Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
PLoS Pathog ; 14(11): e1007420, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30485383

RESUMEN

It is currently believed that type I and III interferons (IFNs) have redundant functions. However, the preferential distribution of type III IFN receptor on epithelial cells suggests functional differences at epithelial surfaces. Here, using human intestinal epithelial cells we could show that although both type I and type III IFNs confer an antiviral state to the cells, they do so with distinct kinetics. Type I IFN signaling is characterized by an acute strong induction of interferon stimulated genes (ISGs) and confers fast antiviral protection. On the contrary, the slow acting type III IFN mediated antiviral protection is characterized by a weaker induction of ISGs in a delayed manner compared to type I IFN. Moreover, while transcript profiling revealed that both IFNs induced a similar set of ISGs, their temporal expression strictly depended on the IFNs, thereby leading to unique antiviral environments. Using a combination of data-driven mathematical modeling and experimental validation, we addressed the molecular reason for this differential kinetic of ISG expression. We could demonstrate that these kinetic differences are intrinsic to each signaling pathway and not due to different expression levels of the corresponding IFN receptors. We report that type III IFN is specifically tailored to act in specific cell types not only due to the restriction of its receptor but also by providing target cells with a distinct antiviral environment compared to type I IFN. We propose that this specific environment is key at surfaces that are often challenged with the extracellular environment.


Asunto(s)
Interferón Tipo I/genética , Interferones/genética , Antivirales/farmacología , Línea Celular , Células Epiteliales/metabolismo , Humanos , Interferón Tipo I/metabolismo , Interferones/metabolismo , Interleucinas/metabolismo , Mucosa Intestinal/metabolismo , Receptores de Interferón/genética , Transducción de Señal/efectos de los fármacos , Interferón lambda
2.
Int J Mol Sci ; 20(6)2019 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-30901970

RESUMEN

Interferons (IFNs) are very powerful cytokines, which play a key role in combatting pathogen infections by controlling inflammation and immune response by directly inducing anti-pathogen molecular countermeasures. There are three classes of IFNs: type I, type II and type III. While type II IFN is specific for immune cells, type I and III IFNs are expressed by both immune and tissue specific cells. Unlike type I IFNs, type III IFNs have a unique tropism where their signaling and functions are mostly restricted to epithelial cells. As such, this class of IFN has recently emerged as a key player in mucosal immunity. Since the discovery of type III IFNs, the last 15 years of research in the IFN field has focused on understanding whether the induction, the signaling and the function of these powerful cytokines are regulated differently compared to type I IFN-mediated immune response. This review will cover the current state of the knowledge of the similarities and differences in the signaling pathways emanating from type I and type III IFN stimulation.


Asunto(s)
Interferón Tipo I/metabolismo , Interferones/metabolismo , Transducción de Señal , Animales , Biomarcadores , Activación Enzimática , Humanos , Factores Reguladores del Interferón/genética , Factores Reguladores del Interferón/metabolismo , Quinasas Janus/metabolismo , Factores de Transcripción STAT/metabolismo , Interferón lambda
3.
J Biol Chem ; 289(40): 27757-65, 2014 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-25107911

RESUMEN

Protein prenylation is a post-translational modification whereby non-sterol isoprenoid lipid chains are added, thereby modifying the molecular partners with which proteins interact. The autoinflammatory disease mevalonate kinase deficiency (MKD) is characterized by a severe reduction in protein prenylation. A major class of proteins that are affected are small GTPases, including Rac1 and RhoA. It is not clear how protein prenylation of small GTPases relates to GTP hydrolysis activity and downstream signaling. Here, we investigated the contribution of RhoA prenylation to the biochemical pathways that underlie MKD-associated IL-1ß hypersecretion using human cell cultures, Rac1 and RhoA protein variants, and pharmacological inhibitors. We found that when unprenylated, the GTP-bound levels of RhoA decrease, causing a reduction in GTPase activity and increased protein kinase B (PKB) phosphorylation. Cells expressing unprenylated RhoA produce increased levels of interleukin 1ß mRNA. Of other phenotypic cellular changes seen in MKD, increased mitochondrial potential and mitochondrial elongation, only mitochondrial elongation was observed. Finally, we show that pharmacological inactivation of RhoA boosts Rac1 activity, a small GTPase whose activity was earlier implied in MKD pathogenesis. Together, our data show that RhoA plays a pivotal role in MKD pathogenesis through Rac1/PKB signaling toward interleukin 1ß production and elucidate the effects of protein prenylation in monocytes.


Asunto(s)
Interleucina-1beta/metabolismo , Deficiencia de Mevalonato Quinasa/enzimología , Proteína de Unión al GTP rac1/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Línea Celular , Humanos , Interleucina-1beta/genética , Deficiencia de Mevalonato Quinasa/genética , Deficiencia de Mevalonato Quinasa/metabolismo , Prenilación de Proteína , Proteína de Unión al GTP rac1/genética , Proteína de Unión al GTP rhoA/genética
4.
J Biol Chem ; 289(8): 5000-12, 2014 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-24356959

RESUMEN

Most hereditary periodic fever syndromes are mediated by deregulated IL-1ß secretion. The generation of mature IL-1ß requires two signals: one that induces synthesis of inflammasome components and substrates and a second that activates inflammasomes. The mechanisms that mediate autoinflammation in mevalonate kinase deficiency, a periodic fever disease characterized by a block in isoprenoid biosynthesis, are poorly understood. In studying the effects of isoprenoid shortage on IL-1 ß generation, we identified a new inflammasome activation signal that originates from defects in autophagy. We find that hypersecretion of IL-1ß and IL-18 requires reactive oxygen species and is associated with an oxidized redox status of monocytes but not lymphocytes. IL-1ß hypersecretion by monocytes involves decreased mitochondrial stability, release of mitochondrial content into the cytosol and attenuated autophagosomal degradation. Defective autophagy, as established by ATG7 knockdown, results in prolonged cytosolic retention of damaged mitochondria and increased IL-1ß secretion. Finally, activation of autophagy in healthy but not mevalonate kinase deficiency patient cells reduces IL-1ß secretion. Together, these results indicate that defective autophagy can prime monocytes for mitochondria-mediated NLRP3 inflammasome activation, thereby contributing to hypersecretion of IL-1ß in mevalonate kinase deficiency.


Asunto(s)
Susceptibilidad a Enfermedades/metabolismo , Susceptibilidad a Enfermedades/patología , Interleucina-1beta/metabolismo , Mitocondrias/metabolismo , Monocitos/metabolismo , Monocitos/patología , Adolescente , Autofagia , Línea Celular , Niño , Preescolar , Citosol/metabolismo , ADN Mitocondrial/metabolismo , Humanos , Inflamasomas/metabolismo , Potencial de la Membrana Mitocondrial , Deficiencia de Mevalonato Quinasa/metabolismo , Deficiencia de Mevalonato Quinasa/patología , Modelos Biológicos , Oxidación-Reducción , Terpenos/metabolismo
5.
Nat Microbiol ; 5(1): 181-191, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31686029

RESUMEN

Intestinal epithelial cells (IECs) act as a physical barrier separating the commensal-containing intestinal tract from the sterile interior. These cells have found a complex balance allowing them to be prepared for pathogen attacks while still tolerating the presence of bacterial or viral stimuli present in the lumen of the gut. Using primary human IECs, we probed the mechanisms that allow for such a tolerance. We discovered that viral infections emanating from the basolateral side of IECs elicit a stronger intrinsic immune response in comparison to lumenal apical infections. We determined that this asymmetric immune response is driven by the clathrin-sorting adaptor AP-1B, which mediates the polarized sorting of Toll-like receptor 3 (TLR3) towards the basolateral side of IECs. Mice and human IECs lacking AP-1B showed an exacerbated immune response following apical stimulation. Together, these results suggest a model where the cellular polarity program plays an integral role in the ability of IECs to partially tolerate apical commensals while remaining fully responsive to invasive basolateral pathogens.


Asunto(s)
Polaridad Celular/inmunología , Mucosa Intestinal/citología , Mucosa Intestinal/inmunología , Receptor Toll-Like 3/metabolismo , Complejo 1 de Proteína Adaptadora/genética , Complejo 1 de Proteína Adaptadora/metabolismo , Animales , Células Cultivadas , Técnicas de Silenciamiento del Gen , Humanos , Interferones/metabolismo , Interleucina-6/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/virología , Ratones , Receptor Toll-Like 3/agonistas , Virus/inmunología
6.
J Interferon Cytokine Res ; 39(10): 650-660, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31199715

RESUMEN

Intestinal epithelial cells (IECs) are the primary target of enteric viruses. Their infection by viruses leads to the upregulation of both type I and type III interferons (IFNs). These IFNs then act in an autocrine and paracrine manner to protect IECs from viral propagation. To date, whether both IFNs use similar signaling pathways and whether these 2 cytokines can act synergistically to protect against viral infection remain unclear. Using human IECs depleted of either the type I or type III IFN receptor, we found that both signal transduction pathways are interconnected and influence each other at the level of interferon-stimulated gene (ISG) expression and efficiency of antiviral protection. Precisely, in human IECs, the presence of a functional type III IFN receptor negatively regulates type I IFN signaling and activity, whereas the presence of type I IFN receptor positively reinforces type III IFN signaling and function. We propose that this complex crosstalk allows for a preferential type III IFN-mediated protection of human intestinal cells.


Asunto(s)
Células Epiteliales/metabolismo , Regulación de la Expresión Génica , Interferón Tipo I/metabolismo , Interferones/metabolismo , Mucosa Intestinal/metabolismo , Transducción de Señal , Línea Celular Tumoral , Células Epiteliales/citología , Humanos , Interferón Tipo I/genética , Interferones/genética , Mucosa Intestinal/citología , Receptores de Interferón/genética , Receptores de Interferón/metabolismo , Interferón lambda
7.
Front Immunol ; 8: 459, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28484457

RESUMEN

Intestinal epithelial cells (IECs) are constantly exposed to commensal flora and pathogen challenges. How IECs regulate their innate immune response to maintain gut homeostasis remains unclear. Interferons (IFNs) are cytokines produced during infections. While type I IFN receptors are ubiquitously expressed, type III IFN receptors are expressed only on epithelial cells. This epithelium specificity strongly suggests exclusive functions at epithelial surfaces, but the relative roles of type I and III IFNs in the establishment of an antiviral innate immune response in human IECs are not clearly defined. Here, we used mini-gut organoids to define the functions of types I and III IFNs to protect the human gut against viral infection. We show that primary non-transformed human IECs, upon viral challenge, upregulate the expression of both type I and type III IFNs at the transcriptional level but only secrete type III IFN in the supernatant. However, human IECs respond to both type I and type III IFNs by producing IFN-stimulated genes that in turn induce an antiviral state. Using genetic ablation of either type I or type III IFN receptors, we show that either IFN can independently restrict virus infection in human IECs. Importantly, we report, for the first time, differences in the mechanisms by which each IFN establishes the antiviral state. Contrary to type I IFN, the antiviral activity induced by type III IFN is strongly dependent on the mitogen-activated protein kinases signaling pathway, suggesting a pathway used by type III IFNs that non-redundantly contributes to the antiviral state. In conclusion, we demonstrate that human intestinal epithelial cells specifically regulate their innate immune response favoring type III IFN-mediated signaling, which allows for efficient protection against pathogens without producing excessive inflammation. Our results strongly suggest that type III IFN constitutes the frontline of antiviral response in the human gut. We propose that mucosal surfaces, particularly the gastrointestinal tract, have evolved to favor type III IFN-mediated response to pathogen infections as it allows for spatial segregation of signaling and moderate production of inflammatory signals which we propose are key to maintain gut homeostasis.

8.
Hum Gene Ther ; 28(3): 295-306, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28042949

RESUMEN

Application of oncolytic viruses is a valuable option to broaden the armament of anticancer therapies, as these combine specific cytotoxic effects and immune-stimulating properties. The self-replicating H-1 parvovirus (H-1PV) is a prototypical oncolytic virus that, besides targeting tumor cells, also infects endothelial cells, thus combining oncolytic and angiostatic traits. To increase its therapeutic value, H-1PV can be armed with cytokines or chemokines to enhance the immunological response. Some chemokines-more specifically, the CXCR3 ligands CXCL4L1 and CXCL10-combine immune-stimulating properties with angiostatic activity. This study explores the therapeutic value of recombinant parvoviruses carrying CXCL4L1 or CXCL10 transgenes (Chi-H1/CXCL4L1 or Chi-H1/CXCL10, respectively) to inhibit the growth of the human Kaposi sarcoma cell line KS-IMM. KS-IMM cells infected by Chi-H1/CXCL4L1 or Chi-H1/CXCL10 released the corresponding chemokine and showed reduced migratory capacity. Therefore, the antitumoral capacity of Chi-H1/CXCL4L1 or Chi-H1/CXCL10 was tested in mice. Either in vitro infected KS-IMM cells were injected or subcutaneously growing KS-IMM xenografts were treated by peritumoral injections of the different viruses. Surprisingly, the transgenes did not increase the antitumoral effect of natural H-1PV. Further experiments indicated that CXCL4L1 and CXCL10 interfered with the expression of the viral NS1 protein in KS-IMM cells. These results indicate that the outcome of parvovirus-based delivery of CXCR3 ligands might be tumor cell type dependent, and hence its application must be considered carefully.


Asunto(s)
Quimiocina CXCL10/genética , Terapia Genética , Vectores Genéticos/administración & dosificación , Parvovirus/genética , Factor Plaquetario 4/genética , Sarcoma de Kaposi/terapia , Inhibidores de la Angiogénesis/uso terapéutico , Animales , Antineoplásicos/uso terapéutico , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Sarcoma de Kaposi/irrigación sanguínea , Sarcoma de Kaposi/genética , Sarcoma de Kaposi/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA