Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Sci Adv ; 8(21): eabn0379, 2022 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-35613260

RESUMEN

Muscular dystrophy is a progressive and ultimately lethal neuromuscular disease. Although gene editing and gene transfer hold great promise as therapies when administered before the onset of severe clinical symptoms, it is unclear whether these strategies can restore muscle function and improve survival in the late stages of muscular dystrophy. Largemyd/Largemyd (myd) mice lack expression of like-acetylglucosaminyltransferase-1 (Large1) and exhibit severe muscle pathophysiology, impaired mobility, and a markedly reduced life span. Here, we show that systemic delivery of AAV2/9 CMV Large1 (AAVLarge1) in >34-week-old myd mice with advanced disease restores matriglycan expression on dystroglycan, attenuates skeletal muscle pathophysiology, improves motor and respiratory function, and normalizes systemic metabolism, which collectively and markedly extends survival. Our results in a mouse model of muscular dystrophy demonstrate that skeletal muscle function can be restored, illustrating its remarkable plasticity, and that survival can be greatly improved even after the onset of severe muscle pathophysiology.


Asunto(s)
Distrofias Musculares , N-Acetilglucosaminiltransferasas , Animales , Distroglicanos/metabolismo , Técnicas de Transferencia de Gen , Glicosilación , Ratones , Músculo Esquelético/metabolismo , Distrofias Musculares/genética , Distrofias Musculares/metabolismo , Distrofias Musculares/terapia , Fenómenos Fisiológicos Musculoesqueléticos , N-Acetilglucosaminiltransferasas/genética
2.
Nat Metab ; 2(11): 1248-1264, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33106689

RESUMEN

In addition to fatty acids, glucose and lactate are important myocardial substrates under physiologic and stress conditions. They are metabolized to pyruvate, which enters mitochondria via the mitochondrial pyruvate carrier (MPC) for citric acid cycle metabolism. In the present study, we show that MPC-mediated mitochondrial pyruvate utilization is essential for the partitioning of glucose-derived cytosolic metabolic intermediates, which modulate myocardial stress adaptation. Mice with cardiomyocyte-restricted deletion of subunit 1 of MPC (cMPC1-/-) developed age-dependent pathologic cardiac hypertrophy, transitioning to a dilated cardiomyopathy and premature death. Hypertrophied hearts accumulated lactate, pyruvate and glycogen, and displayed increased protein O-linked N-acetylglucosamine, which was prevented by increasing availability of non-glucose substrates in vivo by a ketogenic diet (KD) or a high-fat diet, which reversed the structural, metabolic and functional remodelling of non-stressed cMPC1-/- hearts. Although concurrent short-term KDs did not rescue cMPC1-/- hearts from rapid decompensation and early mortality after pressure overload, 3 weeks of a KD before transverse aortic constriction was sufficient to rescue this phenotype. Together, our results highlight the centrality of pyruvate metabolism to myocardial metabolism and function.


Asunto(s)
Adaptación Fisiológica/fisiología , Proteínas de Transporte de Anión/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Miocardio/metabolismo , Estrés Fisiológico/fisiología , Adaptación Fisiológica/genética , Animales , Proteínas de Transporte de Anión/genética , Cardiomegalia/diagnóstico por imagen , Cardiomegalia/genética , Cardiomegalia/metabolismo , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/metabolismo , Constricción Patológica , Citosol/metabolismo , Dieta Alta en Grasa , Dieta Cetogénica , Ecocardiografía , Técnicas In Vitro , Ratones , Ratones Noqueados , Mitocondrias Cardíacas/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Miocitos Cardíacos/metabolismo , Ácido Pirúvico/metabolismo , Estrés Fisiológico/genética
3.
Cell Rep ; 28(10): 2608-2619.e6, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31484072

RESUMEN

Hepatocellular carcinoma (HCC) is a devastating cancer increasingly caused by non-alcoholic fatty liver disease (NAFLD). Disrupting the liver Mitochondrial Pyruvate Carrier (MPC) in mice attenuates NAFLD. Thus, we considered whether liver MPC disruption also prevents HCC. Here, we use the N-nitrosodiethylamine plus carbon tetrachloride model of HCC development to test how liver-specific MPC knock out affects hepatocellular tumorigenesis. Our data show that liver MPC ablation markedly decreases tumorigenesis and that MPC-deficient tumors transcriptomically downregulate glutathione metabolism. We observe that MPC disruption and glutathione depletion in cultured hepatomas are synthetically lethal. Stable isotope tracing shows that hepatocyte MPC disruption reroutes glutamine from glutathione synthesis into the tricarboxylic acid (TCA) cycle. These results support a model where inducing metabolic competition for glutamine by MPC disruption impairs hepatocellular tumorigenesis by limiting glutathione synthesis. These findings raise the possibility that combining MPC disruption and glutathione stress may be therapeutically useful in HCC and additional cancers.


Asunto(s)
Carcinogénesis/metabolismo , Carcinoma Hepatocelular/metabolismo , Ciclo del Ácido Cítrico , Glutamina/metabolismo , Glutatión/biosíntesis , Neoplasias Hepáticas/metabolismo , Mitocondrias/metabolismo , Ácido Pirúvico/metabolismo , Animales , Apoptosis , Carcinoma Hepatocelular/genética , Línea Celular Tumoral , Hepatocitos/metabolismo , Humanos , Neoplasias Hepáticas/genética , Ratones Endogámicos C57BL , Proteínas de Neoplasias/metabolismo , Especificidad de Órganos , Transcriptoma/genética
4.
Elife ; 82019 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-31305240

RESUMEN

Metabolic cycles are a fundamental element of cellular and organismal function. Among the most critical in higher organisms is the Cori Cycle, the systemic cycling between lactate and glucose. Here, skeletal muscle-specific Mitochondrial Pyruvate Carrier (MPC) deletion in mice diverted pyruvate into circulating lactate. This switch disinhibited muscle fatty acid oxidation and drove Cori Cycling that contributed to increased energy expenditure. Loss of muscle MPC activity led to strikingly decreased adiposity with complete muscle mass and strength retention. Notably, despite decreasing muscle glucose oxidation, muscle MPC disruption increased muscle glucose uptake and whole-body insulin sensitivity. Furthermore, chronic and acute muscle MPC deletion accelerated fat mass loss on a normal diet after high fat diet-induced obesity. Our results illuminate the role of the skeletal muscle MPC as a whole-body carbon flux control point. They highlight the potential utility of modulating muscle pyruvate utilization to ameliorate obesity and type 2 diabetes.


Asunto(s)
Glucosa/metabolismo , Redes y Vías Metabólicas , Mitocondrias Musculares/metabolismo , Células Musculares/metabolismo , Músculo Esquelético/metabolismo , Ácido Pirúvico/metabolismo , Delgadez , Adiposidad , Animales , Proteínas de Transporte de Anión/deficiencia , Eliminación de Gen , Lactatos/metabolismo , Ratones , Ratones Noqueados , Proteínas de Transporte de Membrana Mitocondrial/deficiencia , Transportadores de Ácidos Monocarboxílicos/deficiencia , Fuerza Muscular
5.
Mol Metab ; 6(11): 1468-1479, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-29107293

RESUMEN

OBJECTIVE: Excessive hepatic gluconeogenesis is a defining feature of type 2 diabetes (T2D). Most gluconeogenic flux is routed through mitochondria. The mitochondrial pyruvate carrier (MPC) transports pyruvate from the cytosol into the mitochondrial matrix, thereby gating pyruvate-driven gluconeogenesis. Disruption of the hepatocyte MPC attenuates hyperglycemia in mice during high fat diet (HFD)-induced obesity but exerts minimal effects on glycemia in normal chow diet (NCD)-fed conditions. The goal of this investigation was to test whether hepatocyte MPC disruption provides sustained protection from hyperglycemia during long-term HFD and the differential effects of hepatocyte MPC disruption on TCA cycle metabolism in NCD versus HFD conditions. METHOD: We utilized long-term high fat feeding, serial measurements of postabsorptive blood glucose and metabolomic profiling and 13C-lactate/13C-pyruvate tracing to investigate the contribution of the MPC to hyperglycemia and altered hepatic TCA cycle metabolism during HFD-induced obesity. RESULTS: Hepatocyte MPC disruption resulted in long-term attenuation of hyperglycemia induced by HFD. HFD increased hepatic mitochondrial pyruvate utilization and TCA cycle capacity in an MPC-dependent manner. Furthermore, MPC disruption decreased progression of fibrosis and levels of transcript markers of inflammation. CONCLUSIONS: By contributing to chronic hyperglycemia, fibrosis, and TCA cycle expansion, the hepatocyte MPC is a key mediator of the pathophysiology induced in the HFD model of T2D.


Asunto(s)
Proteínas de Transporte de Anión/metabolismo , Ciclo del Ácido Cítrico/fisiología , Mitocondrias Hepáticas/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Animales , Glucemia/metabolismo , Ciclo del Ácido Cítrico/efectos de los fármacos , Diabetes Mellitus Tipo 2/sangre , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Gluconeogénesis/efectos de los fármacos , Glucosa/metabolismo , Hepatocitos/metabolismo , Hiperglucemia/metabolismo , Resistencia a la Insulina , Hígado/efectos de los fármacos , Hígado/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Ratones , Mitocondrias/efectos de los fármacos , Transportadores de Ácidos Monocarboxílicos , Obesidad/metabolismo , Ácido Pirúvico/metabolismo
6.
Cell Metab ; 22(4): 669-81, 2015 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-26344103

RESUMEN

Gluconeogenesis is critical for maintenance of euglycemia during fasting. Elevated gluconeogenesis during type 2 diabetes (T2D) contributes to chronic hyperglycemia. Pyruvate is a major gluconeogenic substrate and requires import into the mitochondrial matrix for channeling into gluconeogenesis. Here, we demonstrate that the mitochondrial pyruvate carrier (MPC) comprising the Mpc1 and Mpc2 proteins is required for efficient regulation of hepatic gluconeogenesis. Liver-specific deletion of Mpc1 abolished hepatic MPC activity and markedly decreased pyruvate-driven gluconeogenesis and TCA cycle flux. Loss of MPC activity induced adaptive utilization of glutamine and increased urea cycle activity. Diet-induced obesity increased hepatic MPC expression and activity. Constitutive Mpc1 deletion attenuated the development of hyperglycemia induced by a high-fat diet. Acute, virally mediated Mpc1 deletion after diet-induced obesity decreased hyperglycemia and improved glucose tolerance. We conclude that the MPC is required for efficient regulation of gluconeogenesis and that the MPC contributes to the elevated gluconeogenesis and hyperglycemia in T2D.


Asunto(s)
Glucosa/metabolismo , Mitocondrias Hepáticas/enzimología , Proproteína Convertasa 1/metabolismo , Acrilatos/farmacología , Animales , Células Cultivadas , Ciclo del Ácido Cítrico/efectos de los fármacos , Dieta Alta en Grasa , Gluconeogénesis/efectos de los fármacos , Glutamina/metabolismo , Glucógeno/análisis , Hepatocitos/citología , Hepatocitos/metabolismo , Hiperglucemia/metabolismo , Hiperglucemia/prevención & control , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/etiología , Obesidad/metabolismo , Proproteína Convertasa 1/deficiencia , Proproteína Convertasa 1/genética , Proproteína Convertasa 2/antagonistas & inhibidores , Proproteína Convertasa 2/genética , Proproteína Convertasa 2/metabolismo , Ácido Pirúvico/metabolismo , Triglicéridos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA