Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 162
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(23): 5693-5695, 2021 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-34767774

RESUMEN

The mitochondrial genome encodes proteins central to mitochondrial function; however, transcript-specific mechanistic studies of mitochondrial gene products have been difficult because of challenges in their experimental manipulation. Cruz-Zaragoza et al. provide a solution to this challenge, introducing an elegant system for efficient translational silencing of transcripts in human mitochondria.


Asunto(s)
Mitocondrias , Proteínas Mitocondriales , Expresión Génica , Humanos , Mitocondrias/genética , Proteínas Mitocondriales/genética , Morfolinos , Orgánulos
2.
Annu Rev Biochem ; 86: 685-714, 2017 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-28301740

RESUMEN

Mitochondria are essential organelles with numerous functions in cellular metabolism and homeostasis. Most of the >1,000 different mitochondrial proteins are synthesized as precursors in the cytosol and are imported into mitochondria by five transport pathways. The protein import machineries of the mitochondrial membranes and aqueous compartments reveal a remarkable variability of mechanisms for protein recognition, translocation, and sorting. The protein translocases do not operate as separate entities but are connected to each other and to machineries with functions in energetics, membrane organization, and quality control. Here, we discuss the versatility and dynamic organization of the mitochondrial protein import machineries. Elucidating the molecular mechanisms of mitochondrial protein translocation is crucial for understanding the integration of protein translocases into a large network that controls organelle biogenesis, function, and dynamics.


Asunto(s)
Proteínas Portadoras/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Precursores de Proteínas/metabolismo , Proteínas Portadoras/química , Proteínas Portadoras/genética , Células Eucariotas/metabolismo , Células Eucariotas/ultraestructura , Expresión Génica , Humanos , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Mitocondrias/ultraestructura , Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas de Transporte de Membrana Mitocondrial/genética , Membranas Mitocondriales/ultraestructura , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Biogénesis de Organelos , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Precursores de Proteínas/química , Precursores de Proteínas/genética , Transporte de Proteínas
3.
Nat Rev Mol Cell Biol ; 20(5): 267-284, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30626975

RESUMEN

Mitochondria are essential for the viability of eukaryotic cells as they perform crucial functions in bioenergetics, metabolism and signalling and have been associated with numerous diseases. Recent functional and proteomic studies have revealed the remarkable complexity of mitochondrial protein organization. Protein machineries with diverse functions such as protein translocation, respiration, metabolite transport, protein quality control and the control of membrane architecture interact with each other in dynamic networks. In this Review, we discuss the emerging role of the mitochondrial protein import machinery as a key organizer of these mitochondrial protein networks. The preprotein translocases that reside on the mitochondrial membranes not only function during organelle biogenesis to deliver newly synthesized proteins to their final mitochondrial destination but also cooperate with numerous other mitochondrial protein complexes that perform a wide range of functions. Moreover, these protein networks form membrane contact sites, for example, with the endoplasmic reticulum, that are key for integration of mitochondria with cellular function, and defects in protein import can lead to diseases.


Asunto(s)
Retículo Endoplásmico/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/biosíntesis , Transducción de Señal/fisiología , Animales , Retículo Endoplásmico/genética , Humanos , Mitocondrias/genética , Proteínas Mitocondriales/genética , Transporte de Proteínas/fisiología
4.
Cell ; 167(2): 308-310, 2016 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-27716503

RESUMEN

The dual genetic origin of mitochondrial respiratory chain complexes leads to the synthesis of subunits by mitochondrial and cytosolic ribosomes. Now, Richter-Dennerlein et al. report that membrane-integrated assembly factors associate with ribosome nascent chain complexes in human mitochondria to coordinate translational plasticity with the import of subunits from the cytosol.


Asunto(s)
Biosíntesis de Proteínas , Ribosomas/metabolismo , Citosol/metabolismo , Humanos , Mitocondrias/genética
5.
Cell ; 167(3): 722-738.e23, 2016 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-27768893

RESUMEN

A functional crosstalk between epigenetic regulators and metabolic control could provide a mechanism to adapt cellular responses to environmental cues. We report that the well-known nuclear MYST family acetyl transferase MOF and a subset of its non-specific lethal complex partners reside in mitochondria. MOF regulates oxidative phosphorylation by controlling expression of respiratory genes from both nuclear and mtDNA in aerobically respiring cells. MOF binds mtDNA, and this binding is dependent on KANSL3. The mitochondrial pool of MOF, but not a catalytically deficient mutant, rescues respiratory and mtDNA transcriptional defects triggered by the absence of MOF. Mof conditional knockout has catastrophic consequences for tissues with high-energy consumption, triggering hypertrophic cardiomyopathy and cardiac failure in murine hearts; cardiomyocytes show severe mitochondrial degeneration and deregulation of mitochondrial nutrient metabolism and oxidative phosphorylation pathways. Thus, MOF is a dual-transcriptional regulator of nuclear and mitochondrial genomes connecting epigenetics and metabolism.


Asunto(s)
Metabolismo Energético/genética , Epigénesis Genética , Histona Acetiltransferasas/metabolismo , Mitocondrias Musculares/enzimología , Factores de Transcripción/metabolismo , Transcripción Genética , Animales , Cardiomiopatía Hipertrófica/genética , Respiración de la Célula/genética , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Células HeLa , Insuficiencia Cardíaca/genética , Histona Acetiltransferasas/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular , Ratones , Ratones Noqueados , Mitocondrias Cardíacas/enzimología , Mitocondrias Cardíacas/genética , Mitocondrias Musculares/genética , Miocitos Cardíacos/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilación Oxidativa , Factores de Transcripción/genética
6.
Mol Cell ; 83(6): 890-910, 2023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-36931257

RESUMEN

Biogenesis of mitochondria requires the import of approximately 1,000 different precursor proteins into and across the mitochondrial membranes. Mitochondria exhibit a wide variety of mechanisms and machineries for the translocation and sorting of precursor proteins. Five major import pathways that transport proteins to their functional intramitochondrial destination have been elucidated; these pathways range from the classical amino-terminal presequence-directed pathway to pathways using internal or even carboxy-terminal targeting signals in the precursors. Recent studies have provided important insights into the structural organization of membrane-embedded preprotein translocases of mitochondria. A comparison of the different translocases reveals the existence of at least three fundamentally different mechanisms: two-pore-translocase, ß-barrel switching, and transport cavities open to the lipid bilayer. In addition, translocases are physically engaged in dynamic interactions with respiratory chain complexes, metabolite transporters, quality control factors, and machineries controlling membrane morphology. Thus, mitochondrial preprotein translocases are integrated into multi-functional networks of mitochondrial and cellular machineries.


Asunto(s)
Mitocondrias , Proteínas Mitocondriales , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Portadoras/metabolismo , Transporte de Proteínas , Precursores de Proteínas/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo
7.
Nature ; 614(7946): 153-159, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36697829

RESUMEN

Mitochondria have crucial roles in cellular energetics, metabolism, signalling and quality control1-4. They contain around 1,000 different proteins that often assemble into complexes and supercomplexes such as respiratory complexes and preprotein translocases1,3-7. The composition of the mitochondrial proteome has been characterized1,3,5,6; however, the organization of mitochondrial proteins into stable and dynamic assemblies is poorly understood for major parts of the proteome1,4,7. Here we report quantitative mapping of mitochondrial protein assemblies using high-resolution complexome profiling of more than 90% of the yeast mitochondrial proteome, termed MitCOM. An analysis of the MitCOM dataset resolves >5,200 protein peaks with an average of six peaks per protein and demonstrates a notable complexity of mitochondrial protein assemblies with distinct appearance for respiration, metabolism, biogenesis, dynamics, regulation and redox processes. We detect interactors of the mitochondrial receptor for cytosolic ribosomes, of prohibitin scaffolds and of respiratory complexes. The identification of quality-control factors operating at the mitochondrial protein entry gate reveals pathways for preprotein ubiquitylation, deubiquitylation and degradation. Interactions between the peptidyl-tRNA hydrolase Pth2 and the entry gate led to the elucidation of a constitutive pathway for the removal of preproteins. The MitCOM dataset-which is accessible through an interactive profile viewer-is a comprehensive resource for the identification, organization and interaction of mitochondrial machineries and pathways.


Asunto(s)
Proteínas Fúngicas , Mitocondrias , Proteínas Mitocondriales , Transporte de Proteínas , Proteoma , Saccharomyces cerevisiae , Proteínas Portadoras/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteoma/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Fúngicas/metabolismo , Respiración de la Célula , Ribosomas , Conjuntos de Datos como Asunto
9.
Cell ; 154(3): 596-608, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-23911324

RESUMEN

The mitochondrial outer membrane harbors two protein translocases that are essential for cell viability: the translocase of the outer mitochondrial membrane (TOM) and the sorting and assembly machinery (SAM). The precursors of ß-barrel proteins use both translocases-TOM for import to the intermembrane space and SAM for export into the outer membrane. It is unknown if the translocases cooperate and where the ß-barrel of newly imported proteins is formed. We established a position-specific assay for monitoring ß-barrel formation in vivo and in organello and demonstrated that the ß-barrel was formed and membrane inserted while the precursor was bound to SAM. ß-barrel formation was inhibited by SAM mutants and, unexpectedly, by mutants of the central import receptor, Tom22. We show that the cytosolic domain of Tom22 links TOM and SAM into a supercomplex, facilitating precursor transfer on the intermembrane space side. Our study reveals receptor-mediated coupling of import and export translocases as a means of precursor channeling.


Asunto(s)
Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas Mitocondriales/metabolismo , Transporte de Proteínas , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas Mitocondriales/química , Mutación , Porinas/química , Porinas/metabolismo , Pliegue de Proteína , Estructura Secundaria de Proteína , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
10.
Nature ; 590(7844): 163-169, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33408415

RESUMEN

The mitochondrial outer membrane contains so-called ß-barrel proteins, which allow communication between the cytosol and the mitochondrial interior1-3. Insertion of ß-barrel proteins into the outer membrane is mediated by the multisubunit mitochondrial sorting and assembly machinery (SAM, also known as TOB)4-6. Here we use cryo-electron microscopy to determine the structures of two different forms of the yeast SAM complex at a resolution of 2.8-3.2 Å. The dimeric complex contains two copies of the ß-barrel channel protein Sam50-Sam50a and Sam50b-with partially open lateral gates. The peripheral membrane proteins Sam35 and Sam37 cap the Sam50 channels from the cytosolic side, and are crucial for the structural and functional integrity of the dimeric complex. In the second complex, Sam50b is replaced by the ß-barrel protein Mdm10. In cooperation with Sam50a, Sam37 recruits and traps Mdm10 by penetrating the interior of its laterally closed ß-barrel from the cytosolic side. The substrate-loaded SAM complex contains one each of Sam50, Sam35 and Sam37, but neither Mdm10 nor a second Sam50, suggesting that Mdm10 and Sam50b function as placeholders for a ß-barrel substrate released from Sam50a. Our proposed mechanism for dynamic switching of ß-barrel subunits and substrate explains how entire precursor proteins can fold in association with the mitochondrial machinery for ß-barrel assembly.


Asunto(s)
Microscopía por Crioelectrón , Mitocondrias/química , Mitocondrias/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/ultraestructura , Mitocondrias/ultraestructura , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/ultraestructura , Modelos Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Multimerización de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/ultraestructura
11.
Mol Cell ; 73(5): 1056-1065.e7, 2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30738704

RESUMEN

The mitochondrial inner membrane harbors a large number of metabolite carriers. The precursors of carrier proteins are synthesized in the cytosol and imported into mitochondria by the translocase of the outer membrane (TOM) and the carrier translocase of the inner membrane (TIM22). Molecular chaperones in the cytosol and intermembrane space bind to the hydrophobic precursors to prevent their aggregation. We report that the major metabolite channel of the outer membrane, termed porin or voltage-dependent anion channel (VDAC), promotes efficient import of carrier precursors. Porin interacts with carrier precursors arriving in the intermembrane space and recruits TIM22 complexes, thus ensuring an efficient transfer of the precursors to the inner membrane translocase. Porin channel mutants impaired in metabolite transport are not disturbed in carrier import into mitochondria. We conclude that porin serves distinct functions as outer membrane channel for metabolites and as coupling factor for protein translocation into the inner membrane.


Asunto(s)
Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Porinas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Antiportadores/genética , Antiportadores/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Mitocondrias/genética , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Mutación , Porinas/genética , Unión Proteica , Transporte de Proteínas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
12.
Cell ; 144(2): 227-39, 2011 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-21215441

RESUMEN

Mitochondria import a large number of nuclear-encoded proteins via membrane-bound transport machineries; however, little is known about regulation of the preprotein translocases. We report that the main protein entry gate of mitochondria, the translocase of the outer membrane (TOM complex), is phosphorylated by cytosolic kinases-in particular, casein kinase 2 (CK2) and protein kinase A (PKA). CK2 promotes biogenesis of the TOM complex by phosphorylation of two key components, the receptor Tom22 and the import protein Mim1, which in turn are required for import of further Tom proteins. Inactivation of CK2 decreases the levels of the TOM complex and thus mitochondrial protein import. PKA phosphorylates Tom70 under nonrespiring conditions, thereby inhibiting its receptor activity and the import of mitochondrial metabolite carriers. We conclude that cytosolic kinases exert stimulatory and inhibitory effects on biogenesis and function of the TOM complex and thus regulate protein import into mitochondria.


Asunto(s)
Quinasa de la Caseína II/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Citosol/enzimología , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Portadoras/metabolismo , Citosol/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Fosforilación , Transporte de Proteínas , Saccharomyces cerevisiae/citología , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
Nature ; 575(7782): 395-401, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31600774

RESUMEN

The translocase of the outer mitochondrial membrane (TOM) is the main entry gate for proteins1-4. Here we use cryo-electron microscopy to report the structure of the yeast TOM core complex5-9 at 3.8-Å resolution. The structure reveals the high-resolution architecture of the translocator consisting of two Tom40 ß-barrel channels and α-helical transmembrane subunits, providing insight into critical features that are conserved in all eukaryotes1-3. Each Tom40 ß-barrel is surrounded by small TOM subunits, and tethered by two Tom22 subunits and one phospholipid. The N-terminal extension of Tom40 forms a helix inside the channel; mutational analysis reveals its dual role in early and late steps in the biogenesis of intermembrane-space proteins in cooperation with Tom5. Each Tom40 channel possesses two precursor exit sites. Tom22, Tom40 and Tom7 guide presequence-containing preproteins to the exit in the middle of the dimer, whereas Tom5 and the Tom40 N extension guide preproteins lacking a presequence to the exit at the periphery of the dimer.


Asunto(s)
Microscopía por Crioelectrón , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Mitocondrias/química , Proteínas de Transporte de Membrana Mitocondrial/ultraestructura , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Modelos Moleculares , Fosfolípidos/metabolismo , Multimerización de Proteína , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestructura
14.
Cell ; 138(4): 628-44, 2009 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-19703392

RESUMEN

Most mitochondrial proteins are synthesized on cytosolic ribosomes and must be imported across one or both mitochondrial membranes. There is an amazingly versatile set of machineries and mechanisms, and at least four different pathways, for the importing and sorting of mitochondrial precursor proteins. The translocases that catalyze these processes are highly dynamic machines driven by the membrane potential, ATP, or redox reactions, and they cooperate with molecular chaperones and assembly complexes to direct mitochondrial proteins to their correct destinations. Here, we discuss recent insights into the importing and sorting of mitochondrial proteins and their contributions to mitochondrial biogenesis.


Asunto(s)
Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Humanos , Proteínas Mitocondriales/química , Señales de Clasificación de Proteína , Transporte de Proteínas
15.
Cell ; 139(2): 428-39, 2009 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-19837041

RESUMEN

Many mitochondrial proteins are synthesized with N-terminal presequences that are removed by specific peptidases. The N-termini of the mature proteins and thus peptidase cleavage sites have only been determined for a small fraction of mitochondrial proteins and yielded a controversial situation for the cleavage site specificity of the major mitochondrial processing peptidase (MPP). We report a global analysis of the N-proteome of yeast mitochondria, revealing the N-termini of 615 different proteins. Significantly more proteins than predicted contained cleavable presequences. We identified the intermediate cleaving peptidase Icp55, which removes an amino acid from a characteristic set of MPP-generated N-termini, solving the controversial situation of MPP specificity and suggesting that Icp55 converts instable intermediates into stable proteins. Our results suggest that Icp55 is critical for stabilization of the mitochondrial proteome and illustrate how the N-proteome can serve as rich source for a systematic analysis of mitochondrial protein targeting, cleavage and turnover.


Asunto(s)
Mitocondrias/química , Proteínas Mitocondriales/análisis , Proteoma/análisis , Saccharomyces cerevisiae/química , Humanos , Péptido Hidrolasas/metabolismo , Estabilidad Proteica
16.
Cell ; 134(1): 22-4, 2008 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-18614007

RESUMEN

Mitochondria are central to cellular energetics, metabolism, and signaling. In this issue, Pagliarini et al. (2008) report the largest compendium of mammalian mitochondrial proteins to date. Together with proteomic studies in yeast, this study represents an important step toward the systematic characterization of the mitochondrial proteome and of mitochondrial diseases.


Asunto(s)
Mitocondrias/química , Proteínas Mitocondriales/análisis , Proteoma , Animales , Humanos , Espectrometría de Masas , Ratones
17.
Cell ; 132(6): 1011-24, 2008 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-18358813

RESUMEN

Communication of mitochondria with the rest of the cell requires beta-barrel proteins of the outer membrane. All beta-barrel proteins are synthesized as precursors in the cytosol and imported into mitochondria by the general translocase TOM and the sorting machinery SAM. The SAM complex contains two proteins essential for cell viability, the channel-forming Sam50 and Sam35. We have identified the sorting signal of mitochondrial beta-barrel proteins that is universal in all eukaryotic kingdoms. The beta-signal initiates precursor insertion into a hydrophilic, proteinaceous membrane environment by forming a ternary complex with Sam35 and Sam50. Sam35 recognizes the beta-signal, inducing a major conductance increase of the Sam50 channel. Subsequent precursor release from SAM is coupled to integration into the lipid phase. We propose that a two-stage mechanism of signal-driven insertion into a membrane protein complex and subsequent integration into the lipid phase may represent a general mechanism for biogenesis of beta-barrel proteins.


Asunto(s)
Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial , Membranas Mitocondriales/química , Proteínas Mitocondriales/química , Señales de Clasificación de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Transporte de Proteínas , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
18.
Nat Rev Mol Cell Biol ; 11(9): 655-67, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20729931

RESUMEN

Mitochondria contain approximately 1,000 different proteins, most of which are imported from the cytosol. Two import pathways that direct proteins into the mitochondrial inner membrane and matrix have been known for many years. The identification of numerous new transport components in recent proteomic studies has led to novel mechanistic insight into these pathways and the discovery of new import pathways into the outer membrane and intermembrane space. Protein translocases do not function as independent units but are integrated into dynamic networks and are connected to machineries that function in bioenergetics, mitochondrial morphology and coupling to the endoplasmic reticulum.


Asunto(s)
Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas Mitocondriales/metabolismo , Proteómica , Animales , Humanos , Membranas Mitocondriales/metabolismo , Transporte de Proteínas
19.
Mol Cell ; 56(5): 641-52, 2014 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-25454944

RESUMEN

The majority of preproteins destined for mitochondria carry N-terminal presequences. The presequence translocase of the inner mitochondrial membrane (TIM23 complex) plays a central role in protein sorting. Preproteins are either translocated through the TIM23 complex into the matrix or are laterally released into the inner membrane. We report that the small hydrophobic protein Mgr2 controls the lateral release of preproteins. Mgr2 interacts with preproteins in transit through the TIM23 complex. Overexpression of Mgr2 delays preprotein release, whereas a lack of Mgr2 promotes preprotein sorting into the inner membrane. Preproteins with a defective inner membrane sorting signal are translocated into the matrix in wild-type mitochondria but are released into the inner membrane in Mgr2-deficient mitochondria. We conclude that Mgr2 functions as a lateral gatekeeper of the mitochondrial presequence translocase, providing quality control for the membrane sorting of preproteins.


Asunto(s)
Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Unión al GTP/metabolismo , Proteínas de la Membrana/genética , Metotrexato/farmacología , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas Mitocondriales/metabolismo , Transporte de Proteínas/efectos de los fármacos , Proteínas de Saccharomyces cerevisiae/genética
20.
Mol Cell ; 49(3): 423-5, 2013 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-23395273

RESUMEN

Mitofusins are large GTPases essential for mitochondrial fusion. In this issue, Anton et al. (2013) report that two independent pathways of ubiquitylation/deubiquitylation control activation and degradation of mitofusins, revealing a sophisticated mechanism of regulating mitochondrial dynamics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA