 2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37097153

RESUMEN

Nickel fluoride complexes of the type [Ni(F)(L)2(ArF)] (L = phosphine, ArF = fluorinated arene) are well-known to form strong halogen and hydrogen bonds in solution and in the solid state. A comprehensive study of such non-covalent interactions using bis(carbene) complexes as acceptors and suitable halogen and hydrogen bond donors is presented. In solution, the complex [Ni(F)(iPr2Im)2(C6F5)] forms halogen and hydrogen bonds with iodopentafluorobenzene and indole, respectively, which have formation constants (K300) an order of magnitude greater than those of structurally related phosphine supported nickel fluorides. Co-crystallisation of this complex and its backbone-methylated analogue [Ni(F)(iPr2Me2Im)2(C6F5)] with 1,4-diiodotetrafluorobenzene produces halogen bonding adducts which were characterised by X-ray analysis and 19F MAS solid state NMR analysis. Differences in the chemical shifts between the nickel fluoride and its halogen bonding adduct are well in line with data that were obtained from titration studies in solution.

4.
Inorg Chem ; 62(12): 4835-4846, 2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-36920236

RESUMEN

The halogen bond (XB) is a highly directional class of noncovalent interactions widely explored by experimental and computational studies. However, the NMR signature of the XB has attracted limited attention. The prediction and analysis of the solid-state NMR (SSNMR) chemical shift tensor provide useful strategies to better understand XB interactions. In this work, we employ a computational protocol for modeling and analyzing the 19F SSNMR chemical shifts previously measured in a family of square-planar trans NiII-L2-iodoaryl-fluoride (L = PEt3) complexes capable of forming self-complementary networks held by a NiF···I(C) halogen bond [Thangavadivale, V.; Chem. Sci. 2018, 9, 3767-3781]. To understand how the 19F NMR resonances of the nickel-bonded fluoride are affected by the XB, we investigate the origin of the shielding in trans-[NiF(2,3,5,6-C6F4I)(PEt3)2], trans-[NiF(2,3,4,5-C6F4I)(PEt3)2], and trans-[NiF(C6F5)(PEt3)2] in the solid state, where a XB is present in the two former systems but not in the last. We perform the 19F NMR chemical shift calculations both in periodic and molecular models. The results show that the crystal packing has little influence on the NMR signatures of the XB, and the NMR can be modeled successfully with a pair of molecules interacting via the XB. Thus, the observed difference in chemical shift between solid-state and solution NMR can be essentially attributed to the XB interaction. The very high shielding of the fluoride and its driving contributor, the most shielded component of the chemical shift tensor, are well reproduced at the 2c-ZORA level. Analysis of the factors controlling the shielding shows how the highest occupied Ni/F orbitals shield the fluoride in the directions perpendicular to the Ni-F bond and specifically perpendicular to the coordination plane. This shielding arises from the magnetic coupling of the Ni(3d)/F(2p lone pair) orbitals with the vacant σNi-F* orbital, thereby rationalizing the very highly upfield (shielded) resonance of the component (δ33) along this direction. We show that these features are characteristic of square-planar nickel-fluoride complexes. The deshielding of the fluoride in the halogen-bonded systems is attributed to an increase in the energy gap between the occupied and vacant orbitals that are mostly responsible for the paramagnetic terms, notably along the most shielded direction.

5.
Chem Soc Rev ; 51(13): 5300-5329, 2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35708003

RESUMEN

The purpose of this Tutorial Review is to outline the fundamental photochemistry of metal carbonyls, and to show how the advances in technology have increased our understanding of the detailed mechanisms, particularly how relatively simple experiments can provide deep understanding of complex problems. We recall some important early experiments that demonstrate the key principles underlying current research, concentrating on the binary carbonyls and selected substituted metal carbonyls. At each stage, we illustrate with examples from recent applications. This review first considers the detection of photochemical intermediates in three environments: glasses and matrices; gas phase; solution. It is followed by an examination of the theory underpinning these observations. In the final two sections, we briefly address applications to the characterization and behaviour of complexes with very labile ligands such as N2, H2 and alkanes, concentrating on key mechanistic points, and also describe some principles and examples of photocatalysis.


Asunto(s)
Elementos de Transición , Ligandos , Metales , Fotoquímica , Elementos de Transición/química
6.
Angew Chem Int Ed Engl ; 61(5): e202111462, 2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-34694734

RESUMEN

In 2007 two of us defined the σ-Complex Assisted Metathesis mechanism (Perutz and Sabo-Etienne, Angew. Chem. Int. Ed. 2007, 46, 2578-2592), that is, the σ-CAM concept. This new approach to reaction mechanisms brought together metathesis reactions involving the formation of a variety of metal-element bonds through partner-interchange of σ-bond complexes. The key concept that defines a σ-CAM process is a single transition state for metathesis that is connected by two intermediates that are σ-bond complexes while the oxidation state of the metal remains constant in precursor, intermediates and product. This mechanism is appropriate in situations where σ-bond complexes have been isolated or computed as well-defined minima. Unlike several other mechanisms, it does not define the nature of the transition state. In this review, we highlight advances in the characterization and dynamic rearrangements of σ-bond complexes, most notably alkane and zincane complexes, but also different geometries of silane and borane complexes. We set out a selection of catalytic and stoichiometric examples of the σ-CAM mechanism that are supported by strong experimental and/or computational evidence. We then draw on these examples to demonstrate that the scope of the σ-CAM mechanism has expanded to classes of reaction not envisaged in 2007 (additional σ-bond ligands, agostic complexes, sp2 -carbon, surfaces). Finally, we provide a critical comparison to alternative mechanisms for metathesis of metal-element bonds.

7.
Inorg Chem ; 59(24): 18055-18067, 2020 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-33275426

RESUMEN

Cobalt complexes with 2-(diisopropylphosphinomethyl)pyridine (PN) ligands have been synthesized with the aim of demonstrating electrocatalytic proton reduction to dihydrogen with a well-defined hydride complex of an Earth-abundant metal. Reactions of simple cobalt precursors with 2-(diisopropylphosphino-methyl)pyridine (PN) yield [CoII(PN)2(MeCN)][BF4]2 1, [CoIII(PN)2(H)(MeCN)][PF6]2 2, and [CoIII(PN)2(H)(Cl)][PF6] 3. Complexes 1 and 3 have been characterized crystallographically. Unusually for a bidentate PN ligand, all three exhibit geometries with mutually trans phosphorus and nitrogen ligands. Complex 1 exhibits a distorted square-pyramidal geometry with an axial MeCN ligand in a low-spin electronic state. In complexes 2 and 3, the PN ligands lie in a plane leaving the hydride trans to MeCN or chloride, respectively. The redox behavior of the three complexes has been studied by cyclic voltammetry at variable scan rates and by spectroelectrochemistry. A catalytic wave is observed in the presence of trifluoroacetic acid (TFA) at an applied potential close to the Co(II/I) couple of 1. Bulk electrolysis of 1, 2, or 3 at a potential of ca. -1.4 V vs E(Fc+/Fc) in the presence of TFA yields H2 with Faradaic yields close to 100%. A catalytic mechanism is proposed in which the pyridine moiety of a PN ligand acts as a pendant proton donor following opening of the chelate ring. Additional mechanisms may also operate, especially in the presence of high acid concentration where speciation changes.

8.
Chemistry ; 25(39): 9237-9241, 2019 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-30985028

RESUMEN

The energetics of halogen bond formation in solution have been investigated for a series of nickel fluoride halogen bond acceptors; trans-[NiF(2-C5 NF4 )(PEt3 )2 ] (A1), trans-[NiF{2-C5 NF3 (4-H)}(PEt3 )2 ] (A2), trans-[NiF{2-C5 NF3 (4-NMe2 )}(PEt3 )2 ] (A3) and trans-[NiF{2-C5 NF2 H(4-CF3 )}(PCy3 )2 ] (A4) with neutral organic halogen bond donors, iodopentafluorobenzene (D1), 1-iodononafluorobutane (D2) and bromopentafluorobenzene (D3), in order to establish the significance of changes from perfluoroaryl to perfluoroalkyl donors and from iodine to bromine donors. 19 F NMR titration experiments have been employed to obtain the association constants, enthalpy, and entropy for the halogen bond formed between these donor-acceptor partners in protiotoluene. For A2-A4, association constants of the halogen bonds formed with iodoperfluoroalkane (D2) are consistently larger than those obtained for analogous complexes with the iodoperfluoroarene (D1). For complexes formed with A2-A4, the strength of the halogen bond is significantly lowered upon modification of the halogen donor atom from I (in D1) to Br (in D3) (for D1: 5≤K285 ≤12 m-1 , for D3: 1.0≤K193 ≤1.6 m-1 ). The presence of the electron donating NMe2 substituent on the pyridyl ring of acceptor A3 led to an increase in -ΔH, and the association constants of the halogen bond complexes formed with D1-D3, compared to those formed by A1, A2 and A4 with the same donors.

9.
Faraday Discuss ; 220(0): 28-44, 2019 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-31508642

RESUMEN

We present a quantitative analysis of the timescales of reactivity that are accessible to a laser pump, NMR probe spectroscopy method using para-hydrogen induced polarisation (PHIP) and identify three kinetic regimes: fast, intermediate and slow. These regimes are defined by the relative rate of reaction, k, compared to δω, the frequency of the NMR signal oscillations associated with the coherent evolution of the hyperpolarised 1H NMR signals created after para-hydrogen (p-H2) addition during the pump-probe delay. The kinetic regimes are quantitatively defined by a NMR dephasing parameter, ε = δω/k. For the fast regime, where k ≫ δω and ε tends to zero, the observed NMR signals are not affected by the chemical evolution of the system and so only an upper bound on k can be determined. In the slow regime, where k ≪ δω and ε tends to infinity, destructive interference leads to the complete dephasing of the coherent NMR signal intensity oscillations. As a result, the observed NMR signal evolution during the pump-probe delay reflects only the chemical change of the system and NMR relaxation. Finally, in the intermediate regime, where k ∼ δω, characteristic partial dephasing of the NMR signal oscillations is predicted. In the limit where the dephasing parameter is small but non-zero, chemical evolution manifests itself as a phase shift in the NMR signal oscillation that is equal to the dephasing parameter. As this phase shift is predicted to persist for pump-probe delays much longer than the timescale of the formation of the product molecules, it provides a route to measure reactivity on micro-to-millisecond timescales through NMR detection. We predict that the most significant fundamental limitations of the accessible reaction timescales are the duration of the NMR excitation pulse (∼1 µs) and the chemical shift difference (in Hz) between the p-H2-derived protons in the product molecule.

10.
Chem Rev ; 117(13): 8710-8753, 2017 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-28653537

RESUMEN

Partially fluorinated alkanes, arenes, and alkenes can be transformed by a variety of transition metal and lanthanide systems. Although the C-H bond is weaker than the C-F bond regardless of the hybridization of the carbon, the reaction of the C-F bond at the metal is usually more exothermic than the corresponding reaction of the C-H bonds. Both bonds are activated by the metal systems, but the preference for activating these bonds depends on the nature of the hydrocarbon and of the metal system, so that the reaction can be directed exclusively toward C-H or C-F bonds or yield a mixture of products. Additionally, the presence of fluorine differentiates between C-H bonds at different positions resulting in regioselective C-H bond activation; paradoxically, the strongest C-H bond reacts preferentially. The purpose of this review is to describe the field of reactions of partially fluorinated substrates with transition metal atoms, ions, and molecular complexes. The controlling physical properties (thermodynamics and kinetics) are described first, followed by a description of stoichiometric reactions, with the competition between the C-H and C-F activations as focus. A few representative catalytic systems are discussed. The review also highlights the benefit of combining experimental and theoretical studies.

15.
Chem Rev ; 116(15): 8506-44, 2016 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-27380829

RESUMEN

Photochemical reactivity associated with metal-hydrogen bonds is widespread among metal hydride complexes and has played a critical part in opening up C-H bond activation. It has been exploited to design different types of photocatalytic reactions and to obtain NMR spectra of dilute solutions with a single pulse of an NMR spectrometer. Because photolysis can be performed on fast time scales and at low temperature, metal-hydride photochemistry has enabled determination of the molecular structure and rates of reaction of highly reactive intermediates. We identify five characteristic photoprocesses of metal monohydride complexes associated with the M-H bond, of which the most widespread are M-H homolysis and R-H reductive elimination. For metal dihydride complexes, the dominant photoprocess is reductive elimination of H2. Dihydrogen complexes typically lose H2 photochemically. The majority of photochemical reactions are likely to be dissociative, but hydride complexes may be designed with equilibrated excited states that undergo different photochemical reactions, including proton transfer or hydride transfer. The photochemical mechanisms of a few reactions have been analyzed by computational methods, including quantum dynamics. A section on specialist methods (time-resolved spectroscopy, matrix isolation, NMR, and computational methods) and a survey of transition metal hydride photochemistry organized by transition metal group complete the Review.

16.
Inorg Chem ; 55(24): 12583-12594, 2016 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-27690401

RESUMEN

Nature uses molybdenum-containing enzymes to catalyze oxygen atom transfer (OAT) from water to organic substrates. In these enzymes, the two electrons that are released during the reaction are rapidly removed, one at a time, by spatially separated electron transfer units. Inspired by this design, a Ru(II)-Mo(VI) dyad was synthesized and characterized, with the aim of accelerating the rate-determining step in the cis-dioxo molybdenum-catalyzed OAT cycle, the transfer of an oxo ligand to triphenyl phosphine, via a photo-oxidation process. The dyad consists of a photoactive bis(bipyridyl)-phenanthroline ruthenium moiety that is covalently linked to a bioinspired cis-dioxo molybdenum thiosemicarbazone complex. The quantum yield and luminescence lifetimes of the dyad [Ru(bpy)2(L2)MoO2(solv)]2+ were determined. The major component of the luminescence decay in MeCN solution (τ = 1149 ± 2 ns, 67%) corresponds closely to the lifetime of excited [Ru(bpy)2(phen-NH2)]2+, while the minor component (τ = 320 ± 1 ns, 31%) matches that of [Ru(bpy)2(H2-L2)]2+. In addition, the (spectro)electrochemical properties of the system were investigated. Catalytic tests showed that the dyad-catalyzed OAT from dimethyl sulfoxide to triphenyl phosphine proceeds significantly faster upon irradiation with visible light than in the dark. Methylviologen acts as a mediator in the photoredox cycle, but it is regenerated and hence only required in stoichiometric amounts with respect to the catalyst rather than sacrificial amounts. It is proposed that oxidative quenching of the photoexcited Ru unit, followed by intramolecular electron transfer, leads to the production of a reactive one-electron oxidized catalyst, which is not accessible by electrochemical methods. A significant, but less pronounced, rate enhancement was observed when an analogous bimolecular system was tested, indicating that intramolecular electron transfer between the photosensitizer and the catalytic center is more efficient than intermolecular electron transfer between the separate components.


Asunto(s)
Luz , Modelos Químicos , Molibdeno/química , Oxidorreductasas/metabolismo , Rutenio/química , Activación Enzimática , Oxidorreductasas/química , Análisis Espectral/métodos
17.
J Am Chem Soc ; 137(3): 1258-72, 2015 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-25547430

RESUMEN

The photochemical reactions of Tp'Rh(PMe3)H2 (1) and thermal reactions of Tp'Rh(PMe3)(CH3)H (1a, Tp' = tris(3,5-dimethylpyrazolyl)borate) with substrates containing B-H, Si-H, C-F, and C-H bonds are reported. Complexes 1 and 1a are known activators of C-H bonds, including those of alkanes. Kinetic studies of reactions with HBpin and PhSiH3 show that photodissociation of H2 from 1 occurs prior to substrate attack, whereas thermal reaction of 1a proceeds by bimolecular reaction with the substrate. Complete intramolecular selectivity for B-H over C-H activation of HBpin (pin = pinacolate) leading to Tp'Rh(PMe3)(Bpin)H is observed. Similarly, the reaction with Et2SiH2 shows a strong preference for Si-H over C-H activation, generating Tp'Rh(PMe3)(SiEt2H)H. The Rh(Bpin)H and Rh(SiEt2H)H products were stable to heating in benzene in accord with DFT calculations that showed that reaction with benzene is endoergic. The intramolecular competition with PhSiH3 yields a ∼1:4 mixture of Tp'Rh(PMe3)(C6H4SiH3)H and Tp'Rh(PMe3)(SiPhH2)H, respectively. Reaction with pentafluoropyridine generates Tp'Rh(PMe3)(C5NF4)F, while reaction with 2,3,5,6-tetrafluoropyridine yields a mixture of C-H and C-F activated products. Hexafluorobenzene proves unreactive. Crystal structures are reported for B-H, Si-H, and C-F activated products, but in the latter case a bifluoride complex Tp'Rh(PMe3)(C5NF4)(FHF) was crystallized. Intermolecular competition reactions were studied by photoreaction of 1 in C6F6 with benzene and another substrate (HBpin, PhSiH3, or pentafluoropyridine) employing in situ laser photolysis in the NMR probe, resulting in a wide-ranging map of kinetic selectivities. The mechanisms of intramolecular and intermolecular selection are analyzed.

18.
J Am Chem Soc ; 137(36): 11820-31, 2015 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-26302048

RESUMEN

The association constants and enthalpies for the binding of hydrogen bond donors to group 10 transition metal complexes featuring a single fluoride ligand (trans-[Ni(F)(2-C5NF4)(PR3)2], R = Et 1a, Cy 1b, trans-[Pd(F)(4-C5NF4)(PCy3)2] 2, trans-[Pt(F){2-C5NF2H(CF3)}(PCy3)2] 3 and of group 4 difluorides (Cp2MF2, M = Ti 4a, Zr 5a, Hf 6a; Cp*2MF2, M = Ti 4b, Zr 5b, Hf 6b) are reported. These measurements allow placement of these fluoride ligands on the scales of organic H-bond acceptor strength. The H-bond acceptor capability ß (Hunter scale) for the group 10 metal fluorides is far greater (1a 12.1, 1b 9.7, 2 11.6, 3 11.0) than that for group 4 metal fluorides (4a 5.8, 5a 4.7, 6a 4.7, 4b 6.9, 5b 5.6, 6b 5.4), demonstrating that the group 10 fluorides are comparable to the strongest organic H-bond acceptors, such as Me3NO, whereas group 4 fluorides fall in the same range as N-bases aniline through pyridine. Additionally, the measurement of the binding enthalpy of 4-fluorophenol to 1a in carbon tetrachloride (-23.5 ± 0.3 kJ mol(-1)) interlocks our study with Laurence's scale of H-bond basicity of organic molecules. The much greater polarity of group 10 metal fluorides than that of the group 4 metal fluorides is consistent with the importance of pπ-dπ bonding in the latter. The polarity of the group 10 metal fluorides indicates their potential as building blocks for hydrogen-bonded assemblies. The synthesis of trans-[Ni(F){2-C5NF3(NH2)}(PEt3)2], which exhibits an extended chain structure assembled by hydrogen bonds between the amine and metal-fluoride groups, confirms this hypothesis.

19.
Chemistry ; 21(9): 3746-54, 2015 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-25639778

RESUMEN

The photocatalytic activity of phosphonated Re complexes, [Re(2,2'-bipyridine-4,4'-bisphosphonic acid) (CO)3(L)] (ReP; L = 3-picoline or bromide) immobilised on TiO2 nanoparticles is reported. The heterogenised Re catalyst on the semiconductor, ReP-TiO2 hybrid, displays an improvement in CO2 reduction photocatalysis. A high turnover number (TON) of 48 molCO molRe(-1) is observed in DMF with the electron donor triethanolamine at λ>420 nm. ReP-TiO2 compares favourably to previously reported homogeneous systems and is the highest TON reported to date for a CO2-reducing Re photocatalyst under visible light irradiation. Photocatalytic CO2 reduction is even observed with ReP-TiO2 at wavelengths of λ>495 nm. Infrared and X-ray photoelectron spectroscopies confirm that an intact ReP catalyst is present on the TiO2 surface before and during catalysis. Transient absorption spectroscopy suggests that the high activity upon heterogenisation is due to an increase in the lifetime of the immobilised anionic Re intermediate (t50% >1 s for ReP-TiO2 compared with t50% = 60 ms for ReP in solution) and immobilisation might also reduce the formation of inactive Re dimers. This study demonstrates that the activity of a homogeneous photocatalyst can be improved through immobilisation on a metal oxide surface by favourably modifying its photochemical kinetics.

20.
J Am Chem Soc ; 136(4): 1288-91, 2014 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-24380577

RESUMEN

The formation of halogen bonds from iodopentafluorobenzene and 1-iodoperfluorohexane to a series of bis(η(5)-cyclopentadienyl)metal hydrides (Cp2TaH3, 1; Cp2MH2, M = Mo, 2, M = W, 3; Cp2ReH, 4; Cp2Ta(H)CO, 5; Cp = η(5)-cyclopentadienyl) is demonstrated by (1)H NMR spectroscopy. Interaction enthalpies and entropies for complex 1 with C6F5I and C6F13I are reported (ΔH° = -10.9 ± 0.4 and -11.8 ± 0.3 kJ/mol; ΔS° = -38 ± 2 and -34 ± 2 J/(mol·K), respectively) and found to be stronger than those for 1 with the hydrogen-bond donor indole (ΔH° = -7.3 ± 0.1 kJ/mol, ΔS° = -24 ± 1 J/(mol·K)). For the more reactive complexes 2-5, measurements are limited to determination of their low-temperature (212 K) association constants with C6F5I as 2.9 ± 0.2, 2.5 ± 0.1, <1.5, and 12.5 ± 0.3 M(-1), respectively.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA