RESUMEN
The cytokine interleukin (IL)-1ß is a key mediator of antimicrobial immunity as well as autoimmune inflammation. Production of IL-1ß requires transcription by innate immune receptor signaling and maturational cleavage by inflammasomes. Whether this mechanism applies to IL-1ß production seen in T cell-driven autoimmune diseases remains unclear. Here, we describe an inflammasome-independent pathway of IL-1ß production that was triggered upon cognate interactions between effector CD4+ T cells and mononuclear phagocytes (MPs). The cytokine TNF produced by activated CD4+ T cells engaged its receptor TNFR on MPs, leading to pro-IL-1ß synthesis. Membrane-bound FasL, expressed by CD4+ T cells, activated death receptor Fas signaling in MPs, resulting in caspase-8-dependent pro-IL-1ß cleavage. The T cell-instructed IL-1ß resulted in systemic inflammation, whereas absence of TNFR or Fas signaling protected mice from CD4+ T cell-driven autoimmunity. The TNFR-Fas-caspase-8-dependent pathway provides a mechanistic explanation for IL-1ß production and its consequences in CD4+ T cell-driven autoimmune pathology.
Asunto(s)
Autoinmunidad/inmunología , Linfocitos T CD4-Positivos/inmunología , Inflamación/patología , Interleucina-1beta/metabolismo , Células Mieloides/metabolismo , Animales , Caspasa 1/genética , Caspasa 8/metabolismo , Células Cultivadas , Células Dendríticas/inmunología , Proteína Ligando Fas/metabolismo , Inmunidad Innata/inmunología , Inflamasomas/inmunología , Inflamación/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mycobacterium tuberculosis/inmunología , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Factor de Necrosis Tumoral alfa/metabolismoRESUMEN
Intestinal epithelial cells (IECs) form a critical barrier against pathogen invasion. By generation of mice in which inflammasome expression is restricted to IECs, we describe a coordinated epithelium-intrinsic inflammasome response in vivo. This response was sufficient to protect against Salmonella tissue invasion and involved a previously reported IEC expulsion that was coordinated with lipid mediator and cytokine production and lytic IEC death. Excessive inflammasome activation in IECs was sufficient to result in diarrhea and pathology. Experiments with IEC organoids demonstrated that IEC expulsion did not require other cell types. IEC expulsion was accompanied by a major actin rearrangement in neighboring cells that maintained epithelium integrity but did not absolutely require Caspase-1 or Gasdermin D. Analysis of Casp1-/-Casp8-/- mice revealed a functional Caspase-8 inflammasome in vivo. Thus, a coordinated IEC-intrinsic, Caspase-1 and -8 inflammasome response plays a key role in intestinal immune defense and pathology.
Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas de Unión al Calcio/metabolismo , Caspasa 1/metabolismo , Caspasa 8/metabolismo , Eicosanoides/metabolismo , Células Epiteliales/metabolismo , Interleucina-18/metabolismo , Proteína Inhibidora de la Apoptosis Neuronal/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/genética , Proteínas de Unión al Calcio/genética , Caspasa 1/genética , Caspasa 8/genética , Activación Enzimática , Ensayo de Inmunoadsorción Enzimática , Células Epiteliales/microbiología , Inflamasomas/genética , Inflamasomas/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Mucosa Intestinal/patología , Péptidos y Proteínas de Señalización Intracelular , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Microscopía Confocal , Proteínas de Unión a Fosfato , Infecciones por Salmonella/metabolismo , Infecciones por Salmonella/microbiología , Salmonella typhimurium/fisiologíaRESUMEN
Animal tissues comprise diverse cell types. However, the mechanisms controlling the number of each cell type within tissue compartments remain poorly understood. Here, we report that different cell types utilize distinct strategies to control population numbers. Proliferation of fibroblasts, stromal cells important for tissue integrity, is limited by space availability. In contrast, proliferation of macrophages, innate immune cells involved in defense, repair, and homeostasis, is constrained by growth factor availability. Examination of density-dependent gene expression in fibroblasts revealed that Hippo and TGF-ß target genes are both regulated by cell density. We found YAP1, the transcriptional coactivator of the Hippo signaling pathway, directly regulates expression of Csf1, the lineage-specific growth factor for macrophages, through an enhancer of Csf1 that is specifically active in fibroblasts. Activation of YAP1 in fibroblasts elevates Csf1 expression and is sufficient to increase the number of macrophages at steady state. Our data also suggest that expression programs in fibroblasts that change with density may result from sensing of mechanical force through actin-dependent mechanisms. Altogether, we demonstrate that two different modes of population control are connected and coordinated to regulate cell numbers of distinct cell types. Sensing of the tissue environment may serve as a general strategy to control tissue composition.
Asunto(s)
Proliferación Celular , Fibroblastos , Macrófagos , Animales , Recuento de Células , Fibroblastos/fisiología , Vía de Señalización Hippo , Macrófagos/citología , Macrófagos/fisiología , Factor de Crecimiento Transformador beta/metabolismo , Proteínas Señalizadoras YAP/metabolismoRESUMEN
Cell death plays a critical role in inflammatory responses. During pyroptosis, inflammatory caspases cleave Gasdermin D (GSDMD) to release an N-terminal fragment that generates plasma membrane pores that mediate cell lysis and IL-1 cytokine release. Terminal cell lysis and IL-1ß release following caspase activation can be uncoupled in certain cell types or in response to particular stimuli, a state termed hyperactivation. However, the factors and mechanisms that regulate terminal cell lysis downstream of GSDMD cleavage remain poorly understood. In the course of studies to define regulation of pyroptosis during Yersinia infection, we identified a line of Card19-deficient mice (Card19lxcn) whose macrophages were protected from cell lysis and showed reduced apoptosis and pyroptosis, yet had wild-type levels of caspase activation, IL-1 secretion, and GSDMD cleavage. Unexpectedly, CARD19, a mitochondrial CARD-containing protein, was not directly responsible for this, as an independently-generated CRISPR/Cas9 Card19 knockout mouse line (Card19Null) showed no defect in macrophage cell lysis. Notably, Card19 is located on chromosome 13, immediately adjacent to Ninj1, which was recently found to regulate cell lysis downstream of GSDMD activation. RNA-seq and western blotting revealed that Card19lxcn BMDMs have significantly reduced NINJ1 expression, and reconstitution of Ninj1 in Card19lxcn immortalized BMDMs restored their ability to undergo cell lysis in response to caspase-dependent cell death stimuli. Card19lxcn mice exhibited increased susceptibility to Yersinia infection, whereas independently-generated Card19Null mice did not, demonstrating that cell lysis itself plays a key role in protection against bacterial infection, and that the increased infection susceptibility of Card19lxcn mice is attributable to loss of NINJ1. Our findings identify genetic targeting of Card19 being responsible for off-target effects on the adjacent gene Ninj1, disrupting the ability of macrophages to undergo plasma membrane rupture downstream of gasdermin cleavage and impacting host survival and bacterial control during Yersinia infection.
Asunto(s)
Proteínas Adaptadoras de Señalización CARD/metabolismo , Moléculas de Adhesión Celular Neuronal/metabolismo , Macrófagos/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Yersiniosis/patología , Animales , Macrófagos/microbiología , Macrófagos/patología , Ratones , Ratones Noqueados , Piroptosis/fisiología , Yersiniosis/metabolismoRESUMEN
Caspases regulate cell death programs in response to environmental stresses, including infection and inflammation, and are therefore critical for the proper operation of the mammalian immune system. Caspase-8 is necessary for optimal production of inflammatory cytokines and host defense against infection by multiple pathogens including Yersinia, but whether this is due to death of infected cells or an intrinsic role of caspase-8 in TLR-induced gene expression is unknown. Caspase-8 activation at death signaling complexes results in its autoprocessing and subsequent cleavage and activation of its downstream apoptotic targets. Whether caspase-8 activity is also important for inflammatory gene expression during bacterial infection has not been investigated. Here, we report that caspase-8 plays an essential cell-intrinsic role in innate inflammatory cytokine production in vivo during Yersinia infection. Unexpectedly, we found that caspase-8 enzymatic activity regulates gene expression in response to bacterial infection as well as TLR signaling independently of apoptosis. Using newly-generated mice in which caspase-8 autoprocessing is ablated (Casp8DA/DA), we now demonstrate that caspase-8 enzymatic activity, but not autoprocessing, mediates induction of inflammatory cytokines by bacterial infection and a wide variety of TLR stimuli. Because unprocessed caspase-8 functions in an enzymatic complex with its homolog cFLIP, our findings implicate the caspase-8/cFLIP heterodimer in control of inflammatory cytokines during microbial infection, and provide new insight into regulation of antibacterial immune defense.
Asunto(s)
Caspasa 8/inmunología , Citocinas/biosíntesis , Inmunidad Innata/inmunología , Transducción de Señal/inmunología , Yersiniosis/inmunología , Animales , Apoptosis , Caspasa 8/metabolismo , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Regulación de la Expresión Génica/inmunología , Técnicas de Silenciamiento del Gen , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena de la Polimerasa , Receptores Toll-Like/inmunologíaRESUMEN
Innate immune responses that are crucial for control of infection are often targeted by microbial pathogens. Blockade of NF-κB and MAPK signaling by the Yersinia virulence factor YopJ inhibits cytokine production by innate immune cells but also triggers cell death. This cell death requires RIPK1 kinase activity and caspase-8, which are engaged by TLR4 and the adaptor protein TRIF. Nevertheless, TLR4- and TRIF-deficient cells undergo significant apoptosis, implicating TLR4/TRIF-independent pathways in the death of Yersinia-infected cells. In this article, we report a key role for TNF/TNFR1 in Yersinia-induced cell death of murine macrophages, which occurs despite the blockade of NF-κB and MAPK signaling imposed by Yersinia on infected cells. Intriguingly, direct analysis of YopJ injection revealed a heterogeneous population of injection-high and injection-low cells, and demonstrated that TNF expression came from the injection-low population. Moreover, TNF production by this subpopulation was necessary for maximal apoptosis in the population of highly injected cells, and TNFR-deficient mice displayed enhanced susceptibility to Yersinia infection. These data demonstrate an important role for collaboration between TNF and pattern recognition receptor signals in promoting maximal apoptosis during bacterial infection, and demonstrate that heterogeneity in virulence factor injection and cellular responses play an important role in promoting anti-Yersinia immune defense.
Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Apoptosis , Macrófagos/microbiología , Macrófagos/fisiología , Factores de Necrosis Tumoral/metabolismo , Yersiniosis/inmunología , Yersinia pseudotuberculosis/patogenicidad , Animales , Proteínas Bacterianas/genética , Caspasa 1/metabolismo , Muerte Celular , Inmunidad Innata , L-Lactato Deshidrogenasa/metabolismo , Ratones , Plásmidos/genética , Transducción de Señal , Receptor Toll-Like 4/inmunología , Factores de Necrosis Tumoral/deficiencia , Factores de Necrosis Tumoral/inmunología , Yersinia pseudotuberculosis/inmunologíaRESUMEN
The innate immune system plays an essential role in initiating the early response against microbial infection, as well as instructing and shaping subsequent responses. Microbial pathogens are enormously diverse in terms of the niches they occupy, their metabolic properties and requirements, and the cellular pathways that they target. Nevertheless, innate sensing of pathogens triggers a relatively stereotyped set of responses that involve transcriptional induction of key inflammatory mediators, as well as post-translational assembly and activation of a multiprotein inflammatory complex termed 'the inflammasome.' Along with classical Pattern Recognition Receptors, the inflammasome activation pathway has emerged as a key regulator of tissue homeostasis and immune defense. Components of the inflammasome generally exist within the cell in a soluble, monomeric state, and oligomerize in response to diverse enzymatic activities associated with infection or cellular stress. Inflammasome assembly triggers activation of the pro-enzyme caspase-1, resulting in the cleavage of caspase-1 targets. The most extensively studied targets are the cytokines of the IL-1 family, but the recent discovery of Gasdermin D as a novel target of caspase-1 and the related inflammatory caspase, caspase-11, has begun to mechanistically define the links between caspase-1 activation and cell death. Cell death is a hallmark of macrophage infection by many pathogens, including the gram-negative bacterial pathogens of the genus Yersinia. Intriguingly, the activities of the Yersinia-secreted effector proteins and the type III secretion system (T3SS) itself have been linked to both inflammasome activation and evasion during infection. The balance between these activating and inhibitory activities shapes the outcome of Yersinia infection. Here, we describe the current state of knowledge on interactions between Yersinia and the inflammasome system, with the goal of integrating these findings within the general framework of inflammasome responses to microbial pathogens.
Asunto(s)
Evasión Inmune , Inflamasomas/inmunología , Yersiniosis/inmunología , Yersiniosis/microbiología , Yersinia/inmunología , Animales , Apoptosis , Proteínas Bacterianas/genética , Proteínas Bacterianas/inmunología , Interacciones Huésped-Patógeno , Humanos , Inflamasomas/genética , Yersinia/genética , Yersinia/fisiología , Yersiniosis/fisiopatologíaRESUMEN
Toll-like receptor signaling and subsequent activation of NF-κB- and MAPK-dependent genes during infection play an important role in antimicrobial host defense. The YopJ protein of pathogenic Yersinia species inhibits NF-κB and MAPK signaling, resulting in blockade of NF-κB-dependent cytokine production and target cell death. Nevertheless, Yersinia infection induces inflammatory responses in vivo. Moreover, increasing the extent of YopJ-dependent cytotoxicity induced by Yersinia pestis and Yersinia pseudotuberculosis paradoxically leads to decreased virulence in vivo, suggesting that cell death promotes anti-Yersinia host defense. However, the specific pathways responsible for YopJ-induced cell death and how this cell death mediates immune defense against Yersinia remain poorly defined. YopJ activity induces processing of multiple caspases, including caspase-1, independently of inflammasome components or the adaptor protein ASC. Unexpectedly, caspase-1 activation in response to the activity of YopJ required caspase-8, receptor-interacting serine/threonine kinase 1 (RIPK1), and Fas-associated death domain (FADD), but not RIPK3. Furthermore, whereas RIPK3 deficiency did not affect YopJ-induced cell death or caspase-1 activation, deficiency of both RIPK3 and caspase-8 or FADD completely abrogated Yersinia-induced cell death and caspase-1 activation. Mice lacking RIPK3 and caspase-8 in their hematopoietic compartment showed extreme susceptibility to Yersinia and were deficient in monocyte and neutrophil-derived production of proinflammatory cytokines. Our data demonstrate for the first time to our knowledge that RIPK1, FADD, and caspase-8 are required for YopJ-induced cell death and caspase-1 activation and suggest that caspase-8-mediated cell death overrides blockade of immune signaling by YopJ to promote anti-Yersinia immune defense.
Asunto(s)
Caspasa 1/metabolismo , Caspasa 8/metabolismo , Inmunidad Innata , Sistema de Señalización de MAP Quinasas , FN-kappa B/metabolismo , Animales , Apoptosis , Proteínas Bacterianas/genética , Activación Enzimática , Proteína de Dominio de Muerte Asociada a Fas/metabolismo , Regulación Enzimológica de la Expresión Génica , Ratones , Ratones Transgénicos , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Yersiniosis/microbiología , Yersinia pseudotuberculosisRESUMEN
Signaling pathways leading to natural killer (NK)-cell effector function are complex and incompletely understood. Here, we investigated the proximal signaling pathways downstream of the immunotyrosine-based activation motif (ITAM) bearing activating receptors. We found that the adaptor molecule SH2 domain-containing leukocyte protein of 76 kD (SLP-76) is recruited to microclusters at the plasma membrane in activated NK cells and that this is required for initiation of downstream signaling and multiple NK-cell effector functions in vitro and in vivo. Surprisingly, we found that 2 types of proximal signaling complexes involving SLP-76 were formed. In addition to the canonical membrane complex formed between SLP-76 and linker for activation of T cells (LAT) family members, a novel LAT family-independent SLP-76-dependent signaling pathway was identified. The LAT family-independent pathway involved the SH2 domain of SLP-76 and adhesion and degranulation-promoting adaptor protein (ADAP). Both the LAT family-dependent and ADAP-dependent pathway contributed to interferon-gamma production and cytotoxicity; however, they were not essential for other SLP-76-dependent events, including phosphorylation of AKT and extracellular signal-related kinase and cellular proliferation. These results demonstrate that NK cells possess an unexpected bifurcation of proximal ITAM-mediated signaling, each involving SLP-76 and contributing to optimal NK-cell function.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/inmunología , Sistema de Transporte de Aminoácidos y+/inmunología , Cadenas Ligeras de la Proteína-1 Reguladora de Fusión/inmunología , Células Asesinas Naturales/inmunología , Subfamilia A de Receptores Similares a Lectina de Células NK/inmunología , Fosfoproteínas/inmunología , Proteínas Adaptadoras Transductoras de Señales/análisis , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Sistema de Transporte de Aminoácidos y+L , Animales , Línea Celular Tumoral , Proliferación Celular , Células Cultivadas , Interferón gamma/inmunología , Células Asesinas Naturales/citología , Células Asesinas Naturales/metabolismo , Sistema de Señalización de MAP Quinasas , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones Noqueados , Neoplasias/genética , Neoplasias/inmunología , Neoplasias/patología , Fosfoproteínas/análisis , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-akt/inmunología , Transducción de SeñalRESUMEN
Tissue-resident macrophages play important roles in tissue homeostasis and repair. However, how macrophages monitor and maintain tissue integrity is not well understood. The extracellular matrix (ECM) is a key structural and organizational component of all tissues. Here, we find that macrophages sense the mechanical properties of the ECM to regulate a specific tissue repair program. We show that macrophage mechanosensing is mediated by cytoskeletal remodeling and can be performed in three-dimensional environments through a noncanonical, integrin-independent mechanism analogous to amoeboid migration. We find that these cytoskeletal dynamics also integrate biochemical signaling by colony-stimulating factor 1 and ultimately regulate chromatin accessibility to control the mechanosensitive gene expression program. This study identifies an "amoeboid" mode of ECM mechanosensing through which macrophages may regulate tissue repair and fibrosis.
Asunto(s)
Matriz Extracelular , Macrófagos , Matriz Extracelular/metabolismo , Macrófagos/metabolismo , Citoesqueleto , Integrinas/metabolismo , Transducción de SeñalRESUMEN
Mammalian barrier surfaces, including the skin, lung and intestine, are constantly exposed to environmental stimuli, including beneficial and pathogenic microbes, dietary substances and non-organic materials. At these anatomical sites it is essential to maintain barrier integrity to promote tissue homeostasis and prevent local and systemic inflammation. As such, changes in the composition and localization of commensal bacteria are closely associated with inflammatory, metabolic and infectious disease in mammals. Cells of the innate and adaptive immune systems have a crucial role in the tight regulation of host-commensal relationships. A recently described family of immune cells, termed innate lymphoid cells (ILCs), contributes to inflammation, modulates adaptive immunity and regulates wound healing and tissue regeneration. ILCs are present at barrier surfaces, and thus are in close proximity to environmental antigens, including commensal bacteria. The composition and localization of microbial communities have a profound impact on immunity at barrier surfaces as well as at distant sites. This review will summarize the phenotypic characteristics of ILC family members and discuss recent findings about the interactions between ILCs and the microbiota in the contexts of homeostasis, immunity, inflammation and tissue organization and repair.
Asunto(s)
Inmunidad Adaptativa , Bacterias/inmunología , Fenómenos Fisiológicos Bacterianos/inmunología , Interacciones Huésped-Patógeno/inmunología , Inmunidad Innata , Linfocitos/inmunología , Animales , Humanos , Linfocitos/microbiología , Cicatrización de Heridas/inmunologíaRESUMEN
Intracerebral hemorrhage (ICH) is a devastating form of stroke with a high mortality rate and few treatment options. Discovery of therapeutic interventions has been slow given the challenges associated with studying acute injury in the human brain. Inflammation induced by exposure of brain tissue to blood appears to be a major part of brain tissue injury. Here, we longitudinally profiled blood and cerebral hematoma effluent from a patient enrolled in the Minimally Invasive Surgery with Thrombolysis in Intracerebral Hemorrhage Evacuation trial, offering a rare window into the local and systemic immune responses to acute brain injury. Using single-cell RNA-Seq (scRNA-Seq), this is the first report to our knowledge that characterized the local cellular response during ICH in the brain of a living patient at single-cell resolution. Our analysis revealed shifts in the activation states of myeloid and T cells in the brain over time, suggesting that leukocyte responses are dynamically reshaped by the hematoma microenvironment. Interestingly, the patient had an asymptomatic rebleed that our transcriptional data indicated occurred prior to detection by CT scan. This case highlights the rapid immune dynamics in the brain after ICH and suggests that sensitive methods such as scRNA-Seq would enable greater understanding of complex intracerebral events.
Asunto(s)
Adaptación Fisiológica , Hemorragia Cerebral/patología , Leucocitos/patología , Anciano , Hemorragia Cerebral/diagnóstico por imagen , Femenino , Genómica , Humanos , Procedimientos Quirúrgicos Mínimamente Invasivos , Tomografía Computarizada por Rayos XRESUMEN
The intestine is a site of direct encounter with the external environment and must consequently balance barrier defense with nutrient uptake. To investigate how nutrient uptake is regulated in the small intestine, we tested the effect of diets with different macronutrient compositions on epithelial gene expression. We found that enzymes and transporters required for carbohydrate digestion and absorption were regulated by carbohydrate availability. The "on-demand" induction of this machinery required γδ T cells, which regulated this program through the suppression of interleukin-22 production by type 3 innate lymphoid cells. Nutrient availability altered the tissue localization and transcriptome of γδ T cells. Additionally, transcriptional responses to diet involved cellular remodeling of the epithelial compartment. Thus, this work identifies a role for γδ T cells in nutrient sensing.
Asunto(s)
Carbohidratos de la Dieta/administración & dosificación , Carbohidratos de la Dieta/metabolismo , Enterocitos/fisiología , Interleucinas/metabolismo , Mucosa Intestinal/fisiología , Receptores de Antígenos de Linfocitos T gamma-delta , Subgrupos de Linfocitos T/fisiología , Adaptación Fisiológica , Animales , Comunicación Celular , Proteínas en la Dieta/administración & dosificación , Digestión , Regulación de la Expresión Génica , Interleucinas/genética , Absorción Intestinal , Mucosa Intestinal/citología , Intestino Delgado/citología , Intestino Delgado/metabolismo , Ratones Endogámicos C57BL , Nutrientes/administración & dosificación , Nutrientes/metabolismo , Subgrupos de Linfocitos T/inmunología , Transcripción Genética , Transcriptoma , Interleucina-22RESUMEN
Heterogeneity in the behavior of genetically and developmentally equivalent cells is becoming increasingly appreciated. There are several sources of cellular heterogeneity, including both intrinsic and extrinsic noise. We found that some aspects of heterogeneity in the response of macrophages to bacterial lipopolysaccharide (LPS) were due to intercellular desynchronization of the molecular clock, a cell-intrinsic oscillator. We found that the ratio of the relative expression of two clock genes, Nfil3 and Dbp, expressed in opposite phases of the clock, determined the fraction of cells that produced the cytokine IL-12p40 in response to LPS. The clock can be entrained by various environmental stimuli, making it a mechanism by which population-level heterogeneity and the inflammatory response can be regulated.
Asunto(s)
Relojes Biológicos/efectos de los fármacos , Lipopolisacáridos/toxicidad , Macrófagos/inmunología , Animales , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/inmunología , Relojes Biológicos/genética , Relojes Biológicos/inmunología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/inmunología , Subunidad p40 de la Interleucina-12/genética , Subunidad p40 de la Interleucina-12/inmunología , Macrófagos/patología , Ratones , Ratones Transgénicos , Factores de Transcripción/genética , Factores de Transcripción/inmunologíaRESUMEN
Many pathogens deliver virulence factors or effectors into host cells in order to evade host defenses and establish infection. Although such effector proteins disrupt critical cellular signaling pathways, they also trigger specific antipathogen responses, a process termed "effector-triggered immunity." The Gram-negative bacterial pathogen Yersinia inactivates critical proteins of the NF-κB and MAPK signaling cascade, thereby blocking inflammatory cytokine production but also inducing apoptosis. Yersinia-induced apoptosis requires the kinase activity of receptor-interacting protein kinase 1 (RIPK1), a key regulator of cell death, NF-κB, and MAPK signaling. Through the targeted disruption of RIPK1 kinase activity, which selectively disrupts RIPK1-dependent cell death, we now reveal that Yersinia-induced apoptosis is critical for host survival, containment of bacteria in granulomas, and control of bacterial burdens in vivo. We demonstrate that this apoptotic response provides a cell-extrinsic signal that promotes optimal innate immune cytokine production and antibacterial defense, demonstrating a novel role for RIPK1 kinase-induced apoptosis in mediating effector-triggered immunity to circumvent pathogen inhibition of immune signaling.
Asunto(s)
Apoptosis/inmunología , Proteína Serina-Treonina Quinasas de Interacción con Receptores/inmunología , Infecciones por Yersinia pseudotuberculosis/inmunología , Yersinia pseudotuberculosis/inmunología , Animales , Apoptosis/genética , Citocinas/inmunología , Citocinas/metabolismo , Resistencia a la Enfermedad/genética , Resistencia a la Enfermedad/inmunología , Interacciones Huésped-Patógeno/inmunología , Inmunidad Innata/genética , Inmunidad Innata/inmunología , Sistema de Señalización de MAP Quinasas/genética , Sistema de Señalización de MAP Quinasas/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/microbiología , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Inmunológicos , FN-kappa B/inmunología , FN-kappa B/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Transducción de Señal/genética , Transducción de Señal/inmunología , Análisis de Supervivencia , Yersinia pseudotuberculosis/fisiología , Infecciones por Yersinia pseudotuberculosis/genética , Infecciones por Yersinia pseudotuberculosis/microbiologíaRESUMEN
During bacterial infections, Toll-like receptor 4 (TLR4) signals through the MyD88- and TRIF-dependent pathways to promote pro-inflammatory and interferon (IFN) responses, respectively. Bacteria can inhibit the MyD88 pathway, but if the TRIF pathway is also targeted is unclear. We demonstrate that, in addition to MyD88, Yersinia pseudotuberculosis inhibits TRIF signaling through the type III secretion system effector YopJ. Suppression of TRIF signaling occurs during dendritic cell (DC) and macrophage infection and prevents expression of type I IFN and pro-inflammatory cytokines. YopJ-mediated inhibition of TRIF prevents DCs from inducing natural killer (NK) cell production of antibacterial IFNγ. During infection of DCs, YopJ potently inhibits MAPK pathways but does not prevent activation of IKK- or TBK1-dependent pathways. This singular YopJ activity efficiently inhibits TLR4 transcription-inducing activities, thus illustrating a simple means by which pathogens impede innate immunity.
Asunto(s)
Interacciones Huésped-Patógeno , Evasión Inmune , Transducción de Señal , Yersinia pseudotuberculosis/inmunología , Yersinia pseudotuberculosis/patogenicidad , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Animales , Proteínas Bacterianas/metabolismo , Células Cultivadas , Células Dendríticas/inmunología , Células Dendríticas/microbiología , Macrófagos/inmunología , Macrófagos/microbiología , Ratones , Factor 88 de Diferenciación Mieloide/metabolismo , Receptor Toll-Like 4/metabolismoRESUMEN
UNLABELLED: Type III secretion systems (T3SS) translocate effector proteins into target cells in order to disrupt or modulate host cell signaling pathways and establish replicative niches. However, recognition of T3SS activity by cytosolic pattern recognition receptors (PRRs) of the nucleotide-binding domain leucine rich repeat (NLR) family, either through detection of translocated products or membrane disruption, induces assembly of multiprotein complexes known as inflammasomes. Macrophages infected with Yersinia pseudotuberculosis strains lacking all known effectors or lacking the translocation regulator YopK induce rapid activation of both the canonical NLRP3 and noncanonical caspase-11 inflammasomes. While this inflammasome activation requires a functional T3SS, the precise signal that triggers inflammasome activation in response to Yersinia T3SS activity remains unclear. Effectorless strains of Yersinia as well as ΔyopK strains translocate elevated levels of T3SS substrates into infected cells. To dissect the contribution of pore formation and translocation to inflammasome activation, we took advantage of variants of YopD and LcrH that separate these functions of the T3SS. Notably, YopD variants that abrogated translocation but not pore-forming activity failed to induce inflammasome activation. Furthermore, analysis of individual infected cells revealed that inflammasome activation at the single-cell level correlated with translocated levels of YopB and YopD themselves. Intriguingly, LcrH mutants that are fully competent for effector translocation but produce and translocate lower levels of YopB and YopD also fail to trigger inflammasome activation. Our findings therefore suggest that hypertranslocation of YopD and YopB is linked to inflammasome activation in response to the Yersinia T3SS. IMPORTANCE: The innate immune response is critical to effective clearance of pathogens. Recognition of conserved virulence structures and activities by innate immune receptors such as NLRs constitute one of the first steps in mounting the innate immune response. However, pathogens such as Yersinia actively evade or subvert components of host defense, such as inflammasomes. The T3SS-secreted protein YopK is an essential virulence factor that limits translocation of other Yops, thereby limiting T3SS-induced inflammasome activation. However, what triggers inflammasome activation in cells infected by YopK-deficient Yersinia is not clear. Our findings indicate that hypertranslocation of pore complex proteins promotes inflammasome activation and that YopK prevents inflammasome activation by the T3SS by limiting translocation of YopD and YopB themselves.
Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Inflamasomas/metabolismo , Sistemas de Secreción Tipo III/metabolismo , Yersinia/fisiología , Animales , Línea Celular , Supervivencia Celular , Células Epiteliales/microbiología , Células Epiteliales/fisiología , Humanos , Macrófagos/microbiología , Macrófagos/fisiología , Ratones , Transporte de ProteínasRESUMEN
YopM is a leucine-rich repeat (LRR)-containing effector in several Yersinia species, including Yersinia pestis and Y. pseudotuberculosis. Different Yersinia strains encode distinct YopM isoforms with variable numbers of LRRs but conserved C-terminal tails. A 15-LRR isoform in Y. pseudotuberculosis YPIII was recently shown to bind and inhibit caspase-1 via a YLTD motif in LRR 10, and attenuation of YopM(-) YPIII was reversed in mice lacking caspase-1, indicating that caspase-1 inhibition is a major virulence function of YopM(YPIII). To determine if other YopM proteins inhibit caspase-1, we utilized Y. pseudotuberculosis strains natively expressing a 21-LRR isoform lacking the YLTD motif (YopM(32777)) or ectopically expressing a Y. pestis 15-LRR version with a functional (YopM(KIM)) or inactivated (YopM(KIM) D271A) YLTD motif. Results of mouse and macrophage infections with these strains showed that YopM(32777), YopM(KIM), and YopM(KIM) D271A inhibit caspase-1 activation, indicating that the YLTD motif is dispensable for this activity. Analysis of YopM(KIM) deletion variants revealed that LRRs 6 to 15 and the C-terminal tail are required to inhibit caspase-1 activation. YopM(32777), YopM(KIM), and YopM(KIM) deletion variants were purified, and binding partners in macrophage lysates were identified. Caspase-1 bound to YopM(KIM) but not YopM(32777). Additionally, YopM(KIM) bound IQGAP1 and the use of Iqgap1(-/-) macrophages revealed that this scaffolding protein is important for caspase-1 activation upon infection with YopM(-) Y. pseudotuberculosis. Thus, while multiple YopM isoforms inhibit caspase-1 activation, their variable LRR domains bind different host proteins to perform this function and the LRRs of YopM(KIM) target IQGAP1, a novel regulator of caspase-1, in macrophages. Importance: Activation of caspase-1, mediated by macromolecular complexes termed inflammasomes, is important for innate immune defense against pathogens. Pathogens can, in turn, subvert caspase-1-dependent responses through the action of effector proteins. For example, the Yersinia effector YopM inhibits caspase-1 activation by arresting inflammasome formation. This caspase-1 inhibitory activity has been studied in a specific YopM isoform, and in this case, the protein was shown to act as a pseudosubstrate to bind and inhibit caspase-1. Different Yersinia strains encode distinct YopM isoforms, many of which lack the pseudosubstrate motif. We studied additional isoforms and found that these YopM proteins inhibit caspase-1 activation independently of a pseudosubstrate motif. We also identified IQGAP1 as a novel binding partner of the Yersinia pestis YopM(KIM) isoform and demonstrated that IQGAP1 is important for caspase-1 activation in macrophages infected with Yersinia. Thus, this study reveals new insights into inflammasome regulation during Yersinia infection.
Asunto(s)
Proteínas Bacterianas/metabolismo , Caspasa 1/metabolismo , Macrófagos/enzimología , Yersinia pestis/metabolismo , Animales , Caspasa 1/genética , Células Cultivadas , Femenino , Ratones , Ratones NoqueadosRESUMEN
Microbial infection triggers assembly of inflammasome complexes that promote caspase-1-dependent antimicrobial responses. Inflammasome assembly is mediated by members of the nucleotide binding domain leucine-rich repeat (NLR) protein family that respond to cytosolic bacterial products or disruption of cellular processes. Flagellin injected into host cells by invading Salmonella induces inflammasome activation through NLRC4, whereas NLRP3 is required for inflammasome activation in response to multiple stimuli, including microbial infection, tissue damage, and metabolic dysregulation, through mechanisms that remain poorly understood. During systemic infection, Salmonella avoids NLRC4 inflammasome activation by down-regulating flagellin expression. Macrophages exhibit delayed NLRP3 inflammasome activation after Salmonella infection, suggesting that Salmonella may evade or prevent the rapid activation of the NLRP3 inflammasome. We therefore screened a Salmonella Typhimurium transposon library to identify bacterial factors that limit NLRP3 inflammasome activation. Surprisingly, absence of the Salmonella TCA enzyme aconitase induced rapid NLRP3 inflammasome activation. This inflammasome activation correlated with elevated levels of bacterial citrate, and required mitochondrial reactive oxygen species and bacterial citrate synthase. Importantly, Salmonella lacking aconitase displayed NLRP3- and caspase-1/11-dependent attenuation of virulence, and induced elevated serum IL-18 in wild-type mice. Together, our data link Salmonella genes controlling oxidative metabolism to inflammasome activation and suggest that NLRP3 inflammasome evasion promotes systemic Salmonella virulence.
Asunto(s)
Proteínas Portadoras/metabolismo , Evasión Inmune/inmunología , Inflamasomas/metabolismo , Salmonella typhimurium/metabolismo , Aconitato Hidratasa/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Sistemas de Secreción Bacterianos , Proteínas de Unión al Calcio/metabolismo , Citrato (si)-Sintasa/metabolismo , Ciclo del Ácido Cítrico , Genes Bacterianos/genética , Inmunidad , Isocitrato Deshidrogenasa/metabolismo , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Mutación/genética , Proteína con Dominio Pirina 3 de la Familia NLR , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo , Salmonelosis Animal/inmunología , Salmonelosis Animal/patología , Salmonella typhimurium/enzimología , Salmonella typhimurium/genética , Salmonella typhimurium/inmunologíaRESUMEN
Cell death plays a central role in host-pathogen interactions, as it can eliminate the pathogen's replicative niche and provide pro-inflammatory signals necessary for an effective immune response; conversely, cell death can allow pathogens to eliminate immune cells and evade anti-microbial effector mechanisms. In response to developmental signals or cell-intrinsic stresses, the executioner caspases-3 and -7 mediate apoptotic cell death, which is generally viewed as immunologically silent or immunosuppressive. A proinflammatory form of cell death that requires caspase-1, termed pyroptosis, is activated in response to microbial products within the host cytosol or disruption of cellular membranes by microbial pathogens. Infection by the bacterial pathogen Yersinia has features of both apoptosis and pyroptosis. Cell death and caspase-1 processing in Yersinia-infected cells occur in response to inhibition of NF-κB and MAPK signaling by the Yersinia virulence factor YopJ. However, the molecular basis of YopJ-induced cell death, and the role of different death pathways in anti-Yersinia immune responses remain enigmatic. Here, we discuss the role that cell death may play in inducing specific pro-inflammatory signals that shape innate and adaptive immune responses against Yersinia infection.