Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(11)2022 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35682718

RESUMEN

IDH (isocitrate dehydrogenase) mutation, hypoxia, and neo-angiogenesis, three hallmarks of diffuse gliomas, modulate the expression of small non-coding RNAs (miRNA). In this paper, we tested whether pro-angiogenic and/or pro-hypoxic miRNAs could be used to monitor patients with glioma. The miRNAs were extracted from tumoral surgical specimens embedded in the paraffin of 97 patients with diffuse gliomas and, for 7 patients, from a blood sample too. The expression of 10 pro-angiogenic and/or pro-hypoxic miRNAs was assayed by qRT-PCR and normalized to the miRNA expression of non-tumoral brain tissues. We confirmed in vitro that IDH in hypoxia (1% O2, 24 h) alters pro-angiogenic and/or pro-hypoxic miRNA expression in HBT-14 (U-87 MG) cells. Then, we reported that the expression of these miRNAs is (i) strongly affected in patients with glioma compared to that in a non-tumoral brain; (ii) correlated with the histology/grade of glioma according to the 2016 WHO classification; and (iii) predicts the overall and/or progression-free survival of patients with glioma in univariate but not in a multivariate analysis after adjusting for sex, age at diagnosis, and WHO classification. Finally, the expression of miRNAs was found to be the same between the plasma and glial tumor of the same patient. This study highlights a panel of seven pro-angiogenic and/or pro-hypoxic miRNAs as a potential tool for monitoring patients with glioma.


Asunto(s)
Neoplasias Encefálicas , Glioma , MicroARNs , Neoplasias Encefálicas/metabolismo , Glioma/diagnóstico , Glioma/genética , Glioma/metabolismo , Humanos , Hipoxia/genética , Isocitrato Deshidrogenasa/genética , MicroARNs/genética , Mutación
2.
Int J Mol Sci ; 21(1)2019 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-31878191

RESUMEN

The resistance of cancer cells to radiotherapy is a major issue in the curative treatment of cancer patients. This resistance can be intrinsic or acquired after irradiation and has various definitions, depending on the endpoint that is chosen in assessing the response to radiation. This phenomenon might be strengthened by the radiosensitivity of surrounding healthy tissues. Sensitive organs near the tumor that is to be treated can be affected by direct irradiation or experience nontargeted reactions, leading to early or late effects that disrupt the quality of life of patients. For several decades, new modalities of irradiation that involve accelerated particles have been available, such as proton therapy and carbon therapy, raising the possibility of specifically targeting the tumor volume. The goal of this review is to examine the up-to-date radiobiological and clinical aspects of hadrontherapy, a discipline that is maturing, with promising applications. We first describe the physical and biological advantages of particles and their application in cancer treatment. The contribution of the microenvironment and surrounding healthy tissues to tumor radioresistance is then discussed, in relation to imaging and accurate visualization of potentially resistant hypoxic areas using dedicated markers, to identify patients and tumors that could benefit from hadrontherapy over conventional irradiation. Finally, we consider combined treatment strategies to improve the particle therapy of radioresistant cancers.


Asunto(s)
Neoplasias/radioterapia , Radioterapia/métodos , Humanos , Hipoxia , Terapia de Protones
3.
Eur J Nucl Med Mol Imaging ; 44(8): 1383-1392, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28315948

RESUMEN

PURPOSE: Hypoxia in gliomas is associated with tumor resistance to radio- and chemotherapy. However, positron emission tomography (PET) imaging of hypoxia remains challenging, and the validation of biological markers is, therefore, of great importance. We investigated the relationship between uptake of the PET hypoxia tracer [18F]-FMISO and other markers of hypoxia and angiogenesis and with patient survival. PATIENTS AND METHODS: In this prospective single center clinical study, 33 glioma patients (grade IV: n = 24, III: n = 3, and II: n = 6) underwent [18F]-FMISO PET and MRI including relative cerebral blood volume (rCBV) maps before surgery. Maximum standardized uptake values (SUVmax) and hypoxic volume were calculated, defining two groups of patients based on the presence or absence of [18F]-FMISO uptake. After surgery, molecular quantification of CAIX, VEGF, Ang2 (rt-qPCR), and HIF-1α (immunohistochemistry) were performed on tumor specimens. RESULTS: [18F]-FMISO PET uptake was closely linked to tumor grade, with high uptake in glioblastomas (GB, grade IV). Expression of biomarkers of hypoxia (CAIX, HIF-1α), and angiogenesis markers (VEGF, Ang2, rCBV) were significantly higher in the [18F]-FMISO uptake group. We found correlations between the degree of hypoxia (hypoxic volume and SUVmax) and expression of HIF-1α, CAIX, VEGF, Ang2, and rCBV (p < 0.01). Patients without [18F]-FMISO uptake had a longer survival time than uptake positive patients (log-rank, p < 0.005). CONCLUSIONS: Tumor hypoxia as evaluated by [18F]-FMISO PET is associated with the expression of hypoxia markers on a molecular level and is related to angiogenesis. [18F]-FMISO uptake is a mark of an aggressive tumor, almost always a glioblastoma. Our results underline that [18F]-FMISO PET could be useful to guide glioma treatment, and in particular radiotherapy, since hypoxia is a well-known factor of resistance.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Glioma/diagnóstico por imagen , Glioma/cirugía , Misonidazol/análogos & derivados , Neovascularización Patológica/diagnóstico por imagen , Tomografía de Emisión de Positrones , Hipoxia Tumoral , Adulto , Anciano , Anciano de 80 o más Años , Transporte Biológico , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/fisiopatología , Neoplasias Encefálicas/cirugía , Volumen Sanguíneo Cerebral , Supervivencia sin Enfermedad , Femenino , Glioma/patología , Glioma/fisiopatología , Humanos , Masculino , Persona de Mediana Edad , Misonidazol/metabolismo , Radiocirugia
4.
Eur J Nucl Med Mol Imaging ; 43(4): 682-94, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26537287

RESUMEN

PURPOSE: The primary objective of this study was to compare the ability of PET and MRI biomarkers to predict treatment efficacy in a preclinical model of recurrent glioblastoma multiforme. METHODS: MRI (anatomical, diffusion, vasculature and oxygenation) and PET ([(18)F]FDG and [(18)F]FLT) parameters were obtained 3 days after the end of treatment and compared with late tumour growth and survival. RESULTS: Early after tumour recurrence, no effect of treatment with temozolomide combined with bevacizumab was observed on tumour volume as assessed by T2-W MRI. At later times, the treatment decreased tumour volume and increased survival. Interestingly, at the earlier time, temozolomide + bevacizumab decreased [(18)F]FLT uptake, cerebral blood volume and oedema. [(18)F]FLT uptake, oedema and cerebral blood volume were correlated with overall survival but [(18)F]FLT uptake had the highest specificity and sensitivity for the early prediction of treatment efficacy. CONCLUSION: The present investigation in a preclinical model of glioblastoma recurrence underscores the importance of multimodal imaging in the assessment of oedema, tumour vascular status and cell proliferation. Finally, [(18)F]FLT holds the greatest promise for the early assessment of treatment efficacy. These findings may translate clinically in that individualized treatment for recurrent glioma could be prescribed for patients selected after PET/MRI examinations.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Glioblastoma/diagnóstico por imagen , Imagen por Resonancia Magnética , Imagen Multimodal , Tomografía de Emisión de Positrones , Animales , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/tratamiento farmacológico , Línea Celular Tumoral , Didesoxinucleósidos , Glioblastoma/diagnóstico , Glioblastoma/tratamiento farmacológico , Humanos , Masculino , Radiofármacos , Ratas
5.
Biol Chem ; 394(4): 529-39, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23399636

RESUMEN

Despite multiple advances in cancer therapies, patients with glioblastoma (GBM) still have a poor prognosis. Numerous glioma models are used not only for the development of innovative therapies but also to optimize conventional ones. Given the significance of hypoxia in drug and radiation resistance and that hypoxia is widely observed among GBM, the establishment of a reliable method to map hypoxia in preclinical human models may contribute to the discovery and translation of future and more targeted therapies. The aim of this study was to compare the hypoxic status of two commonly used human orthotopic glioma models (U87 and U251) developed in rats and studied by noninvasive hypoxia imaging with 3-[18F]fluoro-1-(2-nitro-1-imidazolyl)-2-propanol-micro-positron emission tomography ([18F]-FMISO-µPET). In parallel, because of the relationships between angiogenesis and hypoxia, we used magnetic resonance imaging (MRI), histology, and immunohistochemistry to characterize the tumoral vasculature. Although all tumors were detectable in T2-weighted MRI and 2-deoxy-2-[18F]fluoro-d-glucose-µPET, only the U251 model exhibited [18F]-FMISO uptake. Additionally, the U251 tumors were less densely vascularized than U87 tumors. Our study demonstrates the benefits of noninvasive imaging of hypoxia in preclinical models to define the most reliable one for translation of future therapies to clinic based on the importance of intratumoral oxygen tension for the efficacy of chemotherapy and radiotherapy.


Asunto(s)
Glioma/patología , Hipoxia/diagnóstico , Misonidazol/análogos & derivados , Tomografía de Emisión de Positrones/métodos , Humanos , Inmunohistoquímica , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética
6.
Rev Infirm ; (195): 23-4, 2013 Nov.
Artículo en Francés | MEDLINE | ID: mdl-24303666

RESUMEN

A restructuring of the emergency department of Kremlin Bicêtre University Hospital presented an opportunity for a multi-disciplinary discussion to consider new nursing practices. As a result, people admitted to the emergency department can benefit from greater privacy and maintain their dignity despite the "usual saturation" of the department.


Asunto(s)
Servicio de Urgencia en Hospital , Personeidad , Confidencialidad , Humanos , Admisión del Paciente , Autonomía Personal
7.
Exp Cell Res ; 317(16): 2321-32, 2011 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-21749867

RESUMEN

Hypoxia has been shown to be one of the major events involved in EPO expression. Accordingly, EPO might be expressed by cerebral neoplastic cells, especially in glioblastoma, known to be highly hypoxic tumours. The expression of EPOR has been described in glioma cells. However, data from the literature remain descriptive and controversial. On the basis of an endogenous source of EPO in the brain, we have focused on a potential role of EPOR in brain tumour growth. In the present study, with complementary approaches to target EPO/EPOR signalling, we demonstrate the presence of a functional EPO/EPOR system on glioma cells leading to the activation of the ERK pathway. This EPO/EPOR system is involved in glioma cell proliferation in vitro. In vivo, we show that the down-regulation of EPOR expression on glioma cells reduces tumour growth and enhances animal survival. Our results support the hypothesis that EPOR signalling in tumour cells is involved in the control of glioma growth.


Asunto(s)
Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Glioma/tratamiento farmacológico , Receptores de Eritropoyetina/antagonistas & inhibidores , Transducción de Señal/fisiología , Animales , Astrocitos/metabolismo , Neoplasias Encefálicas/metabolismo , Núcleo Caudado/patología , Hipoxia de la Célula/fisiología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Medios de Cultivo Condicionados/farmacología , Eritropoyetina/antagonistas & inhibidores , Eritropoyetina/genética , Eritropoyetina/metabolismo , Eritropoyetina/farmacología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Expresión Génica/genética , Glioma/metabolismo , Glioma/patología , Células Hep G2 , Humanos , Sistema de Señalización de MAP Quinasas/fisiología , Masculino , Ratones , Ratones Desnudos , Fosforilación/efectos de los fármacos , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/farmacología , ARN Interferente Pequeño/uso terapéutico , Ratas , Ratas Endogámicas F344 , Receptores de Eritropoyetina/genética , Receptores de Eritropoyetina/metabolismo , Eliminación de Secuencia/fisiología , Transducción de Señal/efectos de los fármacos , Análisis de Supervivencia , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Cereb Cortex ; 21(7): 1695-702, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21127017

RESUMEN

Vascular-specific growth factor angiopoietin-2 (Ang2) is mainly involved during vascular network setup. Recently, Ang2 was suggested to play a role in adult neurogenesis, affecting migration and differentiation of adult neuroblasts in vitro. However, to date, no data have reported an effect of Ang2 on neurogenesis during embryonic development. As we detected Ang2 expression in the developing cerebral cortex at embryonic day E14.5 and E16.5, we used in utero electroporation to knock down Ang2 expression in neuronal progenitors located in the cortical ventricular zone (VZ) to examine the role of Ang2 in cortical embryonic neurogenesis. Using this strategy, we showed that radial migration from the VZ toward the cortical plate of Ang2-knocked down neurons is altered as well as their morphology. In parallel, we observed a perturbation of intermediate progenitor population and the surrounding vasculature. Taken together, our results show for the first time that, in addition to its role during brain vasculature setup, Ang2 is also involved in embryonic cortical neurogenesis and especially in the radial migration of projection neurons.


Asunto(s)
Angiopoyetina 2/fisiología , Neurogénesis/fisiología , Telencéfalo/embriología , Telencéfalo/crecimiento & desarrollo , Angiopoyetina 2/genética , Animales , Animales Recién Nacidos , Línea Celular Tumoral , Movimiento Celular/genética , Movimiento Celular/fisiología , Corteza Cerebral/irrigación sanguínea , Corteza Cerebral/embriología , Corteza Cerebral/crecimiento & desarrollo , Femenino , Técnicas de Silenciamiento del Gen/métodos , Ratones , Neurogénesis/genética , Neuronas/citología , Neuronas/fisiología , Embarazo , Telencéfalo/irrigación sanguínea
9.
Proc Natl Acad Sci U S A ; 105(16): 6185-90, 2008 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-18413601

RESUMEN

CNS neurons use robust cytoprotective mechanisms to ensure survival and functioning under conditions of injury. These involve pathways induced by endogenous neuroprotective cytokines such as erythropoietin (EPO). Recently, in contrast to its well known deleterious roles, TNF has also been shown to exhibit neuroprotective properties. In the present study, we investigated the molecular mechanisms by which TNF receptor (TNFR)I mediates neuroprotection by comparing the gene expression profiles of lesioned cortex from WT and TNFRI KO mice after permanent middle cerebral artery occlusion. Several known neuroprotective molecules were identified as TNFRI targets, notably members of the Bcl-2 family, DNA repair machinery and cell cycle, developmental, and differentiation factors, neurotransmitters and growth factors, as well as their receptors, including EPO receptor (EPOR), VEGF, colony-stimulating factor receptor 1, insulin-like growth factor (IGF), and nerve growth factor (NGF). Further analysis showed that induction of EPOR and VEGF expression in primary cortical neurons after glucose deprivation (GD) largely depended on TNFRI and was further up-regulated by TNF. Also, EPO- and VEGF-induced neuroprotection against GD, oxygen-glucose deprivation, and NMDA excitotoxicity depended significantly on TNFRI presence. Finally, EPO prevented neuronal damage induced by kainic acid in WT but not TNFRI KO mice. Our results identify cross-talk between tissue protective cytokines, specifically that TNFRI is necessary for constitutive and GD-induced expression of EPOR and VEGF and for EPO-mediated neuroprotection.


Asunto(s)
Isquemia Encefálica/genética , Citoprotección/genética , Eritropoyetina/genética , Agonistas de Aminoácidos Excitadores/toxicidad , Neuronas/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/fisiología , Factor A de Crecimiento Endotelial Vascular/genética , Animales , Isquemia Encefálica/patología , Muerte Celular/genética , Perfilación de la Expresión Génica , Ácido Kaínico/toxicidad , Masculino , Ratones , Ratones Noqueados , N-Metilaspartato/toxicidad , Neuronas/efectos de los fármacos , Neuronas/patología , Análisis de Secuencia por Matrices de Oligonucleótidos , Receptores de Eritropoyetina/genética , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Factor de Necrosis Tumoral alfa/metabolismo
10.
Genomics ; 96(2): 82-91, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20435134

RESUMEN

The brain responds to injury and infection by activating innate defense and tissue repair mechanisms. Working upon the hypothesis that the brain defense response involves common genes and pathways across diverse pathologies, we analysed global gene expression in brain from mouse models representing three major central nervous system disorders, cerebral stroke, multiple sclerosis and Alzheimer's disease compared to normal brain using DNA microarray expression profiling. A comparison of dysregulated genes across disease models revealed common genes and pathways including key components of estrogen and TGF-beta signaling pathways that have been associated with neuroprotection as well as a neurodegeneration mediator, TRPM7. Further, for each disease model, we discovered collections of differentially expressed genes that provide novel insight into the individual pathology and its associated mechanisms. Our data provide a resource for exploring the complex molecular mechanisms that underlie brain neurodegeneration and a new approach for identifying generic and disease-specific targets for therapy.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Regulación de la Expresión Génica/fisiología , Esclerosis Múltiple/metabolismo , Transducción de Señal/genética , Accidente Cerebrovascular/metabolismo , Enfermedad de Alzheimer/genética , Animales , Regulación de la Expresión Génica/genética , Ratones , Ratones Transgénicos , Esclerosis Múltiple/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Accidente Cerebrovascular/genética , Biología de Sistemas/métodos , Canales Catiónicos TRPM/metabolismo
11.
Eur J Nucl Med Mol Imaging ; 37(12): 2371-80, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20814674

RESUMEN

PURPOSE: Neuroinflammation is involved in stroke pathophysiology and might be imaged using radioligands targeting the 18 kDa translocator protein (TSPO). METHODS: We studied microglial reaction in brain areas remote from the primary lesion site in two rodent models of focal cerebral ischaemia (permanent or transient) using [125I]-CLINDE, a promising TSPO single photon emission computed tomography radioligand. RESULTS: In a mouse model of permanent middle cerebral artery occlusion (MCAO), ex vivo autoradiographic studies demonstrated, besides in the ischaemic territory, accumulation of [125I]-CLINDE in the ipsilateral thalamus with a binding that progressed up to 3 weeks after MCAO. [125I]-CLINDE binding markedly decreased in animals pre-injected with either unlabelled CLINDE or PK11195, while no change was observed with flumazenil pre-treatment, demonstrating TSPO specificity. In rats subjected to transient MCAO, [125I]-CLINDE binding in the ipsilateral thalamus and substantia nigra pars reticulata (SNr) was significantly higher than that in contralateral tissue. Moreover, [125I]-CLINDE binding in the thalamus and SNr was quantitatively correlated to the ischaemic volume assessed by MRI in the cortex and striatum, respectively. CONCLUSION: Clinical consequences of secondary neuronal degeneration in stroke might be better treated thanks to the discrimination of neuronal processes using in vivo molecular imaging and potent TSPO radioligands like CLINDE to guide therapeutic interventions.


Asunto(s)
Isquemia Encefálica/diagnóstico por imagen , Isquemia Encefálica/metabolismo , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacocinética , Microglía/diagnóstico por imagen , Microglía/metabolismo , Receptores de GABA/metabolismo , Animales , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Cintigrafía , Radiofármacos/farmacocinética , Ratas , Ratas Sprague-Dawley , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
12.
Cancers (Basel) ; 12(12)2020 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-33266255

RESUMEN

(1) We wanted to assess the impact of Ang2 in RCT-induced changes in the environment of glioblastoma. (2) The effect of Ang2 overexpression in tumor cells was studied in the GL261 syngeneic immunocompetent model of GB in response to fractionated RCT. (3) We showed that RCT combined with Ang2 led to tumor clearance for the GL261-Ang2 group by acting on the tumor cells as well as on both vascular and immune compartments. (4) In vitro, Ang2 overexpression in GL261 cells exposed to RCT promoted senescence and induced robust genomic instability, leading to mitotic death. (5) Coculture experiments of GL261-Ang2 cells with RAW 264.7 cells resulted in a significant increase in macrophage migration, which was abrogated by the addition of soluble Tie2 receptor. (6) Together, these preclinical results showed that, combined with RCT, Ang2 acted in an autocrine manner by increasing GB cell senescence and in a paracrine manner by acting on the innate immune system while modulating the vascular tumor compartment. On this preclinical model, we found that an ectopic expression of Ang2 combined with RCT impedes tumor recurrence.

13.
Biomaterials ; 257: 120249, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32739663

RESUMEN

Approaches able to counteract, at least temporarily, hypoxia, a well-known factor of resistance to treatment in solid tumors are highly desirable. Herein, we report the use of nanosized zeolite crystals as hyperoxic/hypercapnic gas carriers for glioblastoma. First, the non-toxic profile of nanosized zeolite crystals in living animals (mice, rats and non-human primates) and in various cell types is presented. Second, the ability of the nanosized zeolites to act as a vasoactive agent for a targeted re-oxygenation of the tumor after intravenous injection is shown. As attested by an MRI protocol, the zeolites were able to increase oxygenation and blood volume specifically within the brain tumor whilst no changes in the healthy-non tumoral brain-were observed. The first proof of concept for the use of metal-containing nanosized zeolites as a tool for vectorization of hyperoxic/hypercapnic gases in glioblastoma is revealed.


Asunto(s)
Glioblastoma , Zeolitas , Animales , Gases , Imagen por Resonancia Magnética , Ratones , Ratas
14.
Cancers (Basel) ; 12(8)2020 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-32718037

RESUMEN

Tumor hypoxia is known to limit the efficacy of ionizing radiations, a concept called oxygen enhancement ratio (OER). OER depends on physical factors such as pO2 and linear energy transfer (LET). Biological pathways, such as the hypoxia-inducible transcription factors (HIF), might also modulate the influence of LET on OER. Glioblastoma (GB) is resistant to low-LET radiation (X-rays), due in part to the hypoxic environment in this brain tumor. Here, we aim to evaluate in vitro whether high-LET particles, especially carbon ion radiotherapy (CIRT), can overcome the contribution of hypoxia to radioresistance, and whether HIF-dependent genes, such as erythropoietin (EPO), influence GB sensitivity to CIRT. Hypoxia-induced radioresistance was studied in two human GB cells (U251, GL15) exposed to X-rays or to carbon ion beams with various LET (28, 50, 100 keV/µm), and in genetically-modified GB cells with downregulated EPO signaling. Cell survival, radiobiological parameters, cell cycle, and ERK activation were assessed under those conditions. The results demonstrate that, although CIRT is more efficient than X-rays in GB cells, hypoxia can limit CIRT efficacy in a cell-type manner that may involve differences in ERK activation. Using high-LET carbon beams, or targeting hypoxia-dependent genes such as EPO might reduce the effects of hypoxia.

15.
Neuro Oncol ; 11(5): 488-502, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19168695

RESUMEN

Despite treatment efforts, the median survival in patients with glioblastoma multiforme, the most aggressive form of glioma, does not extend beyond 12-15 months. One of the major pathophysiological characteristics of these tumors is their ability to induce active angiogenesis. Thus, based on the lack of efficient therapies, agents that inhibit angiogenesis are particularly attractive as a therapeutic option. However, it has been recently proposed that although specifically targeting vascular endothelial growth factor, the main angiogenic factor, certainly leads to significant tumor regression, it could also be followed by tumor relapses. In this case, angiogenesis is driven by alternate pathways that include other angiogenic factors. One possible strategy to overcome this therapeutic obstacle is to overexpress antivascular factors such as angiopoietin-2 (Ang2). Here, by using MRI and histological analysis, we studied the vascular events involved in glioma growth impairment induced by Ang2 overexpression. Our results show that an increase in Ang2 expression, during the tumor growth, leads to a significant decrease in tumor growth ( approximately 86%) along with an increase in the survival median ( approximately 70%) but does not modify the tumor vascular area or cerebral blood volume. However, tumor Ang2-derived blood vessels display an abnormal, enlarged morphology. We show that the presence of Ang2 leads to an enhancement of tumor perfusion and a decrease in tumor vessel permeability. Based on our MR image evaluations of hemodynamic tumor vessel changes, we propose that Ang2-derived tumor vessels lead to an inadequate oxygenation of the tumor tissue, leading to impairment in tumor growth.


Asunto(s)
Angiopoyetina 2/genética , Neoplasias Encefálicas/genética , Glioma/genética , Neovascularización Patológica/genética , Angiopoyetina 2/biosíntesis , Animales , Western Blotting , Neoplasias Encefálicas/irrigación sanguínea , Neoplasias Encefálicas/patología , Modelos Animales de Enfermedad , Glioma/irrigación sanguínea , Glioma/patología , Hemodinámica , Inmunohistoquímica , Imagen por Resonancia Magnética , Masculino , Neovascularización Patológica/patología , Ratas , Ratas Endogámicas F344 , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transfección , Regulación hacia Arriba
16.
J Neurosci ; 27(25): 6633-46, 2007 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-17581950

RESUMEN

Knowledge of the molecular mechanisms that underlie neuron death after stroke is important to allow the development of effective neuroprotective strategies. In this study, we investigated the contribution of death receptor signaling pathways to neuronal death after ischemia using in vitro and in vivo models of ischemic injury and transgenic mice that are deficient in tumor necrosis factor receptor I (TNFRI KO) or show neuron-specific overexpression of the long isoform of cellular Fas-associated death domain-like interleukin-1-beta-converting enzyme-inhibitory protein (FLIP(L)). Caspase 8 was activated in brain lesions after permanent middle cerebral artery occlusion (pMCAO) and in cortical neurons subjected to glucose deprivation (GD) and was necessary for GD-induced neuron death. Thus, neurons treated with zIETD-FMK peptide or overexpressing a dominant-negative caspase 8 mutant were fully protected against GD-induced death. The presence of the neuroprotective TNFRI was necessary for selectively sustaining p50/p65NF-kappaB activity and the expression of the p43 cleavage form of FLIP(L), FLIP(p43), an endogenous inhibitor of caspase 8, in pMCAO lesions and GD-treated neurons. Moreover, TNF pretreatment further upregulated p50/p65NF-kappaB activity and FLIP(p43) expression in neurons after GD. The knock-down of FLIP in wild-type (WT) neurons using a short hairpin RNA revealed that FLIP(L) is essential for TNF/TNFRI-mediated neuroprotection after GD. Furthermore, the overexpression of FLIP(L) was sufficient to rescue TNFRI KO neurons from GD-induced death and to enhance TNF neuroprotection in WT neurons, and neuron-specific expression of FLIP(L) in transgenic mice significantly reduced lesion volume after pMCAO. Our results identify a novel role for the TNFRI-NF-kappaB-FLIP(L) pathway in neuroprotection after ischemia and identify potential new targets for stroke therapy.


Asunto(s)
Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/fisiología , Glucosa/deficiencia , Glucosa/metabolismo , Neuronas/metabolismo , Neuronas/patología , Animales , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/genética , Muerte Celular/genética , Hipoxia de la Célula/genética , Células Cultivadas , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores Tipo I de Factores de Necrosis Tumoral/deficiencia , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Receptores Tipo I de Factores de Necrosis Tumoral/fisiología , Transducción de Señal/genética , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/fisiología
17.
J Neurochem ; 106(3): 1388-403, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18498438

RESUMEN

The understanding of mechanisms involved in ischaemic brain tolerance may provide new therapeutical targets for stroke. In vivo genomic studies revealed an up-regulation of adrenomedullin expression by hypoxic pre-conditioning. Furthermore, adrenomedullin reduced ischaemia-induced brain damage in rodents. However, whether adrenomedullin is involved in hypoxic pre-conditioning-induced tolerance and whether adrenomedullin protects directly neurons against ischaemia remain unknown. Using a neuronal model of hypoxic pre-conditioning and oxygen glucose deprivation (OGD), we showed that 0.1% or 0.5% of O2 pre-conditioning reduced the OGD-induced neuronal death, whereas 1% or 2% of O2 pre-treatment did not induce neuroprotection. Adrenomedullin expression increased following the hypoxic period, and following OGD only in pre-conditioned (0.1% or 0.5% of O2) neurons. Adrenomedullin pre-treatment and post-treatment reduced the OGD-induced neuronal death, partly through PI3kinase-dependent pathway. However, adrenomedullin antagonism during hypoxic pre-conditioning failed to inhibit the neuroprotection whereas adrenomedullin antagonism following OGD abolished the hypoxic pre-conditioning-induced neuroprotection. Finally, we showed that adrenomedullin is involved in neuroprotection induced by endothelial cells and microglia. In contrast, neuroprotection induced by astrocytes occurred through adrenomedullin-independent mechanisms. Altogether, our results suggest that adrenomedullin is an effector of the hypoxic pre-conditioning-induced neuronal tolerance and a potent autocrine and paracrine neuroprotective factor during cerebral ischaemia.


Asunto(s)
Adrenomedulina/fisiología , Comunicación Autocrina/fisiología , Glucosa/fisiología , Neuronas/metabolismo , Fármacos Neuroprotectores/metabolismo , Estrés Oxidativo/fisiología , Comunicación Paracrina/fisiología , Adrenomedulina/biosíntesis , Animales , Astrocitos/metabolismo , Hipoxia de la Célula/fisiología , Células Cultivadas , Glucosa/deficiencia , Ratones , Microglía/metabolismo , Neuronas/fisiología , Oxígeno , Regulación hacia Arriba/fisiología
18.
Mol Med ; 14(11-12): 682-8, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18670620

RESUMEN

Erythropoietin (EPO) is of great interest as a therapy for many of the central nervous system (CNS) diseases and its administration is protective in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). Endogenous EPO is induced by hypoxic/ischemic injury, but little is known about its expression in other CNS diseases. We report here that EPO expression in the spinal cord is induced in mouse models of chronic or relapsing-remitting EAE, and is prominently localized to motoneurons. We found a parallel increase of hypoxia-inducible transcription factor (HIF)-1 alpha, but not HIF-2 alpha, at the mRNA level, suggesting a possible role of non-hypoxic factors in EPO induction. EPO mRNA in the spinal cord was co-expressed with interferon (IFN)-gamma and tumor necrosis factor (TNF), and these cytokines inhibited EPO production in vitro in both neuronal and glial cells. Given the known inhibitory effect of EPO on neuroinflammation, our study indicates that EPO should be viewed as part of the inflammatory/anti-inflammatory network in MS.


Asunto(s)
Citocinas/metabolismo , Encefalomielitis Autoinmune Experimental/metabolismo , Eritropoyetina/metabolismo , Eritropoyetina/fisiología , Animales , Línea Celular Tumoral , Eritropoyetina/genética , Femenino , Expresión Génica/efectos de los fármacos , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Inmunohistoquímica , Interferón gamma/farmacología , Ratones , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Médula Espinal/metabolismo , Factor de Necrosis Tumoral alfa/farmacología
19.
Biochem Biophys Res Commun ; 377(2): 400-406, 2008 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-18848521

RESUMEN

This study demonstrates that a prolyl hydroxylase inhibitor, FG-0041, is able, in combination with the ROCK inhibitor, Y-27632, to initiate differentiation of mesenchymal stem cells (MSCs) into neuron-like cells. FG-0041/Y-27632 co-treatment provokes morphological changes into neuron-like cells, increases neuronal marker expression and provokes modifications of cell cycle-related gene expression consistent with a cell cycle arrest of MSC, three events showing the engagement of MSC towards the neuronal lineage. Moreover, as we observed in our previous studies with cobalt chloride and desferroxamine, the activation of HIF-1 by this prolyl hydroxylase inhibitor is potentiated by Y-27632 which could explain at least in part the effect of this co-treatment on MSC neuronal differentiation. In addition, we show that this co-treatment enhances neurite outgrowth and tyrosine hydroxylase expression in PC12 cells. Altogether, these results evidence that concomitant inhibition of prolyl hydroxylases and ROCK represents a relevant protocol to initiate neuronal differentiation.


Asunto(s)
Diferenciación Celular , Células Madre Mesenquimatosas/efectos de los fármacos , Neuronas/citología , Fenantrolinas/farmacología , Procolágeno-Prolina Dioxigenasa/antagonistas & inhibidores , Quinasas Asociadas a rho/antagonistas & inhibidores , Amidas/farmacología , Animales , Diferenciación Celular/genética , Linaje de la Célula , Inhibidores Enzimáticos/farmacología , Regulación de la Expresión Génica , Factor 1 Inducible por Hipoxia/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/enzimología , Neuritas/enzimología , Neuritas/fisiología , Neuronas/enzimología , Células PC12 , Piridinas/farmacología , Ratas
20.
J Cereb Blood Flow Metab ; 37(7): 2584-2597, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27702880

RESUMEN

The partial pressure in oxygen remains challenging to map in the brain. Two main strategies exist to obtain surrogate measures of tissue oxygenation: the tissue saturation studied by magnetic resonance imaging (StO2-MRI) and the identification of hypoxia by a positron emission tomography (PET) biomarker with 3-[18F]fluoro-1-(2-nitro-1-imidazolyl)-2-propanol ([18F]-FMISO) as the leading radiopharmaceutical. Nonetheless, a formal validation of StO2-MRI against FMISO-PET has not been performed. The objective of our studies was to compare the two approaches in (a) the normal rat brain when the rats were submitted to hypoxemia; (b) animals implanted with four tumour types differentiated by their oxygenation. Rats were submitted to normoxic and hypoxemic conditions. For the brain tumour experiments, U87-MG, U251-MG, 9L and C6 glioma cells were orthotopically inoculated in rats. For both experiments, StO2-MRI and [18F]-FMISO PET were performed sequentially. Under hypoxemia conditions, StO2-MRI revealed a decrease in oxygen saturation in the brain. Nonetheless, [18F]-FMISO PET, pimonidazole immunohistochemistry and molecular biology were insensitive to hypoxia. Within the context of tumours, StO2-MRI was able to detect hypoxia in the hypoxic models, mimicking [18F]-FMISO PET with high sensitivity/specificity. Altogether, our data clearly support that, in brain pathologies, StO2-MRI could be a robust and specific imaging biomarker to assess hypoxia.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Encéfalo/irrigación sanguínea , Glioma/diagnóstico por imagen , Hipoxia Encefálica/diagnóstico por imagen , Oxígeno/sangre , Animales , Encéfalo/diagnóstico por imagen , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Circulación Cerebrovascular/fisiología , Glioma/metabolismo , Glioma/patología , Hipoxia Encefálica/metabolismo , Imagen por Resonancia Magnética , Masculino , Trasplante de Neoplasias , Tomografía de Emisión de Positrones , Ratas Endogámicas F344 , Ratas Desnudas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA