Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Opt Express ; 32(10): 17966-17976, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38858964

RESUMEN

We present a thulium-doped silica fiber, featuring a depressed cladding, for applications at wavelengths below 1800 nm. The depressed cladding is used as a distributed filter suppressing amplified spontaneous emission at longer wavelengths, which helps promote emission at shorter wavelengths. We describe the fiber design process that was carried out by using a combination of numerical methods. The fiber was prepared in-house by a combination of the standard modified chemical vapor deposition method and nanoparticle doping. We demonstrate the effectiveness and tunability of ASE filtering, which is influenced by fiber bend radius and its variation.

2.
Opt Express ; 32(10): 17932-17941, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38858961

RESUMEN

We present the development of a pair of silica-based thulium-doped fiber amplifiers working together in a broad spectral range from 1.65 µm to 2.02 µm. For the one optimized for shorter wavelengths, we designed and prepared optical fiber with a depressed cladding. We show the performance of the amplifiers achieving small-signal gain of at least 10 dB over 350 nm range from 1670 nm to 2020 nm, maximum gain of 40.7 dB with a noise figure as low as 6.45 dB and an optical signal-to-noise ratio of up to 50 dB. To the best of our knowledge, it is the first time that thulium fiber amplifiers of straightforward design without using redundant spectral filters operating efficiently in such a wide spectral region are demonstrated.

3.
Opt Express ; 31(26): 43004-43016, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38178404

RESUMEN

We present the pedestal-free thulium doped silica fiber with a large nanostructured core optimized for fiber lasers. The fiber is composed of over 6 thousand thulium doped silica nanorods with a diameter of 71 nm each which form a nanostructured step-index core. We study the influence of non-continuous distribution in nanoscale active areas on gain, beam quality, and fiber laser performance. The proof-of-concept fiber is effectively single mode for wavelength above 1.8 µm. We demonstrate the performance of the fiber in a laser setup pumped at 792 nm. Single mode laser emission with a slope efficiency of 29% at quasi-continuous output power of 4 W with M2 = 1.3 at the emission spectrum 1880-1925 nm is achieved.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA