RESUMEN
BACKGROUND: Although handgrip strength (HGS) asymmetry has clinical screening utility, its relevance to sarcopenia is unknown. This study examined the relationship between HGS asymmetry and sarcopenia signatures, and explored the relevance of circulating neural/neuromuscular markers. METHODS: 9403 individuals aged 18-92 years participated in this study. Maximal HGS and skeletal muscle index (SMI) were determined using hand dynamometry and DXA. Sarcopenia was diagnosed upon the presence of low HGS and low SMI, according to cohort-specific thresholds. Plasma biomarkers were measured by ELISA in a sub-group of 269 participants aged 50-83 years. Asymmetry was determined as the highest recorded HGS divided by the highest recorded HGS of the opposite hand. Individuals with a ratio > 1.10 were classified as having asymmetrical HGS. RESULTS: Subjects with asymmetrical HGS had significantly lower SMI (7.67 kg/m2 vs 7.71 kg/m2, p = 0.004) and lower HGS (37.82 kg vs 38.91 kg, p < 0.001) than those with symmetrical HGS. In those aged ≥ 50 years asymmetrical HGS was associated with 2.67 higher odds for sarcopenia [95% confidence interval: (CI) = 1.557-4.561, p < 0.001], 1.83 higher odds for low HGS only (CI 1.427-2.342, p < 0.001), and 1.79 higher odds for low SMI only (CI 1.257-2.554, p = 0.001). HGS asymmetry demonstrated acceptable diagnostic accuracy for sarcopenia (AUC = 0.727, CI 0.658-0.796, p < 0.001). Plasma neural cell adhesion molecule concentrations were 19.6% higher in individuals with asymmetrical HGS (185.40 ng/mL vs 155.00 ng/mL, p < 0.001) than those with symmetrical HGS. DISCUSSION: Our findings demonstrate the utility of HGS asymmetry as a screening tool that may complement existing strategies seeking to combat sarcopenia. Biomarker analyses suggest that heightened denervation may be an important aetiological factor underpinning HGS asymmetry.
Asunto(s)
Sarcopenia , Humanos , Sarcopenia/diagnóstico , Fuerza de la Mano/fisiología , Músculo Esquelético , Biomarcadores , Composición Corporal , Fuerza Muscular/fisiologíaRESUMEN
BACKGROUND: Increasing interest surrounds the utility of blood-based biomarkers for diagnosing sarcopenia. C-terminal agrin fragment (CAF), a marker of neuromuscular junction stability, is amongst the most promising candidates; however, a dearth of reference data impedes the incorporation of its use in public health settings. This study aimed to establish reference values for plasma CAF concentrations across adulthood in a large, well-characterized cohort of healthy adults; and comprehensively examine the association between plasma CAF levels and skeletal muscle health. METHODS: One thousand people aged between 18 and 87 years took part in this study (mean age = 50.4 years; 51% females). Body composition and muscle strength were examined using DXA and hand dynamometry. Plasma CAF concentrations were measured, in duplicate, using commercially available ELISA kits. Sarcopenia and individual sarcopenia signatures [low skeletal muscle index (SMI) only/low grip strength only] were classified using the EWGSOP2 algorithm. RESULTS: Detailed reference CAF values, according to sex and age, are presented. A significant but modest age-related increase in plasma CAF concentration was observed (P = 0.018). Across adulthood, CAF concentrations were negatively associated with grip strength and SMI (both P < 0.001). In people ≥50 years old, CAF concentrations were 22.6% higher in those with sarcopenia (P < 0.001), 11.3% higher in those with low SMI (P = 0.006) and 9.6% higher in those with low grip strength (P = 0.0034), compared with controls. People in the highest CAF concentration quartile, had 3.25 greater odds for sarcopenia (95% CI = 1.41-7.49, P = 0.005), 2.76 greater odds for low SMI (95% CI = 1.24-5.22, P = 0.012), and 2.56 greater odds for low grip strength (95% CI = 1.07-5.57, P = 0.037), compared with those in the lowest quartile. People with a CAF Z-score ≥2 had 9.52 greater odds for sarcopenia (95% CI = 3.01-30.05, P < 0.001) compared with a Z-score <1. Plasma CAF concentration had an acceptable level of diagnostic accuracy for sarcopenia (AUC = 0.772, 95% CI = 0.733-0.807, P < 0.001). CONCLUSIONS: The reference values presented herein may guide the clinical interpretation of circulating CAF and help identify people at risk of poor skeletal muscle outcomes for inclusion in therapeutic interventions. Our findings add clarity to existing data, demonstrating a robust relationship between circulating CAF and skeletal muscle integrity in the largest adult cohort to date, and support the use of CAF as an accessible, cost-effective screening tool for sarcopenia. However, further research into the prognostic utility of plasma CAF, and the establishment of normative data from other populations, are urgently needed if routine CAF screening is to be embedded into public healthcare settings.
Asunto(s)
Agrina , Músculo Esquelético , Humanos , Agrina/sangre , Masculino , Femenino , Persona de Mediana Edad , Adulto , Anciano , Músculo Esquelético/fisiopatología , Valores de Referencia , Adulto Joven , Anciano de 80 o más Años , Adolescente , Sarcopenia/sangre , Sarcopenia/diagnóstico , Fragmentos de Péptidos/sangre , Biomarcadores/sangre , Fuerza Muscular/fisiología , Composición CorporalRESUMEN
BACKGROUND: Efforts to enhance diagnostic measures for sarcopenia have led to an increased focus on the screening utility of blood-based biomarkers. In this regard, circulating neurofilament light chain (NfL) levels are a potent indicator of axonal damage and have been linked with several neurological disorders. However, despite the strong neurogenic contribution to skeletal muscle health, no studies have explored the relevance of NfL concentrations to sarcopenia. With that in mind, this study aimed to examine the association between plasma NfL concentration and sarcopenic domains. METHODS: Three hundred adults aged between 50 and 83 years participated to this study (male participants, n = 150; mean age: 64.2 ± 8.7 years and female participants, n = 150; mean age: 63.9 ± 8.3 years). Body composition was assessed using dual-energy X-ray absorptiometry, and a skeletal muscle index (SMI) was calculated. Muscle strength was assessed with hand dynamometry. Sarcopenia was classified using the European Working Group on Sarcopenia in Older People criteria. Plasma NfL concentration was determined using a highly sensitive, enzyme-linked immunosorbent assay. RESULTS: Neurofilament light chain levels were associated with grip strength and SMI (P = 0.005 and P = 0.045, respectively) and were significantly elevated in sarcopenic individuals, compared with non-sarcopenic participants (P < 0.001). Individuals with pre-sarcopenia (either low grip strength or low SMI) had significantly higher NfL levels, compared with healthy controls (P = 0.001 and P = 0.006, respectively). Male participants with either low grip strength or low SMI had significantly raised NfL levels (P = 0.006 and P = 0.002, respectively), while in female participants, NfL concentrations were significantly elevated only in those with low grip strength (P = 0.049). NfL concentration displayed acceptable diagnostic accuracy for sarcopenia (area under the curve = 0.726, P < 0.001). CONCLUSIONS: Our study clearly demonstrates the indicative pertinence of circulating NfL levels to sarcopenic domains, supporting its potential use as a biomarker of sarcopenia. More studies are needed, however, to further illuminate the diagnostic value of circulating NfL. Future research should explore whether NfL levels are more powerfully linked with muscle strength than mass and whether sex mediates the relevance of NfL concentrations to sarcopenic phenotypes.
Asunto(s)
Sarcopenia , Absorciometría de Fotón , Anciano , Femenino , Humanos , Filamentos Intermedios , Masculino , Persona de Mediana Edad , Fuerza Muscular/fisiología , Músculo Esquelético , Sarcopenia/diagnósticoRESUMEN
Barriers associated with direct muscle quantification have prevented a consistent implementation of therapeutic measures for sarcopenia. Recently, the relevance of circulating C-terminal agrin fragment (CAF) as an accessible screening method alternative for sarcopenia has gained credence. Accordingly, this study aimed to verify the pertinence of plasma CAF as a biomarker for sarcopenia. Three hundred healthy adults aged between 50 and 83 years took part in this study. Sarcopenia was diagnosed according to the European Working Group on Sarcopenia in Older People criteria. Body composition was assessed using dual-energy x-ray absorptiometry, while muscle strength was examined using hand dynamometry. Plasma CAF concentrations were determined using a commercially available ELISA kit. CAF concentrations were significantly associated with appendicular lean mass (ALM), but not grip strength (p = .028, p = .575, respectively). Plasma CAF concentrations were significantly elevated in sarcopenic individuals compared to nonsarcopenic (p < .001). Overall, individuals with low grip strength or low ALM displayed significantly higher CAF levels compared to healthy controls, after adjusting for age and body mass index (p = .027, p = .003, respectively). In males, those with low grip strength or low ALM had significantly elevated CAF levels (p = .039, p = .027, respectively), while in females, only those with low ALM had significantly raised CAF concentrations, compared to healthy controls (p = .035). Our findings illuminate the potential relevance of CAF as an accessible biomarker for skeletal muscle health. CAF determination may enhance clinical practice by facilitating more widespread treatment strategies for sarcopenia. Nevertheless, future research is needed to confirm the diagnostic pertinence of CAF concentrations in screening for sarcopenia.