Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Mol Cell ; 79(3): 488-503.e11, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32585128

RESUMEN

Transcription elongation rates influence RNA processing, but sequence-specific regulation is poorly understood. We addressed this in vivo, analyzing RNAPI in S. cerevisiae. Mapping RNAPI by Miller chromatin spreads or UV crosslinking revealed 5' enrichment and strikingly uneven local polymerase occupancy along the rDNA, indicating substantial variation in transcription speed. Two features of the nascent transcript correlated with RNAPI distribution: folding energy and GC content in the transcription bubble. In vitro experiments confirmed that strong RNA structures close to the polymerase promote forward translocation and limit backtracking, whereas high GC in the transcription bubble slows elongation. A mathematical model for RNAPI elongation confirmed the importance of nascent RNA folding in transcription. RNAPI from S. pombe was similarly sensitive to transcript folding, as were S. cerevisiae RNAPII and RNAPIII. For RNAPII, unstructured RNA, which favors slowed elongation, was associated with faster cotranscriptional splicing and proximal splice site use, indicating regulatory significance for transcript folding.


Asunto(s)
ARN Polimerasa III/genética , ARN Polimerasa II/genética , ARN Polimerasa I/genética , ARN de Hongos/química , Saccharomyces cerevisiae/genética , Elongación de la Transcripción Genética , Composición de Base , Secuencia de Bases , Sitios de Unión , Cromatina/química , Cromatina/metabolismo , ADN Ribosómico/genética , ADN Ribosómico/metabolismo , Regulación Fúngica de la Expresión Génica , Unión Proteica , Pliegue del ARN , ARN Polimerasa I/metabolismo , ARN Polimerasa II/metabolismo , ARN Polimerasa III/metabolismo , Sitios de Empalme de ARN , Empalme del ARN , ARN de Hongos/genética , ARN de Hongos/metabolismo , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Termodinámica
2.
Mol Syst Biol ; 15(4): e8689, 2019 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-30962360

RESUMEN

The RNA binding proteome (RBPome) was previously investigated using UV crosslinking and purification of poly(A)-associated proteins. However, most cellular transcripts are not polyadenylated. We therefore developed total RNA-associated protein purification (TRAPP) based on 254 nm UV crosslinking and purification of all RNA-protein complexes using silica beads. In a variant approach (PAR-TRAPP), RNAs were labelled with 4-thiouracil prior to 350 nm crosslinking. PAR-TRAPP in yeast identified hundreds of RNA binding proteins, strongly enriched for canonical RBPs. In comparison, TRAPP identified many more proteins not expected to bind RNA, and this correlated strongly with protein abundance. Comparing TRAPP in yeast and E. coli showed apparent conservation of RNA binding by metabolic enzymes. Illustrating the value of total RBP purification, we discovered that the glycolytic enzyme enolase interacts with tRNAs. Exploiting PAR-TRAPP to determine the effects of brief exposure to weak acid stress revealed specific changes in late 60S ribosome biogenesis. Furthermore, we identified the precise sites of crosslinking for hundreds of RNA-peptide conjugates, using iTRAPP, providing insights into potential regulation. We conclude that TRAPP is a widely applicable tool for RBPome characterization.


Asunto(s)
Proteínas de Unión al ARN/metabolismo , ARN/metabolismo , Ribonucleoproteínas/aislamiento & purificación , Tiouracilo/análogos & derivados , Reactivos de Enlaces Cruzados/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , ARN/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Tiouracilo/química
3.
Mol Syst Biol ; 12(6): 874, 2016 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-27288397

RESUMEN

Reversible modification of the RNAPII C-terminal domain links transcription with RNA processing and surveillance activities. To better understand this, we mapped the location of RNAPII carrying the five types of CTD phosphorylation on the RNA transcript, providing strand-specific, nucleotide-resolution information, and we used a machine learning-based approach to define RNAPII states. This revealed enrichment of Ser5P, and depletion of Tyr1P, Ser2P, Thr4P, and Ser7P in the transcription start site (TSS) proximal ~150 nt of most genes, with depletion of all modifications close to the poly(A) site. The TSS region also showed elevated RNAPII relative to regions further 3', with high recruitment of RNA surveillance and termination factors, and correlated with the previously mapped 3' ends of short, unstable ncRNA transcripts. A hidden Markov model identified distinct modification states associated with initiating, early elongating and later elongating RNAPII. The initiation state was enriched near the TSS of protein-coding genes and persisted throughout exon 1 of intron-containing genes. Notably, unstable ncRNAs apparently failed to transition into the elongation states seen on protein-coding genes.


Asunto(s)
ARN Polimerasa II/metabolismo , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/genética , Sitios de Unión , Aprendizaje Automático , Cadenas de Markov , Fosforilación , ARN Polimerasa II/química , ARN de Hongos/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcripción Genética
4.
Nucleic Acids Res ; 42(19): 12189-99, 2014 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-25294836

RESUMEN

During the last step in 40S ribosome subunit biogenesis, the PIN-domain endonuclease Nob1 cleaves the 20S pre-rRNA at site D, to form the mature 18S rRNAs. Here we report that cleavage occurs in particles that have largely been stripped of previously characterized pre-40S components, but retain the endonuclease Nob1, its binding partner Pno1 (Dim2) and the atypical ATPase Rio1. Within the Rio1-associated pre-40S particles, in vitro pre-rRNA cleavage was strongly stimulated by ATP and required nucleotide binding by Rio1. In vivo binding sites for Rio1, Pno1 and Nob1 were mapped by UV cross-linking in actively growing cells. Nob1 and Pno1 bind overlapping regions within the internal transcribed spacer 1, and both bind directly over cleavage site D. Binding sites for Rio1 were within the core of the 18S rRNA, overlapping tRNA interaction sites and distinct from the related kinase Rio2. Site D cleavage occurs within pre-40S-60S complexes and Rio1-associated particles efficiently assemble into these complexes, whereas Pno1 appeared to be depleted relative to Nob1. We speculate that Rio1-mediated dissociation of Pno1 from cleavage site D is the trigger for final 18S rRNA maturation.


Asunto(s)
Adenosina Trifosfato/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/enzimología , Proteínas de Saccharomyces cerevisiae/metabolismo , Sitios de Unión , Modelos Moleculares , Proteínas Nucleares/metabolismo , División del ARN , Precursores del ARN/metabolismo , ARN Ribosómico/metabolismo , Proteínas Ribosómicas/química , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/química , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo
5.
EMBO J ; 30(19): 4006-19, 2011 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-21811236

RESUMEN

The 5'-exonuclease Rat1 degrades pre-rRNA spacer fragments and processes the 5'-ends of the 5.8S and 25S rRNAs. UV crosslinking revealed multiple Rat1-binding sites across the pre-rRNA, consistent with its known functions. The major 5.8S 5'-end is generated by Rat1 digestion of the internal transcribed spacer 1 (ITS1) spacer from cleavage site A(3). Processing from A(3) requires the 'A(3)-cluster' proteins, including Cic1, Erb1, Nop7, Nop12 and Nop15, which show interdependent pre-rRNA binding. Surprisingly, A(3)-cluster factors were not crosslinked close to site A(3), but bound sites around the 5.8S 3'- and 25S 5'-regions, which are base paired in mature ribosomes, and in the ITS2 spacer that separates these rRNAs. In contrast, Nop4, a protein required for endonucleolytic cleavage in ITS1, binds the pre-rRNA near the 5'-end of 5.8S. ITS2 was reported to undergo structural remodelling. In vivo chemical probing indicates that A(3)-cluster binding is required for this reorganization, potentially regulating the timing of processing. We predict that Nop4 and the A(3) cluster establish long-range interactions between the 5.8S and 25S rRNAs, which are subsequently maintained by ribosomal protein binding.


Asunto(s)
Exonucleasas/metabolismo , Exorribonucleasas/metabolismo , Regulación Fúngica de la Expresión Génica , Precursores del ARN/genética , ARN Ribosómico 5.8S/genética , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Sitios de Unión , Proteínas Portadoras/genética , Cristalografía por Rayos X , ADN Espaciador Ribosómico , Modelos Biológicos , Familia de Multigenes , Conformación de Ácido Nucleico , Unión Proteica , Proteínas Ribosómicas/genética , Proteínas de Saccharomyces cerevisiae/genética
6.
EMBO J ; 29(12): 2026-36, 2010 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-20453830

RESUMEN

Understanding of eukaryotic ribosome synthesis has been slowed by a lack of structural data for the pre-ribosomal particles. We report rRNA-binding sites for six late-acting 40S ribosome synthesis factors, three of which cluster around the 3' end of the 18S rRNA in model 3D structures. Enp1 and Ltv1 were previously implicated in 'beak' structure formation during 40S maturation--and their binding sites indicate direct functions. The kinase Rio2, putative GTPase Tsr1 and dimethylase Dim1 bind sequences involved in tRNA interactions and mRNA decoding, indicating that their presence is incompatible with translation. The Dim1- and Tsr1-binding sites overlap with those of homologous Escherichia coli proteins, revealing conservation in assembly pathways. The primary binding sites for the 18S 3'-endonuclease Nob1 are distinct from its cleavage site and were unaltered by mutation of the catalytic PIN domain. Structure probing indicated that at steady state the cleavage site is likely unbound by Nob1 and flexible in the pre-rRNA. Nob1 binds before pre-rRNA cleavage, and we conclude that structural reorganization is needed to bring together the catalytic PIN domain and its target.


Asunto(s)
ARN Ribosómico 18S/química , ARN Ribosómico 18S/metabolismo , Proteínas Ribosómicas/química , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/química , Saccharomyces cerevisiae/química , Secuencia de Bases , Sitios de Unión , Modelos Moleculares , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Unión Proteica
7.
Nat Commun ; 14(1): 3013, 2023 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-37230993

RESUMEN

Transcription by RNA polymerase I (RNAPI) represents most of the transcriptional activity in eukaryotic cells and is associated with the production of mature ribosomal RNA (rRNA). As several rRNA maturation steps are coupled to RNAPI transcription, the rate of RNAPI elongation directly influences processing of nascent pre-rRNA, and changes in RNAPI transcription rate can result in alternative rRNA processing pathways in response to growth conditions and stress. However, factors and mechanisms that control RNAPI progression by influencing transcription elongation rate remain poorly understood. We show here that the conserved fission yeast RNA-binding protein Seb1 associates with the RNAPI transcription machinery and promotes RNAPI pausing states along the rDNA. The overall faster progression of RNAPI at the rDNA in Seb1-deficient cells impaired cotranscriptional pre-rRNA processing and the production of mature rRNAs. Given that Seb1 also influences pre-mRNA processing by modulating RNAPII progression, our findings unveil Seb1 as a pause-promoting factor for RNA polymerases I and II to control cotranscriptional RNA processing.


Asunto(s)
ARN Polimerasa I , Schizosaccharomyces , ARN Polimerasa I/genética , ARN Polimerasa I/metabolismo , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , Precursores del ARN/genética , Precursores del ARN/metabolismo , Transcripción Genética , Procesamiento Postranscripcional del ARN , ADN Ribosómico/metabolismo , Schizosaccharomyces/genética
8.
Nature ; 441(7093): 651-5, 2006 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-16738661

RESUMEN

The formation of eukaryotic ribosomes is a multistep process that takes place successively in the nucleolar, nucleoplasmic and cytoplasmic compartments. Along this pathway, multiple pre-ribosomal particles are generated, which transiently associate with numerous non-ribosomal factors before mature 60S and 40S subunits are formed. However, most mechanistic details of ribosome biogenesis are still unknown. Here we identify a maturation step of the yeast pre-40S subunit that is regulated by the protein kinase Hrr25 and involves ribosomal protein Rps3. A high salt concentration releases Rps3 from isolated pre-40S particles but not from mature 40S subunits. Electron microscopy indicates that pre-40S particles lack a structural landmark present in mature 40S subunits, the 'beak'. The beak is formed by the protrusion of 18S ribosomal RNA helix 33, which is in close vicinity to Rps3. Two protein kinases Hrr25 and Rio2 are associated with pre-40S particles. Hrr25 phosphorylates Rps3 and the 40S synthesis factor Enp1. Phosphorylated Rsp3 and Enp1 readily dissociate from the pre-ribosome, whereas subsequent dephosphorylation induces formation of the beak structure and salt-resistant integration of Rps3 into the 40S subunit. In vivo depletion of Hrr25 inhibits growth and leads to the accumulation of immature 40S subunits that contain unstably bound Rps3. We conclude that the kinase activity of Hrr25 regulates the maturation of 40S ribosomal subunits.


Asunto(s)
Quinasa de la Caseína I/química , Quinasa de la Caseína I/metabolismo , Ribosomas/química , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Modelos Moleculares , Proteínas Nucleares/metabolismo , Fosforilación , Conformación Proteica , Proteínas Serina-Treonina Quinasas , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas Ribosómicas/metabolismo
9.
Proc Natl Acad Sci U S A ; 106(24): 9613-8, 2009 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-19482942

RESUMEN

The U3 small nucleolar ribonucleoprotein (snoRNP) plays an essential role in ribosome biogenesis but, like many RNA-protein complexes, its architecture is poorly understood. To address this problem, binding sites for the snoRNP proteins Nop1, Nop56, Nop58, and Rrp9 were mapped by UV cross-linking and analysis of cDNAs. Cross-linked protein-RNA complexes were purified under highly-denaturing conditions, ensuring that only direct interactions were detected. Recovered RNA fragments were amplified after linker ligation and cDNA synthesis. Cross-linking was successfully performed either in vitro on purified complexes or in vivo in living cells. Cross-linking sites were precisely mapped either by Sanger sequencing of multiple cloned fragments or direct, high-throughput Solexa sequencing. Analysis of RNAs associated with the snoRNP proteins revealed remarkably high signal-to-noise ratios and identified specific binding sites for each of these proteins on the U3 RNA. The results were consistent with previous data, demonstrating the reliability of the method, but also provided insights into the architecture of the U3 snoRNP. The snoRNP proteins were also cross-linked to pre-rRNA fragments, with preferential association at known sites of box C/D snoRNA function. This finding demonstrates that the snoRNP proteins directly contact the pre-rRNA substrate, suggesting roles in snoRNA recruitment. The techniques reported here should be widely applicable to analyses of RNA-protein interactions.


Asunto(s)
ADN Complementario/genética , Precursores del ARN/metabolismo , ARN Ribosómico/metabolismo , ARN Nucleolar Pequeño/metabolismo , Rayos Ultravioleta , Secuencia de Bases , Sitios de Unión , Conformación de Ácido Nucleico , Unión Proteica , Precursores del ARN/química , ARN Ribosómico/química , ARN Nucleolar Pequeño/química
10.
J Cell Biol ; 157(6): 941-51, 2002 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-12058014

RESUMEN

Many analyses have examined subnucleolar structures in eukaryotic cells, but the relationship between morphological structures, pre-rRNA processing, and ribosomal particle assembly has remained unclear. Using a visual assay for export of the 60S ribosomal subunit, we isolated a ts-lethal mutation, rix9-1, which causes nucleolar accumulation of an Rpl25p-eGFP reporter construct. The mutation results in a single amino acid substitution (F176S) in Rlp7p, an essential nucleolar protein related to ribosomal protein Rpl7p. The rix9-1 (rlp7-1) mutation blocks the late pre-RNA cleavage at site C2 in ITS2, which separates the precursors to the 5.8S and 25S rRNAs. Consistent with this, synthesis of the mature 5.8S and 25S rRNAs was blocked in the rlp7-1 strain at nonpermissive temperature, whereas 18S rRNA synthesis continued. Moreover, pre-rRNA containing ITS2 accumulates in the nucleolus of rix9-1 cells as revealed by in situ hybridization. Finally, tagged Rlp7p was shown to associate with a pre-60S particle, and fluorescence microscopy and immuno-EM localized Rlp7p to a subregion of the nucleolus, which could be the granular component (GC). All together, these data suggest that pre-rRNA cleavage at site C2 specifically requires Rlp7p and occurs within pre-60S particles located in the GC region of the nucleolus.


Asunto(s)
Nucléolo Celular/metabolismo , Precursores del ARN/metabolismo , ARN Ribosómico/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Levaduras/genética , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Nucléolo Celular/ultraestructura , Secuencia Conservada , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fluorescentes Verdes , Proteínas Luminiscentes , Datos de Secuencia Molecular , Mutación , Estructura Terciaria de Proteína , Precursores del ARN/química , Precursores del ARN/genética , Precursores del ARN/ultraestructura , Procesamiento Postranscripcional del ARN , ARN de Hongos/química , ARN de Hongos/genética , ARN de Hongos/metabolismo , ARN Ribosómico/química , ARN Ribosómico/genética , ARN Ribosómico/ultraestructura , Alineación de Secuencia , Temperatura , Levaduras/crecimiento & desarrollo
11.
Mol Cell Biol ; 23(23): 8519-27, 2003 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-14612397

RESUMEN

Fibrillarin, a protein component of C/D box small nucleolar ribonucleoproteins (snoRNPs), directs 2'-O-methylation of rRNA and is also involved in other aspects of rRNA processing. A gene trap screen in embryonic stem (ES) cells resulted in an insertion mutation in the fibrillarin gene. This insertion generated a fusion protein that contained the N-terminal 132 amino acids of fibrillarin fused to a beta-galactosidase-neomycin phosphotransferase reporter. As a result, the N-terminal GAR domain was present in the fusion protein but the methyltransferase-like domain was missing. The ES cell line with the targeted fibrillarin allele was transmitted through the mouse germ line, creating heterozygous animals. Western blot analyses showed a reduction in fibrillarin protein levels in the heterozygous knockout animals. Animals homozygous for the mutation were inviable, and massive apoptosis was observed in early Fibrillarin(-/-) embryos, showing that fibrillarin is essential for development. Fibrillarin(+/-) live-born mice displayed no obvious growth defect, but heterozygous intercrosses revealed a reduced ratio of +/- to +/+ mice, showing that some of the Fibrillarin heterozygous embryos die in utero. Analyses of tissue samples and cultured embryonic fibroblasts showed no discernible alteration in pre-rRNA processing or the level of the U3 snoRNA. However, the level of the intron-encoded box C/D snoRNA U76 was clearly reduced. This suggests a high requirement for snoRNA synthesis during an early stage in development.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , ARN Nucleolar Pequeño/genética , ARN Nucleolar Pequeño/metabolismo , Secuencia de Aminoácidos , Animales , Apoptosis/genética , Apoptosis/fisiología , Secuencia de Bases , Proteínas Cromosómicas no Histona/deficiencia , Proteínas Cromosómicas no Histona/genética , Desarrollo Embrionario y Fetal/genética , Desarrollo Embrionario y Fetal/fisiología , Femenino , Regulación del Desarrollo de la Expresión Génica , Heterocigoto , Intrones , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Datos de Secuencia Molecular , Mutagénesis Insercional , Fenotipo , Embarazo , Procesamiento Postranscripcional del ARN , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
12.
Mol Cell Biol ; 23(19): 6982-92, 2003 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12972615

RESUMEN

Related exosome complexes of 3'-->5' exonucleases are present in the nucleus and the cytoplasm. Purification of exosome complexes from whole-cell lysates identified a Mg(2+)-labile factor present in substoichiometric amounts. This protein was identified as the nuclear protein Yhr081p, the homologue of human C1D, which we have designated Rrp47p (for rRNA processing). Immunoprecipitation of epitope-tagged Rrp47p confirmed its interaction with the exosome and revealed its association with Rrp6p, a 3'-->5' exonuclease specific to the nuclear exosome fraction. Northern analyses demonstrated that Rrp47p is required for the exosome-dependent processing of rRNA and small nucleolar RNA (snoRNA) precursors. Rrp47p also participates in the 3' processing of U4 and U5 small nuclear RNAs (snRNAs). The defects in the processing of stable RNAs seen in rrp47-Delta strains closely resemble those of strains lacking Rrp6p. In contrast, Rrp47p is not required for the Rrp6p-dependent degradation of 3'-extended nuclear pre-mRNAs or the cytoplasmic 3'-->5' mRNA decay pathway. We propose that Rrp47p functions as a substrate-specific nuclear cofactor for exosome activity in the processing of stable RNAs.


Asunto(s)
Regiones no Traducidas 3' , Exorribonucleasas/metabolismo , Procesamiento Postranscripcional del ARN , ARN/metabolismo , Empalme Alternativo , Núcleo Celular/metabolismo , Exorribonucleasas/genética , Exorribonucleasas/aislamiento & purificación , Humanos , Mutación , Precursores del ARN/metabolismo , ARN Ribosómico/metabolismo , ARN Ribosómico 5.8S/metabolismo , ARN Nuclear Pequeño/biosíntesis , ARN Nucleolar Pequeño/biosíntesis , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
Mol Cell Biol ; 37(14)2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28483910

RESUMEN

Histone methylation at H3K4 and H3K36 is commonly associated with genes actively transcribed by RNA polymerase II (RNAPII) and is catalyzed by Saccharomyces cerevisiae Set1 and Set2, respectively. Here we report that both methyltransferases can be UV cross-linked to RNA in vivo High-throughput sequencing of the bound RNAs revealed strong Set1 enrichment near the transcription start site, whereas Set2 was distributed along pre-mRNAs. A subset of transcripts showed notably high enrichment for Set1 or Set2 binding relative to RNAPII, suggesting functional posttranscriptional interactions. In particular, Set1 was strongly bound to the SET1 mRNA, Ty1 retrotransposons, and noncoding RNAs from the ribosomal DNA (rDNA) intergenic spacers, consistent with its previously reported silencing roles. Set1 lacking RNA recognition motif 2 (RRM2) showed reduced in vivo cross-linking to RNA and reduced chromatin occupancy. In addition, levels of H3K4 trimethylation were decreased, whereas levels of dimethylation were increased. We conclude that RNA binding by Set1 contributes to both chromatin association and methyltransferase activity.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Metiltransferasas/metabolismo , ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Cromatina/metabolismo , Histonas/metabolismo , Metilación , ARN Polimerasa II/metabolismo , Factores de Transcripción/metabolismo
14.
Nat Commun ; 7: 12090, 2016 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-27354316

RESUMEN

Early eukaryotic ribosome biogenesis involves large multi-protein complexes, which co-transcriptionally associate with pre-ribosomal RNA to form the small subunit processome. The precise mechanisms by which two of the largest multi-protein complexes-UtpA and UtpB-interact with nascent pre-ribosomal RNA are poorly understood. Here, we combined biochemical and structural biology approaches with ensembles of RNA-protein cross-linking data to elucidate the essential functions of both complexes. We show that UtpA contains a large composite RNA-binding site and captures the 5' end of pre-ribosomal RNA. UtpB forms an extended structure that binds early pre-ribosomal intermediates in close proximity to architectural sites such as an RNA duplex formed by the 5' ETS and U3 snoRNA as well as the 3' boundary of the 18S rRNA. Both complexes therefore act as vital RNA chaperones to initiate eukaryotic ribosome assembly.


Asunto(s)
Chaperonas Moleculares/fisiología , ARN de Hongos/metabolismo , ARN Nucleolar Pequeño/metabolismo , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Regulación Fúngica de la Expresión Génica , Precursores del ARN/genética , Procesamiento Postranscripcional del ARN , ARN Ribosómico 18S , ARN Nucleolar Pequeño/genética , ARN Nucleolar Pequeño/fisiología , Proteínas Ribosómicas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
15.
Traffic ; 7(10): 1311-21, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16978391

RESUMEN

Ribosomal precursor particles are initially assembled in the nucleolus prior to their transfer to the nucleoplasm and export to the cytoplasm. In a screen to identify thermosensitive (ts) mutants defective in the export of pre-60S ribosomal subunit, we isolated the rix16-1 mutant. In this strain, nucleolar accumulation of the Rpl25-eGFP reporter was complemented by UBA2 (a subunit of the E1 sumoylation enzyme). Mutations in UBC9 (E2 enzyme), ULP1 [small-ubiquitin-related modifier (SUMO) isopeptidase] and SMT3 (SUMO-1) caused 60S export defects. A directed analysis of the SUMO proteome revealed that many ribosome biogenesis factors are sumoylated. Importantly, preribosomal particles along both the 60S and the 40S synthesis pathways were decorated with SUMO, showing its direct involvement. Consistent with this, early 60S assembly factors were genetically linked to SUMO conjugation. Notably, the SUMO deconjugating enzyme Ulp1, which localizes to the nuclear pore complex (NPC), was functionally linked to the 60S export factor Mtr2. Together our data suggest that sumoylation of preribosomal particles in the nucleus and subsequent desumoylation at the NPC is necessary for efficient ribosome biogenesis and export in eukaryotes.


Asunto(s)
Transporte Activo de Núcleo Celular/fisiología , Cisteína Endopeptidasas/metabolismo , Proteínas Fúngicas/metabolismo , Precursores de Proteínas/metabolismo , Ribosomas/metabolismo , Transducción de Señal/fisiología , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Animales , Cisteína Endopeptidasas/genética , Proteínas Fúngicas/genética , Fenotipo , Subunidades de Proteína/metabolismo , Precursores del ARN/metabolismo , ARN Ribosómico/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo , Levaduras/metabolismo
16.
Cell ; 121(5): 713-24, 2005 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-15935758

RESUMEN

The exosome complex of 3'-5' exonucleases participates in RNA maturation and quality control and can rapidly degrade RNA-protein complexes in vivo. However, the purified exosome showed weak in vitro activity, indicating that rapid RNA degradation requires activating cofactors. This work identifies a nuclear polyadenylation complex containing a known exosome cofactor, the RNA helicase Mtr4p; a poly(A) polymerase, Trf4p; and a zinc knuckle protein, Air2p. In vitro, the Trf4p/Air2p/Mtr4p polyadenylation complex (TRAMP) showed distributive RNA polyadenylation activity. The presence of the exosome suppressed poly(A) tail addition, while TRAMP stimulated exosome degradation through structured RNA substrates. In vivo analyses showed that TRAMP is required for polyadenylation and degradation of rRNA and snoRNA precursors that are characterized exosome substrates. Poly(A) tails stimulate RNA degradation in bacteria, suggesting that this is their ancestral function. We speculate that this function was maintained in eukaryotic nuclei, while cytoplasmic mRNA poly(A) tails acquired different roles in translation.


Asunto(s)
Proteínas Portadoras/metabolismo , Núcleo Celular/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Polinucleotido Adenililtransferasa/metabolismo , ARN Helicasas/metabolismo , ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , ARN Helicasas DEAD-box , Espectrometría de Masas , Análisis de Secuencia por Matrices de Oligonucleótidos , Poliadenilación , ARN Polimerasa II/metabolismo , Estabilidad del ARN , Saccharomyces cerevisiae/metabolismo
17.
EMBO J ; 24(3): 580-8, 2005 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-15660135

RESUMEN

In genetic screens for ribosomal export mutants, we identified CFD1, NBP35 and NAR1 as factors involved in ribosome biogenesis. Notably, these components were recently reported to function in extramitochondrial iron-sulfur (Fe-S) cluster biosynthesis. In particular, Nar1 was implicated to generate the Fe-S clusters within Rli1, a potential substrate protein of unknown function. We tested whether the Fe-S protein Rli1 functions in ribosome formation. We report that rli1 mutants are impaired in pre-rRNA processing and defective in the export of both ribosomal subunits. In addition, Rli1p is associated with both pre-40S particles and mature 40S subunits, and with the eIF3 translation initiation factor complex. Our data reveal an unexpected link between ribosome biogenesis and the biosynthetic pathway of cytoplasmic Fe-S proteins.


Asunto(s)
Proteínas Hierro-Azufre/biosíntesis , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/biosíntesis , Transportadoras de Casetes de Unión a ATP/biosíntesis , Transportadoras de Casetes de Unión a ATP/genética , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Secuencia de Bases , Transporte Biológico Activo , ADN de Hongos/genética , Factor 3 de Iniciación Eucariótica/genética , Factor 3 de Iniciación Eucariótica/metabolismo , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Genes Fúngicos , Proteínas Hierro-Azufre/genética , Mutación , Precursores del ARN/genética , Precursores del ARN/metabolismo , ARN de Hongos/genética , ARN de Hongos/metabolismo , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , Ribosomas/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
18.
Biochem Biophys Res Commun ; 337(1): 89-94, 2005 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-16188229

RESUMEN

Tif6p (eIF6) is necessary for 60S biogenesis, rRNA maturation and must be released from 60S to permit 80S assembly and translation. We characterized Tif6p interactors. Tif6p is mostly on 66S-60S pre-ribosomes, partly free. Tif6p complex(es) contain nucleo-ribosomal factors and Asc1p. Surprisingly, Tif6p particle contains the low-abundance endonuclease Sen34p. We analyzed Sen34p role on rRNA/tRNA synthesis, in vivo. Sen34p depletion impairs tRNA splicing and causes unexpected 80S accumulation. Accordingly, Sen34p overexpression causes 80S decrease and increased polysomes which suggest increased translational efficiency. With delayed kinetics, Sen34p depletion impairs rRNA processing. We conclude that Sen34p is absolutely required for tRNA splicing and that it is a rate-limiting element for efficient translation. Finally, we confirm that Tif6p accompanies 27S pre-rRNA maturation to 25S rRNA and we suggest that Sen34p endonuclease in Tif6p complex may affect also rRNA maturation.


Asunto(s)
Endorribonucleasas/fisiología , Procesamiento Postranscripcional del ARN , Empalme del ARN , ARN Ribosómico/metabolismo , ARN de Transferencia/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/genética , Proteínas Portadoras/metabolismo , Endorribonucleasas/antagonistas & inhibidores , Endorribonucleasas/genética , Eliminación de Gen , Regulación Fúngica de la Expresión Génica , Proteínas de Filamentos Intermediarios/metabolismo , Cinética , Fosfoproteínas/metabolismo , Precursores del ARN/metabolismo , ARN de Transferencia/biosíntesis , Proteínas Ribosómicas , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
19.
J Biol Chem ; 279(53): 55411-8, 2004 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-15528184

RESUMEN

Rea1, the largest predicted protein in the yeast genome, is a member of the AAA(+) family of ATPases and is associated with pre-60 S ribosomes. Here we report that Rea1 is required for maturation and nuclear export of the pre-60 S subunit. Rea1 exhibits a predominantly nucleoplasmic localization and is present in a late pre-60 S particle together with members of the Rix1 complex. To study the role of Rea1 in ribosome biogenesis, we generated a repressible GAL::REA1 strain and temperature-sensitive rea1 alleles. In vivo depletion of Rea1 results in the significant reduction of mature 60 S subunits concomitant with defects in pre-rRNA processing and late pre-60 S ribosome stability following ITS2 cleavage and prior to the generation of mature 5.8 S rRNA. Strains depleted of the components of the Rix1 complex (Rix1, Ipi1, and Ipi3) showed similar defects. Using an in vivo 60 S subunit export assay, a strong accumulation of the large subunit reporter Rpl25-GFP (green fluorescent protein) in the nucleus and at the nuclear periphery was seen in rea1 mutants at restrictive conditions.


Asunto(s)
Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/fisiología , ARN Ribosómico/metabolismo , Ribosomas/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/fisiología , Transportadoras de Casetes de Unión a ATP/química , ATPasas Asociadas con Actividades Celulares Diversas , Alelos , Northern Blotting , Western Blotting , Núcleo Celular/metabolismo , Citoplasma/metabolismo , ADN Espaciador Ribosómico , Genes Reporteros , Proteínas Fluorescentes Verdes/metabolismo , Cloruro de Magnesio/farmacología , Proteínas de la Membrana/química , Modelos Biológicos , Mutación , Oligonucleótidos/química , Plásmidos/metabolismo , Estructura Terciaria de Proteína , ARN/química , ARN Ribosómico 5.8S/química , Receptores de Esteroides , Saccharomyces cerevisiae/metabolismo , Sales (Química)/farmacología , Dodecil Sulfato de Sodio/química
20.
EMBO J ; 22(6): 1370-80, 2003 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-12628929

RESUMEN

Recent reports have increased our knowledge of the consecutive steps during 60S ribosome biogenesis substantially, but 40S subunit formation is less well understood. Here, we investigate the maturation of nucleolar 90S pre-ribosomes into cytoplasmic 40S pre-ribosomes. During the transition from 90S to 40S particles, the majority of non-ribosomal proteins (approximately 30 species) dissociate, and significantly fewer factors associate with 40S pre-ribosomes. Notably, some of these components are part of both early 90S and intermediate 40S pre-particles in the nucleolus (e.g. Enp1p, Dim1p and Rrp12p), whereas others (e.g. Rio2p and Nob1p) are found mainly on late cytoplasmic pre-40S subunits. Finally, temperature-sensitive mutants mapping either in earlier (enp1-1) or later (rio2-1) components exhibit defects in the formation and nuclear export of pre-40S subunits. Our data provide an initial biochemical map of the pre-40S ribosomal subunit on its path from the nucleolus to the cytoplasm. This pathway involves fewer changes in composition than seen during 60S biogenesis.


Asunto(s)
Proteínas de Saccharomyces cerevisiae/metabolismo , Transporte Biológico , Nucléolo Celular/metabolismo , Citoplasma/metabolismo , Regulación Fúngica de la Expresión Génica , Proteínas Fluorescentes Verdes , Proteínas de Choque Térmico/metabolismo , Proteínas Luminiscentes/metabolismo , Modelos Biológicos , Mutación , Precursores del ARN/aislamiento & purificación , Precursores del ARN/metabolismo , Procesamiento Postranscripcional del ARN , ARN de Hongos/genética , ARN de Hongos/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Ribosomas/química , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA