Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Alzheimers Dement (Amst) ; 16(3): e70006, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39279994

RESUMEN

INTRODUCTION: Alzheimer's disease (AD), the most prevalent neurodegenerative disorder globally, has emerged as a significant health concern. Recently it has been revealed that extracellular vesicles (EVs) play a critical role in AD pathogenesis and progression. Their stability and presence in various biofluids, such as blood, offer a minimally invasive window for monitoring AD-related changes. METHODS: We analyzed plasma EV-derived messenger RNA (mRNA) from 82 human subjects, including individuals with AD, mild cognitive impairment (MCI), and healthy controls. With next-generation sequencing, we profiled differentially expressed genes (DEGs), identifying those associated with AD. RESULTS: Based on DEGs identified in both the MCI and AD groups, a diagnostic model was established based on machine learning, demonstrating an average diagnostic accuracy of over 98% and showed a strong correlation with different AD stages. DISCUSSION: mRNA derived from plasma EVs shows significant promise as a non-invasive biomarker for the early detection and continuous monitoring of AD. Highlights: The study conducted next-generation sequencing (NGS) of mRNA derived from human plasma extracellular vesicles (EVs) to assess Alzheimer's disease (AD).Profiling of plasma EV-derived mRNA shows a significantly enriched AD pathway, indicating its potential for AD-related studies.The AD-prediction model achieved a receiver-operating characteristic area under the curve (ROC-AUC) of more than 0.98, with strong correlation to the established Clinical Dementia Rating (CDR).

2.
Biofilm ; 5: 100103, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36691521

RESUMEN

Biofilms are found in many infections in the forms of surface-adhering aggregates on medical devices, small clumps in tissues, or even in synovial fluid. Although antibiotic resistance genes are studied and monitored in the clinic, the structural and phenotypic changes that take place in biofilms can also lead to significant changes in how bacteria respond to antibiotics. Therefore, it is important to better understand the relationship between biofilm phenotypes and resistance and develop approaches that are compatible with clinical testing. Current methods for studying antimicrobial susceptibility are mostly planktonic or planar biofilm reactors. In this work, we develop a new type of biofilm reactor-three-dimensional (3D) microreactors-to recreate biofilms in a microenvironment that better mimics those in vivo where bacteria tend to form surface-independent biofilms in living tissues. The microreactors are formed on microplates, treated with antibiotics of 1000 times of the corresponding minimal inhibitory concentrations (1000 × MIC), and monitored spectroscopically with a microplate reader in a high-throughput manner. The hydrogels are dissolvable on demand without the need for manual scraping, thus enabling measurements of phenotypic changes. Bacteria inside the biofilm microreactors are found to survive exposure to 1000 × MIC of antibiotics, and subsequent comparison with plating results reveals no antibiotic resistance-associated phenotypes. The presented microreactor offers an attractive platform to study the tolerance and antibiotic resistance of surface-independent biofilms such as those found in tissues.

3.
Lab Chip ; 22(22): 4349-4358, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36239125

RESUMEN

Microbes are typically found in multi-species (polymicrobial) communities. Cooperative and competitive interactions between species, mediated by diffusible factors and physical contact, leads to highly dynamic communities that undergo changes in composition diversity and size. Infections can be more severe or more difficult to treat when caused by multiple species. Interactions between species can improve the ability of one or more species to tolerate anti-microbial treatments and host defenses. Pseudomonas aeruginosa (Pa), a ubiquitous bacterium, and the opportunistic pathogenic yeast, Candida albicans (Ca), are frequently found together in cystic fibrosis lung infections and wound infections. While significant progress has been made in determining interactions between Pa and Ca, there are still important questions that remain unanswered. Here, we probe the mutual interactions between Pa and Ca in a custom-made microfluidic device using biopolymer chitosan membranes that support cross-species communication. By assembling microbes in physically separated, chemically communicating populations or bringing into direct interactions in a mixed culture, in situ polymicrobial growth and biofilm morphology were qualitatively characterized and quantified. Our work reveals new dynamic details of their mutual interactions including cooperation, competition, invasion, and biofilm formation. The membrane-based microfluidic platform can be further developed to understand the polymicrobial interactions within a controlled interactive microenvironment to improve microbial infection prevention and treatment.


Asunto(s)
Candida albicans , Pseudomonas aeruginosa , Microfluídica , Biopelículas
4.
J Mater Chem B ; 9(15): 3258-3283, 2021 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-33725061

RESUMEN

The integration of membranes in microfluidic devices has been extensively exploited for various chemical engineering and bioengineering applications over the past few decades. To augment the applicability of membrane-integrated microfluidic platforms for biomedical and tissue engineering studies, a biologically friendly fabrication process with naturally occurring materials is highly desired. The in situ preparation of membranes involving interfacial reactions between parallel laminar flows in microfluidic networks, known as the flow-assembly technique, is one of the most biocompatible approaches. Membranes of many types with flexible geometries have been successfully assembled inside complex microchannels using this facile and versatile flow-assembly approach. Chitosan is a naturally abundant polysaccharide known for its pronounced biocompatibility, biodegradability, good mechanical stability, ease of modification and processing, and film-forming ability under near-physiological conditions. Chitosan membranes assembled by flows in microfluidics are freestanding, robust, semipermeable, and well-aligned in microstructure, and show high affinity to bioactive reagents and biological components (e.g. biomolecules, nanoparticles, or cells) that provide facile biological functionalization of microdevices. Here, we discuss the recent developments and optimizations in the flow-assembly of chitosan membranes and chitosan-based membranes in microfluidics. Furthermore, we recapitulate the applications of the chitosan membrane-integrated microfluidic platforms dedicated to biology, biochemistry, and drug release fields, and envision the future developments of this important platform with versatile functions.


Asunto(s)
Quitosano/química , Técnicas Analíticas Microfluídicas , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA