Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Pharmacol Res ; 186: 106536, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36332810

RESUMEN

Adrenergic ß2-agonists represent a mainstay in asthma management. Their chronic use has been associated with decreased bronchoprotection and rebound hyperresponsiveness. Here we investigate on the possible therapeutic advantage of a pharmacological association of ß2-agonists with montelukast, a highly selective leukotriene receptor antagonist, in modulating bronchial reactivity and controlling asthma features. The study has been conducted in vitro and in vivo and also takes advantage of the synthesis of a salt that gave us the possibility to simultaneously administer in vivo formoterol and montelukast (MFS). In vitro studies demonstrate that montelukast (1) preserves ß2-agonist response in isolated bronchi by preventing homologous ß2-adrenoceptor desensitization; (2) reduces desensitization by modulating ß2-receptor translocation in bronchial epithelial cells. In vivo studies demonstrate that sensitized mice receiving formoterol or montelukast display a significant reduction in airway hyperresponsiveness, but the ß2-agonist relaxing response is still impaired. Allergen challenge causes ß2 heterologous desensitization that is further increased by treatment in vivo with formoterol. Conversely MFS not only inhibits airway hyperresponsiveness but it rescues the ß2-agonist response. Histological analysis confirms the functional data, demonstrating an enhanced therapeutic efficiency of MSF in controlling also pulmonary metaplasia and lung inflammation. MFS is efficacious also when sensitized mice received the drug by local administration. In conclusion, the data obtained evidenced a therapeutic advantage in the association of ß2-agonists with montelukast in the control of asthma-like features and a better rescue bronchodilation response to ß2-agonists.


Asunto(s)
Agonistas Adrenérgicos beta , Asma , Ratones , Animales , Fumarato de Formoterol/farmacología , Fumarato de Formoterol/uso terapéutico , Agonistas Adrenérgicos beta/uso terapéutico , Asma/tratamiento farmacológico , Acetatos/farmacología , Acetatos/uso terapéutico
2.
J Adv Res ; 35: 267-277, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35024201

RESUMEN

Introduction: Hydrogen sulfide (H2S) is a fundamental biological endogenous gas-mediator in the respiratory system. It regulates pivotal patho-physiological processes such as oxidative stress, pulmonary circulation, airway tone and inflammation. Objectives: We herein describe the design and synthesis of molecular hybrids obtained by the condensation of several corticosteroids with different hydrogen sulfide releasing moieties. Methods: All the molecules are characterized for their ability to release H2S both via amperometric approach and using a fluorescent probe. The chemical stability of the newly synthesized hybrid molecules has been investigated at differing pH values and in human serum. Results: Prednisone-TBZ hybrid (compound 7) was selected for further evaluations. The obtained results from the in vitro and in vivo studies clearly show evidence in favor of the anti-inflammatory properties of the released H2S. Conclusions: The protective effect on airway remodeling makes the hybrid Prednisone-TBZ (compound 7) as a promising therapeutic option in reducing allergic asthma symptoms and exacerbations.


Asunto(s)
Asma , Sulfuro de Hidrógeno , Corticoesteroides , Animales , Antiinflamatorios , Asma/tratamiento farmacológico , Modelos Animales de Enfermedad , Humanos , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA